ASYMPTOTICS IN ALL REGIMES FOR THE SCHRODINGER EQUATION
WITH TIME-INDEPENDENT COEFFICIENTS

SHI-ZHUO LOOI AND ETHAN SUSSMAN

ABSTRACT. Using the recent analysis of the output of the low-energy resolvent of Schrédinger
operators on asymptotically conic manifolds (including Euclidean space) when the potential is
short-range, we produce asymptotic expansions for the solutions of the initial-value problem for
the Schrodinger equation, assuming Schwartz initial data. Asymptotics are calculated in all joint
large-radii large-time regimes, which correspond to the boundary hypersurfaces of a particular
compactification of spacetime.
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1. INTRODUCTION

In recent works [Hin22; LS|, wave propagation on stationary, asymptotically flat spacetimes
has been analyzed using Vasy’s spectral methods [Vas2la; Vas21b], which involve low-energy
resolvent estimates for Schrodinger operators (i.e. for the “time-independent” Schrédinger equation,
in physicists’ preferred terminology) and are closely related to earlier work of Guillarmou—Hassell-
Sikora [GHO08; GH09; GHS13], with numerous precursors in the wider literature. These tools apply
to Schrodinger operators with short range potentials, which in [Hin22; LS] means decaying cubically
or faster. The quadratic case is similar, requiring only minor modifications. Long range potentials
(e.g. any Coulomb-like potential, decaying like ~ 7~1) require serious modifications which we do not
discuss here.

We focus on the 3-dimensional case of most physical interest, for which the spectral methods are
most developed. Let (X, g) denote an asymptotically conic manifold [Mel94; Mel95] (see below), and
let p denote a boundary-defining-function on X. Let S(X) = Ny p*C°°(X) denote the Fréchet
space of Schwartz functions on X. The reader is invited to consider the case of exact Euclidean
space. Then,

X =R3 = R3U 0oS?, (1)
which is the compactification of R? constructed by adding on the 2-sphere coS? at infinity, and g is
the exact Euclidean metric. The results below are novel even in this case. Here, a convenient choice
of bdf is p = 1/(r), where r is the Euclidean radial coordinate and (r) = (1 +r2)"/2 is the Japanese
bracket. Also, S(X) = S(R?) is just the usual set of Schwartz functions on 3-dimensional Euclidean
space. Because of our familiarity with the Euclidean case, even when working with general X
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it is usually easier to use the coordinate r(z) = p(z)~! € C°°(X°) in place of the bdf p(x). For
example, g is given to leading order (with respect to some collar neighborhood of the boundary) by
dr? 4+ r~2gpx for gsx a Riemannian metric on X. This is the metric of an exact cone. However, it
should be kept in mind that, in the exact Euclidean case, r(z) = (r)~!, where r is the Euclidean
radial coordinate. This slightly overloaded notation should not cause confusion. Whenever we use
‘r’ below, we mean p(x)~!.

In this paper, we apply Vasy—Hintz—Looi’s low-energy toolkit to the Schrédinger initial value
problem

{—i@tu =Agu+iA-Vou+ (V+271iV, - A, (1vP)

u(0,z) = f(z),
posed on the manifold Ry x X°, where f € S(X),

e A, is the positive semidefinite Laplace-Beltrami operator,

o V,: C>®(X°) — V(X°) is the gradient operator which is anti-self-adjoint with respect to
the L?(X, g)-inner product, 4 - Vyu(z) = g(A(z), Vyu(z)), and V- is the corresponding
divergence operator, and

e Aer?V(X;R), and V € r3C®(X;R).

Note that the coefficients of the PDE are static, i.e. constant in the time coordinate t. Moreover,
the differential operator

P=A,+iA -V, +27%V, A+ V € Diff*(X°) (2)

is formally symmetric with respect to the L?(X, g)-inner product, (¢, 1)) 12(x,9) = Jx ¢"dVoly.
This enables the application of spectral-theoretic tools. We also make the following assumptions, as
in Hintz’s work:

(I) (No zero energy resonance or bound state.) The operator P has trivial nullspace acting on
—1 o0
r—C®(X).

(IT) The high energy estimates stated in [Hin22, Def. 2.9] apply.
In [Hin22, Def. 2.8], (I) is stated using the conormal space A!(X) instead. In the present context,
these formulations are equivalent. The high energy estimates apply whenever the metric g is
non-trapping or exhibits only normally hyperbolic trapping. In particular, (II) holds in the exact
Euclidean case or in any sufficiently small perturbation thereof.

Theorem A. The solution of the initial-value problem eq. (IVP) is of exponential-polyhomogeneous
type on the compactification M < (0,00); X X given by the iterated blowup

M = [[[0,00); x X; {00} x 0X]; 7 ({oo} x 0X) Nl 7 ({oo} x X)), (3)
where B : [[0,00]s X X;{oo} x 0X] — [0,00]; x X is the blowdown map.

We will explain the construction of M in more detail below. For now, see Figure 1, which
describes M near 371([0,00] x 0X) via an atlas. Also, see the discussion below for the definition of
the notion of exponential-polyhomogeneity appearing in the theorem. It is a term used to state that
asymptotic expansions hold without specifying the forms of those asymptotic expansions. More
precise theorems (in particular, Theorem B) appear later.

As far as we are aware, Theorem A should hold in any number of dimensions, not just d = 3,
and for any A € r~!V(X) and V € r2C°°(X), regardless of whether or not there is a zero energy
resonance or bound state. Our techniques are quite general, but — as described below — the spectral
side has yet to be developed sufficiently for our techniques to apply. E.g. we cite [Hin22; L.S] as a
black box, but these works are restricted to the d = 3 case. Extending them provides an avenue for
further work.
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F1GURE 1. The mwc M D R, x X, with an atlas of coordinate charts near cly/{p = 0}
depicted. Here, r = 1/p. The Cauchy hypersurface cly/{t = 0} is X. Note that some
of the faces appear disconnected only because the drawing is in 14+1D.

1.1. More precise form of the main theorem. For a function v € C°°(M°) to be of exponential-
polyhomogeneous type on the manifold-with-corners (mwc) M means that v can be written as a finite
sum v = ZnN:1 e, for 6,,,v, € C®°(M°®) polyhomogeneous functions on M. Polyhomogeneity
is a generalization of smoothness due to Melrose [Mel92; Mel93] — and used widely since — which
allows bounded powers of logarithms to appear in Taylor series. Such “generalized Taylor series”
are called polyhomogeneous expansions. The specific combinations of logarithms and powers allowed
are specified by an index set & C C x N at each boundary hypersurface f C M of M. (An index set
consists of a pair of numbers that are used to characterize the singularities of a distribution or a
solution to a PDE.) Schematically, a polyhomogeneous function v : M° — C with index set & at f
admits the polyhomogeneous expansion

v Y vt 10} log® (or) (4)
(4,k) €&

at f, where of € C°°(M) is a boundary-defining-function of f and the v;;, € C°°(f°) are polyhomo-
geneous functions on f, which itself is a mwc of one lower dimension. Polyhomogeneity at corners
guarantees the existence of joint asymptotic expansions there. This is equivalent to saying that
the polyhomogeneous expansions at adjacent boundary hypersurfaces are compatible. Concretely,
this means that (vejr)inr.sx = (VF.JK)inFsjk for any adjacent boundary hypersurfaces f, F and
(J, k) € &, (J,K) € Ep. So, the notion of exponential-polyhomogeneous type is a formalization of
the notion of admitting a full atlas of (term-by-term differentiable, in all directions) asymptotic
expansions in terms of elementary functions. If M is compact, then, in some sense, exponential-
polyhomogeneity means that our set of asymptotic expansions is complete. (The opposite extreme
is when M has no boundary, in which case exponential-polyhomogeneity just means smoothness
and therefore says nothing regarding asymptotics.)

We refer to the cited works [Mel93; Mel92][Gri01][Hin22][She22] for further discussion of polyho-
mogeneity and the function spaces capturing it, as well as for the related notion of conormality,
which e.g. features in the assumptions of the theorem. Our notational conventions mostly follow
[Hin22; LS] and are explained as needed. In particular, “ A7 ig used to refer to partially
polyhomogeneous behavior with index set £ and a conormal error of order o € R, and “Af” means
purely polyhomogeneous behavior. One abbreviation used throughout is that, for j € R and k£ € N,
“(4,k)” means the index set {(j +n,k) € Cx N:n € N,x < k}. Also, ‘oo’ means empty index set,
i.e. Schwartz behavior. For instance, A% (X) = S(X), and AV (X) = r—71C>®(X).

So, Theorem A states that solutions of the Schrodinger equation (with Schwartz initial data) are
governed by four asymptotic regimes (five if we include the Cauchy hypersurface ¥ = {t = 0} C M)
one regime for each of the four boundary hypersurfaces nf,dilF, parF,kf C M of the mwc M
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appearing in the theorem. A more precise version of the theorem — which, when combined with
Proposition 1.1, which studies the sum over eigenfunctions in eq. (5), yields Theorem A — is:

Theorem B. Let ¢1,--- ,¢n € S(X) denote the (automatically Schwartz) eigenfunctions of P,
so that Pp, = —E,¢y, for some E, > 0. Let f € S(X). If u € C*([0,00); x X°) solves the
ingtial-value problem eq. (IVP), and if x € C°(R) satisfies 0 ¢ supp(l — x), then

i(1 - X(t))] Uphg(t, )
4tp(x)? 1 (t +ie)3/2

for uphg = uphg|X] polyhomogeneous on M, with uphe € A0.0U(1/2,0)UE,(0,0)UF,(0,0),00,(0.0) (A1) forr
some indexr sets £ C (27'N22) x N, F C NZ! x N, where the index sets are specified at kf, parF,
dilF, nf, and X, respectively. So, the index set at kf is (0,0) UE, the index set at parF is (0,0) U F,
the index set at nf is empty, and the remaining index sets are (0,0).

Moreover, the leading order behavior kf U parF has the following form: for some w € C*°(X) and
polyhomogeneous v € A~ (X).

uphg (t, @) = x(r/tw(x) = x(r? /t)o(z) € AVROEFO000 (), (6)

The restriction w|px is constant, being of the form A(f) for some linear functional A : S(X) — C.
In fact, w(x) = —/mirP~Lf, where P71 f € r~1C°°(X) is the unique solution to Pw = f in AY(X),
and letting

N
+ 3 e B (1) (s Fra(xg) (5)

n=1

u(t,x) = exp [—

.d
L= _ZgMexp(—iar)PMexp(iar)
in which Me : w — ew denotes a multiplication operator, the function v is given by v(x) =
VriP~Y(—r 4+ LP~Y)f. The functional A is given by A(f) = (f, u(0)>L2(X’g) for some u(9) € C®(X)
constant at 0X.

~—

. € Diff*(X°), (7

o=

Remark. Under the stated assumptions, it is the case [Hin22, §2] that we have a well-defined
one-sided inverse P~1 : A2T%(X) — A% (X) for any a € (0,1), where A% (X) = (.20 A* ¢(X).
So, P~1f € A'=(X). A standard argument lets us upgrade this to P~1f € pC>°(X). Because L,
which is given by
L= —-2r"Y(r0, + 1) mod 2 Diff{, (X),

(cf. [Hin22, below eq. 1.11], our L being related to L(c) there by L = —iL/(0)|,—0) satisfies
Lp € p?C>®(X), it is the case that LP~1f € p3C°°(X) and therefore that P"!LP~!f € A'7(X).
This will not in general be smooth — but it can be shown that P~'LP~!f is still polyhomogeneous.
This justifies the description of the profiles v, w in Theorem B. We refer to [Hin22, §3] for the details,
which also include the large r asymptotics of w.

For the reader uncomfortable with the notion of polyhomogeneity, the following L°°-based
corollary follows immediately from the theorem:

Corollary. For any K € N,

i1 — X(t))} xX(r/tw(z) +x(r*/t)v(=)
4tp(z)? (t +i€)3/2

N

+ e n (@) (dn, f)L2(x )

"~ 1 e\ =K ¢\ —1/2
+ (a7 () ) ®

The big-O term in eq. (8), which is bounded above by O(r'/?/t?), is suppressed relative to the other
terms ast — oo in t > r. That is, for any c,e > 0 the big-O term is o(t=%/?) if r = o(t). Moreover,
for any € > 0,

u(t,x) = exp [ -

iﬂ—x@q(AU) (), (9)

U(t, .'B) = exp [ - 4tp($)2 t+ 'L.6)3/2 t+ 7"2
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The big-O term in eq. (9) suppressed relative to the other terms for t ~ r%. That is, if cr? <t < Cr?
for some 0 < ¢ < C, then the big-O term is O(t=2¢/2) = O(r—*+%). [l

Remark. One minor improvement of Theorem B is that the index sets £, F can be related to the
polynomial decay rate of the coefficients of P — A, for gy the exactly conic metric on which g
is modeled. The larger the degree, the smaller these index sets can be taken. This improvement
follows from Theorem C below and a corresponding improvement of [LS].

The proof below is essentially constructive, in the sense that it yields an algorithm for computing
the asymptotic expansions of upye in all possible regimes, not just kf U parF, and not just leading
order. The algorithm can be extracted from the proof below. It produces expansions on M in terms
of the coefficients of the expansions in [LS]. Insofar as these coefficients are explicit, so too are the
asymptotics on M.

Remark. Since [1.S] is as-of-yet unpublished, it is worth mentioning that if [Hin22, Thm. 3.1] is used
instead of [LS], then one gets Theorem B except with only conormal estimates of the remainder in
eq. (6). In particular, the L*>-based corollary above can still be deduced. Moreover, this applies
even if V; A merely satisfy symbolic estimates (so, do not necessarily extend smoothly to 0.X), except
in this case w, v are only known to be partially polyhomogeneous.

1.2. Geometric setup and spacetime compactification. Concretely, that (X, g) be an asymp-
totically conic manifold means that X is a smooth manifold-with-boundary and g is a Riemannian
metric on X° satisfying the following: for some p > 0 and embedding ¢ : [0, p], x 0X — X satisfying
(0, —) = idgx (that is, a collar neighborhood of the boundary), and for some Riemannian metric
gox on 0X, the pullback :*¢g has the form

Vg —ptdp® — p%gax € pC(Sym ™ T*([0,p), x 0X)), (10)

where °T*X is the vector bundle over X whose smooth sections are given by C*(X)p~2dp,
C®(X)p~tw for w € Q1(0X). That is, g differs from the exactly conic metric p~*dp® + p~2gax by
suitably decaying terms. In the exact Euclidean case, ggx is the standard metric (or any scalar
multiple thereof) on the 2-sphere at infinity. The first component of :~! serves as a boundary-
defining-function (bdf). That is, there exists a bdf p € C*°(X; [0, 00)) such that p(¢(g,0)) = o for
all g € [0,p]. That this is a bdf means that p~1({0}) = X and that dp is nonvanishing on 9X.
Going forwards, we will identify [0, p], x 0X with its image under «. We will use the notation
X[R] = [0, R"], x 0Xp, and this can be considered as a subset of X as long as R > p~'. The
subscripts here signal preferred variable names used to parametrize each factor, and similar notation
is used throughout below.

We now describe the construction of M in a bit more detail. As a starting point, let C' denote
the “cylinder” C = [0, 00]; x X. Consider the mwc

M /parF = [C; {o0} x 0X] = C° U X Unf UdilFy U kfy (11)

resulting from performing a polar blowup of the corner {oo} x 0X C C of C. Here, ¥ = {t = 0},
and the remaining three boundary hypersurfaces nf, dilF(, kfy are the lift of [0, 0c]; x X, the front
face of the blowup, and the lift of {oo} x X, respectively. Then, M can be constructed in terms
of M /parF as M = [M /parF;dilFy N kfy], which is the result of performing a polar blowup of the
corner dilFy Nkfy of [C;{o0} x 0X]. The construction of M is depicted in Figure 2. The notation
M/ parF indicates that this mwec is, as a topological space, the quotient resulting from collapsing
parF.

There are a number of other compactifications of R;” x X° via mwes used in this paper. In the
next subsection, we use C1 = [0,00);/,2 x X. We refer to the boundary hypersurfaces {t/ r? = oo},
{r = oo}, and {t = 0} of this mwc as kf, parF;, X; respectively. As the notation suggests, a small
neighborhood of kf in (' is identifiable with a neighborhood of kf in M, and the interiors of parF;, ¥;
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are identifiable with their counterparts in parF, Y, respectively. An alternative construction of M
involves blowing up the lower corner of C7 and then blowing up the new lower corner of the resultant
mwec, which we call M /nf.

Another compactification of note is M/dilF, which is the result of blowing down dilF in M. In
§B, we address the question as to whether Theorem B holds on M/f for f € {nf,dilF'}. The upshot
(which holds also for parF, but requires a different argument) is that Theorem B fails on both.
(A similar analysis also applies to Theorem A, but we do not present it.) In the Euclidean case,
we can also define M /kf using the coordinates 1/t € [0,00), x;/t'/?> € R near the blown down
locus, but if bound states are present then it can be immediately concluded from Theorem B that
exponential-polyhomogeneity does not hold on this compactification. So, in some sense, the mwe M
is the simplest mwc on which solutions of the Schrédinger equation with Schwartz initial data have
the desired form. However, it is expected that, when ¢ is a Schwartz perturbation of an exactly
conic metric and A,V are Schwartz, then the theorems above hold, mutatis mutandis, with M /parF
in place of M. This is expected to follow from the collapsibility, in this case, of the transitional
asymptotic regime in [Hin22; LS] vis-a-vis exponential-polyhomogeneity.

{t = oo}

{0} x 0X

[O,oo]t X 8X C

FIGURE 2. The cylinder C' = [0, 00]; x X and the blowup M /parF = [C;{c0} x 0X]
constructed in the process of constructing M. The submanifolds to be blown up are
depicted in blue and green.

1.3. Outline of proof. Consider the differential operator P = Ay +iA-V +271iV,- A+ V. The
hypotheses are such that P : C°(X°) — L?(X, g) defines an essentially self-adjoint operator. The
closure is the map H?(X, g) — L?(X, g) given by restricting P : D'(X) — D’(X), defined in the sense
of distributions, to the L?-based Sobolev space H%(X,g). The spectrum o(P) = opp(P) U ac(P) of
P consists of finitely many negative eigenvalues and a continuous spectrum on the whole nonnegative
real axis, so opp(P) = {—FE, -+ ,—En} for some 0 < Exy < --- < Ey, and 0,.(P) = [0,00). Note
the absence of embedded eigenvalues (recall that we are assuming the nonexistence of a bound state
at zero energy) or of singular continuous spectrum. That Ex # 0 is the assumption that no bound
state exists at zero energy. Here N € N, with NV = 0 corresponding to the absence of pure-point
spectrum. Let II : Borel(R) — L£(L?(X,g)) denote the spectral measure of P. So, for each Borel set
S C R, II(S) is a projection operator on L?(X).

Via the functional calculus, there exists a 1-parameter subgroup U : t — U(t) € U(L*(X, g)) such
that the solution u(t,z) : Ry x X; — C to eq. (IVP) is given by u(t,x) = (U(t)f)(x), and U(t) is
given by

oo .
U(t) = / ¢t dTI(E), (12)
—00
this integral being well-defined e.g. when applied to an element of S(X).

For each n € {0,..., N}, let ¢, be an L?(X, g)-normalized bound state with P¢, = E,¢,, such
that ¢g,---,¢n are orthogonal. Via a standard elliptic estimate — e.g. ellipticity in Melrose’s
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Diffs.(X) [Mel94] — we have ¢, € S(X) for each n. Let

N
pp(E) = > 6(E — En)én(dn, —) (13)

n=1

be the spectral projection onto the pure-point spectrum. Stone’s theorem says that the spectral
projection onto the continuous spectrum, Il,.(F) = II(E) — II,,(£), which is supported on [0, 00) g,
has Radon—Nikodym derivative given by

1
21
where, for each E ¢ o(P), R(E) : L*(X,g) — H?(X,g) denotes the resolvent R(E) = (P — E)~!,
and where, for each £ > 0, R(E +i0) = lim,_,o+ R(E =+ i€), these limits existing in the strong

operator topology.
Combining eq. (14) and eq. (13),

dM,o(E) = — (R(E + i0) — R(E — i0)), (14)

= i e Bty (dn, —) + 5 / - P (R(E +i0) — R(E — i0)) dE, (15)

the integral being absolute convergent in the strong sense. In other words, for any f € S(X),

+ L / T GER(E +i0) — R(E — i0))f(z)dE,  (16)

27 Jo

Z el () (dn, f) +

where, for each x € X°, the integral on the second line is absolutely convergent.
The terms on the first sum in eq. (16) are easily analyzed — see Proposition 1.1. The crux of our
problem is to analyze the oscillatory integral I(t,x) = I (¢,z) — I_(t,x), where

I(t,z) = / e"P'R(E £i0) f(z) dE = 2 / e’ R(0? +i0) f(z)o do. (17)
0 0
The key input, coming from [Vas2la; Vas21b][Hin22; LS] is a detailed analysis of the output
eTT R(024i0)et" f(x) : RT x X, — C of the “conjugated (limiting) resolvent” e¥" R(o?£i0)eT"
for f € S(X). Indeed, we have the following result. Let X5 = [[0, 00], x X; {00} x 0X] < R} x X.
Label its faces zf, tf, bf, cof, as in Figure 3. Then:

Theorem ([Hin22; LS]). For any f(x) € C*>(]0,00)s;S(X)), there exist up € pC>®(X) and
uy; € AND(X) such that

eI R(0® £i0)e™" f(o,2) = uo(x) £ iou(x) + ¢i(07 z) = ¢ (0, 2) (18)

for d4(,2) € AZIVTEVGR ol) and pa(o,x) € AZDVEHIEOIOD (xp\00h) for
some index sets & C NZ3 x N and Fy C N22 x N. Here, the index sets are specified at the faces
zf, tf, bf.

In fact, up(z) = P71f(0,2) and vy = —P'LP71f(0,2) F iP~1f'(0,z), where f'(o,z) =

o f'(0,x) and L is as above.

We supplement this with the usual high-energy bounds, namely that if f(z) € S(X), then

T R(0? £40) f(z) € ALD((0, 00], x X,), (19)

loc

where the ‘0o’ denotes Schwartz behavior as 0 — oco. Indeed, if we are given f € S(X), then we
write eTorR(0? £40) f(z) = T R(0? £ i0)e™°" f (0, x) for f(o,x) € C®([0,0)s;S(X)) given by
flo,z) = 77" f ().
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In order to understand the cancellations between I (t,z) in I(t,x) = I (t,x) — I_(t,x), it is
useful to note that the expansion of R(c? £ i0) f(x) has the form

R(o* £i0)f(x)~ Y. (Fio) log"(io)e;x(x) (20)
(4,k)€(0,0)U&

for some ¢; j, € C*°(zf?), assuming that (0,0) € &), where the key point is that ¢, ; does not depend
on the choice of sign. So, in the expansion of the spectral projection (R(c? +i0) — R(a? — i0)) f(z),
all of the terms with even j up to the first logarithmic term cancel. In particular,

(R(U2 +1i0) — R(U2 —10)) f(x) ~ 2iocp1 () — 7TZ'O'2¢)271 + Z ol logk(a)g;)j,k(x) (21)
(4:k)EEo

for some ¢; ), € C*°(zf°). So, combining the theorem of Hintz-Looi with eq. (19), we have:
Corollary. Let f € S(X). For any € > 0, there exists ¢eyen(0, ) € Al(gél)ugo’]:o’oo’oo(ngS) such that

2

R(0? £i0) f(x) = e (ug(z) + iou1 () + Peven (0, ) + " p1 (0, x) (22)

for some ¢ = ¢Pile] € Al(géo)ugo,]—‘o,(l,l),oo(ngs> (differing from the ¢4 in eq. (18)), where the
final ‘oo’ means Schwartz behavior as o — co. Moreover, ug(z) = P~1f(0,x) = P~L1f(x) and

uy(x) = —P'LP1£(0,2) FiP~'f/(0,2) = =P 'LP~'f(z) — P~ (rf(z)). [
Another version of our main theorem, which we will also call our “main lemma,” is:

Theorem C (Main lemma). Let £, F,G denote index sets and o, 3,y € RU{oc}, and suppose that
min{e, Rj : (j, k) € E} > —2. Let ¢ € AEFB)G1):0( X0 Then, letting

L [6)(t, ) = 2 / G (5 Vo do s Ry x Xy — C, (23)
0

we have I, [p] € AE/2H1L,a/241),(F+2.642),0.0) (), and for any x € C(R) such that 0 ¢ supp(1—x),
a decomposition of I_[¢] of the form I_[¢] = exp(—i(1 — x(t))/4tp?)Losc[B] + I phg[®] for some
functions

I phg[¢] c A(€/2+1,a/2+1),(]’+2,ﬂ+2),(0,0)(CI) (24)

and Iog[¢] € AE/2H1at1),(F/24+2,642),(G+1/2:59+1/2),00.00) (V). Here, the index sets on Cy are speci-
fied in the order at kf, parF,, and X1, respectively.

Together with eq. (16) and eq. (22), Theorem C yields the theorems above. Indeed, the integral I
above is given by I(t,z) = I+[p4] — I_[p_] where

res

are as in eq. (18). Each Ii[p4] has the form described by our main lemma, Theorem C, and it turns
out that the combination Ipng = I4[¢] — I phg[¢] must be Schwartz at dilF' U nf. We provide a
proof via microlocal analysis in §A, but the simplest way to see this is that each term in the Taylor
series of I,he at ¥ differs from that of the solution u(t,z) by a Schwartz function (coming from o
and the sum over bound states in eq. (5)). But, the initial data is Schwartz, eq. (IVP) implies that
each term in the Taylor series of u(t,z) at ¥ is Schwartz. So, each term in the expansion of I,ne at
Y is Schwartz. Since I, is polyhomogeneous already on (', this implies Schwartzness at dilF' U nf
when viewed as a function on M. So, in fact

G UXW/A (4 1) @ ALOU+E0/2),(3,0)U(Fo+2),(3/2.0),00.(0.0) (1

C (t+ie)73/2A(f1/2,0)UE,(O,O)U.F,(O,O),OO,(O,O)(M) (26)
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where €& = (1,0) U (=1/2 + &/2) € (27'NZ2) x Nand F = Fy — 1 € N2! x N. So, combining
eq. (16) and eq. (26), we get the desired eq. (5) for

Uphg e A(f1/2,0)U8,(O,O)U]-',(O,O),oo,(0,0) (M) (27)

defined by upng = (t +i€)®/ 2¢ir?(1=x()/4t [ (¢, x). Theorem B requires a slightly more refined analysis
of uppg. To this end, write

I(t) =2 [ o (wg(a) 4 ious(2))o o+ Ifoy] — I[6-] 28)

where ¢4 € AZ0UE0F0,(11).00( X3P are as in eq. (22). Note that the ¢even term in eq. (22) does
not contribute. The first term in eq. (28) is explicitly computable:

2 ruo(x)

P ( 2(t + ie)3/2

4(7::_%)) /_O:O 62’02t+i0'r760'2(’u,[)($) +iouy(z))odo = _\/7;[

i(r? 4 2it — 2¢)uy ()
4(t + i€)5/2
Applying Theorem C to I[¢] = Ii[¢4] — I_[¢—], the conclusion is that I[¢] = exp(—i(l —
X(£))/4t0*) Tose[#] + Ipng[9] for
Iosc[¢] e A(2,0)U(1+€0/2),]-'0+2,(3/2,1),oo,(0,0)(M) _ (t+ie)—3/2A(1/2,0)U€,.7—',(0,1),oo,(0,0)(M) (30)

} c (t+ie)’3/2,4(0’0)’(0’0”(1’1)’(0’1)’(*1’1)’(0’0)(M). (29)

and some Iypg[¢] € A7 (00 (C1). Combining eq. (28), eq. (29), and eq. (30), the result is, assuming
without loss of generality that (1,1) € F, that upn, € A00)U(1/2,0)U,(0,0)UF,(0,1),(=1,1),(0,0) (A1),
Combining this with eq. (27), we get

Uphg € A(O,O)U(l/Z,O)UE,(O,O)u]—',(O,O),oo,(O,O) (M), (31)

which was what was claimed in Theorem B. In order to complete the deduction of that theorem, we
need to verify that uphe has the claimed behavior at parF U kf. Combining eq. (28), eq. (29), and

eq. (30),

, i(1— x(t)r? ir? i(r? 4 2it — 2¢)u ()
Uphg = —Vmiexp ( Zf It 16)) [TUQ($) + T 1 ]

+ AQ20UEF(0.).(=1.1.00) (pr) - (32)

This can be simplified using that (I)
7’2(75+7;€)_1U1($) c A(—l,O),(—l,l)(C) C AE,]—',(O,I),(—I,I),(O,O)(M)’ (33)

(1) (1 — x(r/t))rup(z) € A>(0:0:0.0).00) (A1) and (1 — x(r2/t))ui(z) € ALDLD.A1D,00)(pr),
and (IIT) the exponential differs in eq. (32) from 1 only in a neighborhood of ¥ disjoint from all
boundary hypersurfaces of M besides nf, so

Uphg = —Vi(x(r/t)rug — x(r?/t)us (x)) + AVZOVEFOD LU0 (ar), (34)
Since x(r/t)rug(z) € A00(0.0,0.0).0000 Ay and x(r?/t)us(z) € A00:(1:1):000000( A1) combining
this with eq. (31) shows that the error term in eq. (34) lies in
A(l/?,O)UE,F,(O,l),(—171),(0,0)(M) N (A(O,O)U(l/Z,O)US,(0,0)U.7-'7(0,0),oo,(0,0)(M> U A(O,O)(O,O),(O,O),oo,oo(M)
UA(O,O),(LI),oo,oo,OO(M)) _ A(1/2,0)U5,]-',(0,0),oo,(O,O)(M); (35)
for each boundary hypersurface. In summary, we have improved eq. (34) to eq. (6), which completes
the deduction of Theorem B from Theorem C.

So, we can regard the main theorems in this paper as corollaries of the “main lemma” Theorem C,
when the latter is combined with the Hintz—Looi theorem cited above and a bit of computation



10 SHI-ZHUO LOOI AND ETHAN SUSSMAN

zf

XtfNbf
tf

bf

FIGURE 3. The mwc X with an atlas of coordinate charts (left), and the supports

of the cutoffs Xiow, Xtfrbf, Xhign (right). Since E = o2, “high” means high energy,
and “low” means low energy.

(which, it should be mentioned, is not even necessary if a less sharp theorem is desired). We will
prove Theorem C over the course of three sections, §2, §4, §3. The idea is to write

L[¢] = Lt[X1ow®] + L£[Xttrbe®] + I+ [Xnigh?) (36)
for Xiow, Xtfnbfs Xhigh € C°°(X;E,) a partition of unity on X3P such that the support of xiow is disjoint

res res

from bf U oof, hence supported at low energies and radii, the support of x¢npt is disjoint from
zf U oof, and the support of xpigh is disjoint from zf U tf, hence supported at high energy. The low
energy contribution I [x1ow¢] is analyzed in §2, the high energy contribution I [xnignh¢] is analyzed
in §3, and the final contribution Iy [xtpr¢] is analyzed in §4.

Below, we compute, for all ¢4 as in Theorem C, full asymptotic expansions of Ihg[¢] at dilF Unf.
It is not always the case that Ipng[¢] is Schwartz there. It may therefore seem a bit miraculous
that, as stated above, Schwartzness does hold when ¢ (o, z) = R(0? £i0)f(x) for f € S(X). In
principle, it should be possible to prove this fact by verifying that all of the terms in the expansions
below vanish at dilF U nf. We present an alternative argument in §A based on microlocal tools.
These tools are based on spacetime Fourier transforms, whereas we only work with the Fourier
transform in time elsewhere in this paper. One takeaway: that which is transparent when working
with spacetime methods may be hidden when working with spectral methods, and vice versa.

1.4. Bound states. T hQ contribution from bound states is a finite sum of functions v : Ry x X, — C
of the form w(t,x) = e *Flp(x) for some E € R and Schwartz ¢ € S(X).

Proposition 1.1. If v(t,x) = e Fly(z) for some E > 0 and Schwartz ¢ € S(X), then v is of
exponential-polyhomogeneous type on M and Schwartz at nf U dilF U parF. |

Proof. On the cylinder C' = [0, 00]; x X, each such v is already of exponential-polyhomogeneous
type, with
vee ) pa)*C®(0) = e [ dirobir Oparr C™ (M). (37)
keN keN
We can choose okt =t~ p(x) " (p(x) +1/tp(x)) ™", oparr = p(x) +1/tp(z), and ganr = p(z)(p() +
1/tp(z))~!, as follows from the construction of M from M/ parF. So, t = Q(;ﬂlFQEaQnggfl is polyho-
mogeneous on M. O

2. LOw ENERGY CONTRIBUTION

We now analyze I[¢](t,x) =2 [5° e’ tEi0/p(*) (5, 2)o do for ¢ polyhomogeneous on Xt and
supported away from bf N ocof, in other words within {o < 3} for some ¥ > 0. This therefore
constitutes the low energy contribution to our overall integrals. We begin with a few geometric
preliminaries. Let A = o/p(x), so that the map RT x X° 3 (0,2) — (\,z) € RT x X° extends to a
diffeomorphism

L1 X2\ (b U oof) — [0,00)y x X (38)
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Let ¢ = ¢por™t € C°((0,00)x x X2). Then, ¢ being supported away from bf N oof is equivalent to
supp ¢ € [0,00)) x X. That is, p(A, —) vanishes identically if X is sufficiently large. In terms of ¢,

27 Lo (tx) = [T P oo pla), ) do = @) [T VT EN (AN (39)

In order to express the spacetime asymptotics of I1[¢], it is convenient to work with the
compactification

C1 =1[0,00]; x X < R} x X2 (40)

defined using 7 = tp(x)?. As mwes, C1 = C, but these differ as compactifications of spacetime

(except over spatially bounded regions). The three boundary hypersurfaces of Cy are R, x X,
{0} x X, and {0} x X,. Note that

M/nf 2 [Cy; {0} x X], (41)

which is a precise way of saying that C] results from M by blowing down both nf and dilF. This
blowdown identifies kf with {oco},; x X, parF\dilF with (0,00, x 0X, ¥\nf with {0} x X°, and
maps nf U dilF to the corner {0}, x 0X.

So, in order to specify asymptotics of I1[¢] on M, it suffices to specify them on Cj. The main
proposition of this section, most of the details of the proof of which are relegated to Proposition 2.3,
below, reads:

Proposition 2.1. Suppose that (A, z) € Al ([0, 00)x; AV P (X,)) for some index set £ C {z €
C:Rz> -2} xN, a € R"2U {0}, index set F C C x N, and 3 € RU {oo}. Then,

Ii[qb](t, l‘) c A(E/Q—H’a/2+1)’(}-+2’6+2)’(0’0)(Cl), (42)
where £/2 + 1 is the index set at {oo}; x X, F + 2 is the index set at [0, 00|, X 90X, and (0,0) is
the index set at {0} x X. [

See below for notational conventions regarding the Fourier transform.

Remark 2.2. The proof shows that the expansion of I1[¢] at [0, 00]; x 0X, i.e. as r — o0, is just
Lelgl(ta) ~ Y paV " logh p(a) Feor (e (1, 0))(7), (43)

(J,k)EF RI<B

where p;,(\) € Aég’“)([o, 00)\ X 0Xg) are the coefficients in the polyhomogeneous expansion of
e(A,z) at [0,00)) x 0X, i.e. as v — 0X .

Similarly, if we let @/*(z) € AV P)(X,) denote the coefficients in the A — 0% expansion of
©(\, z), then the 7 — co expansion of Iy[¢] is

Lot ~o@? Y [ N ER R w0 gt ),
(J,k)eERj<a Jjo=0 K>k s.t. (j,K)e&E Jo
(44)
If M logh(\)@/*(x) denotes the leading term in the A — 0% expansion of ¢(\, ), then the
leading term in the 7 — 0o expansion of Ii[¢] is given by Ii[@] ~ p(x)2@?Filti/2(—1)FT(1
3/2)77/*  logh(7).
Proof. Rewriting the integral in terms of £ = A20%/p(x)?, we have Iy (t,z) = I+ (tp(z)?, ) for

L(r,2) = P(CC)Q/OOO €T (€, w) A€ = p(2) Ferr (0(€) P(€,2))(7), (45)

where ¢4 (¢, z) = eT€%p(£1/2, z). Because p(\, z) € A ga)([ 00)a; AP (X)), we have
P (&) € AEP2)((0,00)5; AFP(X,)). (46)
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So, via Proposition 2.3, the Fourier transform on the right-hand side of eq. (45) lies in the function
space A(£/2+1,a/2+1)(@T;A(}‘,6) (X))

The form of the expansions given follow from Proposition 2.3. Indeed, the large-T expansions
are stated as part of that proposition: letting ¢.;1 € A ’5)(X ) denote the coefficients in the
expansion of eiifl/zgo(flﬂ, z) as € — 01, then the expansion of p(z)~2I+[#] at {0}, x X is given
by

p@) L)t )~ Y P gt | Y Gipk@epks)s  (@47)
(4:k)€ERj<a (j,K)e&, K>k

where the ¢q = cq.4’s are given by eq. (61) below. Since @ /o () = Y5°_o (i) (j0!2%) Yoo jo (),
eq. (44) follows. Note that this sum is finite, since ¢;_j, » vanishes if jy is too large.

Also, letting ¢; 1 (N) € Al ([0,00)x x 0Xp) be the coefficients in the polyhomogeneous expansion
of p(A,x) at [0,00)) x 0X, and defining ¢, by

e\ ) = (Na)+ > p(x)log" p(x)pjk(N,0), (48)
(4,k)eF Rj<y

we have ¢, (X, z) € Aﬁg’a)([o, 00)x; A7(X;)). Proposition 2.3 then says that the error in truncating
the expansion in eq. (43) to order ~ lies in A(E/2+1,0/241):342,0.0)(C) | where the v 4 2 is the order
at [0,00]; x 0X. Since v can be any real number < §, we conclude that eq. (43) holds. O

2.1. Fourier transforms of polyhomogeneous functions on the half-line. Our convention
for the Fourier transform F : §'(R) — S'(R) is

For) = [ o) de (19)

—00

+

We will also write Fo(7) as Fer(¢(£))(7) when it is useful to name the dual variable, ‘{” in this
case.
The main proposition of this subsection is:

Proposition 2.3. Suppose that X is a Fréchet space over C. Fiz a € (—1,00) U{oo} and an index
set EC{ze€C:Rz>—1} xN, so that

AL ([0, 00); X) C LY (R; X). (50)

Then, if ¢ € A((;g’a)([O, ); X), the Fourier transform F¢ satisfies Fo(r) € AEHLetD(R . X).
Moreover, if ¢;1 € X are the coefficients in the polyhomogeneous expansion

&)~ Y ¢t loghe (51)

(J,k)EERj<a

of (&) as &€ — 0, then

Fom~ S | X dixeimu]lrl 7 logt 7] (52)

(J,k)eER<a K>k s.t (5,K)€E
is the polyhomogeneous expansion of F¢ as T — +00, where the co’s are given by eq. (61). |

This proposition links the regularity results before and after Fourier transform, giving an explicit
way to ‘transform’ between an expansion into its dual (Fourier) expansion.

Recall that the ‘¢’ subscript means that ¢ € Aé‘g’o‘)([o, 00); X') implies that there exists some
& > 0 such that ¢(&) = 0 for all £ > &.

For ¢ € A((;g’a) [0,00), we let ¢(—&) = 0 for £ > 0, this being implicit in eq. (50).
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Proof. For simplicity, we prove the claim when X = C. The general case is completely analogous.
Let 5 € (—1,00) satisfy 8 < a. (If & < oo, then there is no reason not to take 5 = «.) We can
write
N =0+ Y dutlloghe (53)
(J.k)eE, Rj<B

for ¢; € C which do not depend on (3, where oP) e AP([0,00)). Because € is an index set, the
sum here is finite. (In the future, we will simply use that sums of this form are finite without stating
so explicitly.)

Let x € C°(R) equal 1 identically on a neighborhood of {0} U supp ¢. Then,

For) = [T éx©o@de+ X o / T (O logh € de. (54)

0 (.k)EE, Ri<B

Let Es(1) = [5° e x(£)pP)(€) d¢, and, for each (j,k) € C x N, let

Lixlx(r) = /0 T () log € de, (55)

so that
Fo(r)=Eg(r)+ Y. dunlrlx](7). (56)
(5,k)eE, RF<B

It follows immediately from [Hin22, Lemma 3.6] that Eg € A°*1(R;). On the other hand, I; [x]
can be written as

Lix[x] = Fx(7) * Feosr (O(6)€7 log" €). (57)
By Proposition 2.4,

Fesr (0()& log €) € S'(R;) N AVTER(R\{0}) € S'(R,) N ATTHR,\{0}). (58)

So, by Lemma 2.6, I, x[x](7) € A*TL(R,).

So, Fo(r) € Al g+1 A+1)(R,). Given the arbitrariness of § < «, this implies the first clause of the
proposition. The argument shows that the polyhomogeneous expansion of Fy is given, at the level
of formal series, by

o~ D Gilik[X)(7), (59)
(4,k)ee
where by I ;[x](7) we mean the polyhomogeneous expansion of each I;;[x](7) as 7 — £o0. By

Lemma 2. 6 the polyhomogeneous expansion of I;[x](7) in this limit is the same as that of
Fesr (0()E log¢)(7), which we compute in Proposition 2.4. Substituting this into eq. (59) yields
eq. (52). O

Proposition 2.4. For any j € {z € C: Rz > —1} and k € N, Fe_,,(0(£)& log® €) is smooth away
from the origin, and, for T > 0,

k
Ferr(0(6)€ logh ) (1) = 77771 Y ejmulogt T (60)
~k=0

for some c; € C. In fact, cjrp = T (=1)FT(j + 1), where T : C\Z=" — C denotes Euler’s
gamma function and (+i)* = exp(£miz/2) for z € C. [ |

Remark 2.5. The proof shows that c; , is given by

4 K\ 55 mink—rex (k— g\ 7T + 1)

R ARG AT fakd

owee e ()32

forallje{z€C:Rz> -1}, ke N, and s € {0,...,k}.
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Proof. For 7 # 0, the Fourier transform Fe_,(0(€)¢’ logk €) is given by

Feor(©©F0g" ) = Tim [~ € eelginogh(¢) ag. (62
e—0t Jo

Letting £ = |7|¢, the integral on the right-hand side can be written

o k 9
/ eiﬁT-EﬁlT'wog’%s)dg—|Tr‘j‘12<—1>“<k> log" || / e logh T (€) dE,  (63)
0 =0 K 0

where the & is the sign of 7. All we need to do is compute the ¢ — 0T limit of the integrals on the
right-hand side.
By Cauchy’s integral theorem,

/ et —cCed ogh(€) d¢ = / et 20 Jogh(2) dz
0

0 . (64)
= +i / e T (i) logh (£i€) d¢,
0

where we are using the principal branch of the logarithm in order to fix the phase of (£i£)) = e*Imi¢
and log(4i€) = +mi/2 + log&. So, taking e — 0T,

lim et e Jogh (&) de = +i / e =8 (£i€)’ logh (£i€) d¢. (65)

e—01 Jo 0
The integral on the right-hand side can be written, after justifying differentiating under the integral
sign, as

dj* K dj*

k=0

koo o ar o [k mink—rdST(j + 1
[T et iey a = To(PTG 1) = P S ( )(i T ED )
Chaining together these equalities yields the proposition. O

Lemma 2.6. Suppose that x € S(R) is identically 1 near the origin, and suppose that f €
S'(R) N AL (R\{0}) for some index set £. Then, Fx * f(1) — (1 — (7)) f(1) € S(R,) for any

P € CP(R;) identically 1 near the origin. [

Proof. Write f(1) = E(7)+ F(7) for E € £(R) a compactly supported distribution and F € A€ (Ry).
Then,

Fx*f(1) = (A=) f(r) = (Fx* F(7) = F(7)) + Fx* E(1) = (1 = ¢(7)) E+¢F(r).  (67)
The last two terms are Schwartz. Indeed, Y F € C°(R), and necessarily singsupp £ C {0}, so

(1—-9)E € CX(R) as well. Now consider Fx % E(7). We prove that this is Schwartz, which is
equivalent to proving that yF~'E is Schwartz. Since

E(r)e |J () H™(R,), (68)
meER s€R
applying F ! yields F~'E(€) € Uper Noer(D)*(§) " L*(Re). So, x(§)F ' E(§) € S(Re).

In order to conclude that the left-hand side of eq. (67) is Schwartz, we prove that the remaining
term on the right-hand side, Fy * F'— F, is as well. This is equivalent to (1 —x(&))F 1F(¢) € S(Re),
which follows if F~1F is Schwartz except at the origin, i.e. smooth except at the origin and Schwartz
outside of some compact subset.

We can write F(7) = (14 72)/ Fy(7) for some Fy € A'(R) and j € N. Because

L+ A¢ = F L0 Myyr2 0 Feoyr (69)

T

preserves the space of tempered distributions on the real line that are Schwartz except at the origin,
it suffices to prove that the claim holds for Fy. Equivalently, it suffices to consider the case F' = Fy.
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So, assume that F' € A'(R). Then, 0**(7*F (7)) € AY(R,) C L?(R,) for all k,¢ € N. Taking
the inverse Fourier transform yields

GHOFFIF(€) € L*(Re) (70)

for all k,¢ € N, which implies that F~'F is Schwartz except at the origin, as desired. O

3. RADIATION-FIELD ANALOGUE AND THE HIGH ENERGY CONTRIBUTION

Fix an index set £ C C x N and o € RU {oc0}. Suppose that ¢ € S(RO;A(&Q) (X)) vanishes

. loc
identically in {0 < 09} C R, x X for some op > 0. We denote the set of such functions as

. [l
S([00, 00)03 AL (X)). (71)
In this section, we analyze
L6t ) = /0 T 45 1) do, (72)

where 7(z) = p(z)~!. The argument is a straightforward application of the method of stationary
phase. The phase appearing in the oscillatory integral is 64 (¢, 7; o) = ot £ or, which has derivative
0,04 (t,x;0) = 20t £ r. Remembering that p > 0 and o,t > 0, 9,0+ is nonvanishing, while 9,6_
vanishes at the “critical” frequency o = r/2t. Thus, following the oscillatory integral I [¢] along
level sets of r/t € C*°(dilF°), an observer either sees rapid decay or else asymptotics in accordance
with the stationary phase expansion.

For I [¢], the method of nonstationary phase also yields rapid decay at nf. The reason why I_[¢]
decays rapidly at nf is that, in this asymptotic regime, 7 — oo and ¢/r — 0, which means that
Ocrit — 00. As ¢(o, —) decays rapidly as 0 — oo, the data in the stationary phase approximation
decays rapidly as well. A less careful version of this reasoning (valid only in nf®) is that, in nf°,
only r is a large parameter, so the relevant portion of the phase is 64 g = £r/20, whose gradient
0s0+ 0 is nonvanishing, so the method of nonstationary phase applies, regardless of the sign.

3.1. Nonstationary case of sign. We first turn to the nonstationary case. Actually, in addition
to discussing I [¢], we discuss the contribution 21_ non[o¢(0, —), ] to I_[¢], where

L ponl@, V]t @) = /0 et )y (o - Y |olo,x)do € OX®S x X2), (13)

where 1) € C°(R) is identically 1 in some neighborhood of the origin and, for convenience,
supp ¢ € (—op,0¢), where recall that o is chosen such that ¢(o, —) = 0 whenever o < oy.

In the next proposition, let A%°%(00)(C") denote the set of smooth functions on C' = [0, 00]; x X
that are Schwartz at 0C\{t = 0}. Such functions are smooth on M and Schwartz at all faces except
Y= ClM{t = 0}

Proposition 3.1. If ¢ € S([09,0)s; AE (X)), then I, [¢], I nonl¢] € A0 (). [ |

Proof. For any R > 0, we have eﬂEl/Qr(’”)qb(El/z,m) € S([0d,00); C®({r(z) < R})). So, since the
Fourier transform has the mapping property

Feot : S(Re; C*({r(z) < R})) = S(R; C({r(z) < R})), (74)
we deduce, since Ty [6](t,2) = Frou(eiP " @o(EY2, 2))(1), that T.[6](t,2) € S(Ry; Co(X2)).

Similarly, if ¢ is sufficiently large so that an R/2T-neighborhood of supp is still a subset of
(—00,00), then if r(z) < R,

I non[@](t, 7) = Fre(e @ g (B2 2))(2). (75)
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So, I non[@](t,z) € S(Ry; C™°(Xy)). So, in order to prove the proposition, it suffices to restrict
attention to any neighborhood in C of [0,00]; x X, at least one of which is identifiable with
[0,00]¢ x X[R] for X[R] = (R, o0, x 0X.

Let Aiféoo’(o’o) (C[R]) denote the set of smooth functions on C[R] = [0, 0c]; x X[R] Schwartz at
OC[R)\{t = 0}. Tt suffices to prove that

L[] € Am > (ClR)). (76)

Let L € Diff,(X), i.e. L is a differential operator in the C*° (X )-algebra generated by vector fields
tangent to 0X. For any j € N, we can write 8] LI [¢] = I[¢; 1] for some

050 € SR A" (X)) (77)
vanishing identically in {E < Ep}. In order to prove that I [¢] € S, it suffices to prove that
Li[g) € (¢ +7) N Li5.([0,00]; x X) (78)

for every K € Z. Here, L2,([0,00]; x X) is the set of functions f(t,7,60) on R} x X, such that,
for each ry > 0, there exists some C[rg] > 0 such that |f(¢,r,6)| < C[ro] whenever r > ry.

More generally, we show that the bound eq. (78) holds for I [¢)] whenever ¥ (t, E,r,0) € C®(R} x
Rg x Xng) is vanishing identically on {E < Ey} and satisfies the following bounds: there exists
some J € R such that, for all k, K’ € N, and for all Q € Diff.(X),

k
%Qw(t, E,r,0) € (B K (t+ ) LORS x R x (X,.9 0 {r >10})) (79)

for all rog > 0. For the ¢; 1, above, this holds with J > 0 sufficiently large such that Al(fca (X ) C
(ry?Lge (X), but it will be useful to consider other values of J.
Applying eq. (79) with k = 0 and K’ = 2 yields

L)t ) < [ 10t B )] dE € (¢ 4+)7 L ([0.00) x X) (30)

SO eq. (78) holds with K = —J. This is the base case of the inductive argument.

Let K € N. Suppose we have shown that eq. (78) holds for K = —J + K for all K € {0, .. K},
whenever 1) satisfies eq. (79). The inductive step, which once handled completes the argument, is to
show that the bound holds also for

i.e. that Iy [y)] € (t+r)/~K=1L> ([0,00]; x X). Writing
_ % -1 i iBt+io(E)r _
L= [ (55) (G5 )e(t, B, ~)dE (82)

and integrating by parts, the result is I [¢)] = I [y1] + Ly [1)g] for

80,10 80,2020
v1=- (ag) a% ¢:(T§) 8E§

Note that 026, = —1/4E%/2. Thus, Lemma 3.2 implies that for each v € {1,2}, all k, K’ € N, and
for all @ € Diffs.(X),

k
QAL B 0) € (B) (4 VLR X Ry x (Ko N {r2md) (89)

for all ro > 0. In other words, each of 11,19 also satisfies eq. (79), except with a lower value of J.
Thus, by the phrasing of the inductive hypothesis,

T[] € (t+ )KL ([0, 0] x X) C (t + )" KLLE ([0, o0 x X), (85)
as desired. 0]

(83)
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Lemma 3.2. For any j, k € N, and for any ro, 09 > 0, there exists a constant C = C(j, k, 00,79) > 0
such that

ool o ‘ C(o) (86)
DoIork 2ot + 1l = (t + r)kt+l
holds for allt >0, r > rg, and o > 0y. m
Proof. We have 020F (o /(20t + 1)) = (—=1)Fk!102 (0 / (20t + r)F*1), and
@ o (ki1 gt (B4 (<20 .
doJ (20t + 7)1 kL (20t +1)kH K (20t + )it

The first term on the right-hand side, which is only nonzero if j # 0, satisfies the required estimate,
as, for j > 1,

0< 720t +1r)7F < (200) T (200t + ) T < Oyt + 1) TR (88)
for some Cjj > 0. The second term in eq. (87) is under control as well, as 0 < #/(20t +7)7* 771 <

(200) 7 (200t + 7)1 < Cj it + r)7F71 for a possibly different C;x. So, the bound eq. (86)
follows. O

3.2. Stationary remainder. We now turn to the remaining contribution 21_ at[o¢ (o, —), 9] to
I_[¢], where

I—,stat [¢,1/1] (t,ﬂ?) = / eiagt—ior(w)w(a - %)(ﬁ(aa J") do € COO(RtJr X X;) (89)
0

The main proposition of this section says:

Proposition 3.3. Given ¢ € So(R}; AE (X)), ¢ € CX(R) satisfying suppy) € (—op,00), and

X € CX(R) identically 1 near the origin,

I stat[¢7 1/}] c 6—i(1—x(t))r2/4tAoo,oo,(5+1/2,a+1/2),oo,oo(M)’ (90)

with 1_ sat[¢, 1] vanishing identically clp{r/2t < €}. The expansion at dilF is given by eq. (103).
|

Proof. Since ¢(o,2) = 0 for ¢ < 09, and since we chose 1 such that suppy € (—o9,00), and
therefore supp v C (—og + €,00 — €) for some € > 0, the integral I_ sa¢[¢, ¢](t, ) is vanishing in
{r/2t < e}. Thus, we work on the sub-mwc

Mcp=MnNclpy{r/2t > €,r(x) > R} (91)

for R > 0 sufficiently large such that we can identify X Ncly {r(z) > R} with X[R] = [0, R™"), x 0X,
via a choice of boundary collar X[R] < X.

We can write M p = Mg U Uy UU, where, for any T' > 0 satisfying T'e > R and Ry > R
satisfying Ro/2T > e,

Up = [0,27); x X[Ro], U= (T,00]; x (€,00],/; x 0Xp. (92)

That is:

e the map [0,27"); x X[RO] — M r, applying the boundary collar to the right factor, is a
diffeomorphism onto Uy, and
e the composition

(T,00); % (€,00), /4 x 0Xg = (T, 00); = X[R]yg — MZp, (93)

where the first map sends (¢,7,60) — (¢, (t7,6)) and the second map applies the boundary
collar, extends to a diffeomorphism (7', c0; X (€, 00}, X 0Xg — U.
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So, in order to conclude the proposition, it suffices to prove that I_ sat [, ] (¢, 7, 6) € Sioc ([0, 00)¢ X X)
and
T oty 0)(1, 7t,0) € e/t ALE T2 o), (e, 00]s x Xy), (94)

ocC
where € + 1/2 is the index set at t = 0o and the co denotes Schwartz behavior at # = oo. These
claims are proven below. The first is in Proposition 3.4, and the second is in Proposition 3.5. [

A modification of Equation (89),
Il )(t.0) = [T (0 = Yoo, 0)do € OV x X°(R)a)  (95)
0

defines a function I_ g0, ] : Ry x X[R] — C for any ¢ € S(Ry; Al(fca (X)), for any index set £
and any o € RU {oo} and for any ¢ € COO(]R)

Proposition 3.4. For any ¢ € S(R, (X)) and ¢ € CP(R), the function I_ sat[0, ] satisfies

loc
I stat [¢ QJZ)] € Sloc([o Oo)t X X) (96)
i.e. is Schwartz at both boundary hypersurfaces {t = 0} and [0,00); x 0X. [ |

Proof. First, we prove that I_ gat[¢,¥] € LiS.([0,00)¢ X X). Indeed, usying the rapid decay of
¢(0,—) as 0 — oo in some weighted L>-space (r)” L2 (X), we have, for all 7o > 0 and r > ro,

r -K J
L siacl 616 O) < [0l sup [8(or,0)] 2 (= —a0) ()7, (97)
o>r/2t—og 2t
which holds for some J > 0 and all K > 0, where the constant involved depends on r9. Since
(r/2t — og) < (r){t~1), we conclude that I_ sat[d, 1] € (r)=(t) L2, ([0, 00); x X).
In order to control derivatives, we use the identities
6tIf,stat [¢7 11)] = Z'If,stat [02¢), 7/)] + (T/2t2)lf,stat [¢a ¢/] (98)
a7"If,staLt [¢7 ?l)] = _Z’If,stat [O’(]S, 'QZ}] - (1/2t)lf,stat[¢a wl] + If,stat [ar¢7 111] (99)

Applying these inductively, and applying the L°°-bounds derived in the previous paragraph, it can
be concluded that

HOPI statld, ¥] € (r) ()" Li5.((0,00); x X) (100)
for all j, k € N. So, I_ gat[0, %] € Sioe([0,00); x X). O
Proposition 3.5. For ¢ € S(R,; Al(f(;a) (X)),
I seanl, )1, 7, 6) € =" /A0, 00], x (0, 00]; x Do), (101)
The t — oo expansion is given by
—zr + 1/2 i) (A A
I il V](t, 17, 0) 2/‘“2]“5431/2 C(#/2,t7,0), (102)
—zr2/4t 00 ) I‘\( s
e - J—Jjo+1/2)
M= S DDy T
" (kyes =0 J = o) (103)
a ko [F K0\ 2G-40)1,—5 1.k
x 37 dogho(i) | M o ¢ o8 (1),
ko=0

where ¢F) (o, 7,0) = 05p(a,7,0) for k €N, and ¢ =0 if k < 0, and where
o (o, r,0) Z qﬁjk ,0)r 7 log" (1) (104)

(j,k)e&
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is the polyhomogeneous expansion of ¢¥) at r = oo, i.e. at bf. Here, each gbflg(aﬁ) is in
S([ao,oo);C‘x’(ﬁXg)). .
Proof. Let f,,stat [p,¥](t,r,0) = e"’"2/4tl,,stat[qb, Y] (t,r,0). In terms of 7 = r/t, this can be written
Ll 01(078.0) = [~ €02 (o — 7/2)(0,17.,6) do, (105)
0

Our goal is to prove that this lies in A15+1/2’a+1/2)’00((0, ooy X (0,00] x 0Xp).

ocC

For each K € N, Taylor’s theorem says that

(o, r,0) = f: ]il (0— _ g>k¢(1€)(g’r 0) ;'/ _

where the superscrlpt on ¢ refers to differentiation in the first slot.

Thus, j—,stat [¢7 w] = Zi(:() ¢(k) (f/27 T, Q)If,stat,k[zp] + I—,stat K,rem [¢ 1/}] for
L% it(o—i/2)? K
I—statk[m k:'/ € (0—5) 7!}(0—*) do
1 o0
= [ e as

;, / - " y(a)] /0 A(A - 5)K¢<K+1>(g +4,r,0)dd| dA.  (108)

The stationary phase approximation suffices to show that I_ ¢ 1[¢)] € t= (17200 ((0, c]¢). In
fact, since @ = 1 identically near the origin, the difference

(02 —8)" 6w (L +5.r,0) a5 (106)

(107)

I—,stat K rem[d) ?ﬂ

0 (k odd),
kN gt t) — 109
stat i V](0) {(—it)(k+1)/2F((k +1)/2) (otherwise). (109)
is, for large t, Schwartz
Since ¢F)(7/2,7,0) = ¢ (#/2,7t,0) lies in S(Ry; Al(ogca ((0,00]t)), it follows that
¢(k (72/27 T, 0)1—,stat,k[¢] € S( 7 t_l/QAl(fca)((()? Oo]t)) (110)
On the other hand, Lemma 3.6 shows that
I1_ stat, K rem [, ] (£, 7, 0)| € ¢~ LEFD/2 3700 409((0, 0], x (0, 00]: x 9Xg). (111)
Combining everything, I_ gat[¢, ¥] € S(RT,AI§C+1/2’mln{a+1/2’L(KH)/QJ})(0, o0]¢)). Since K can be
taken arbitrarily large, the result follows. O

Lemma 3.6. For cach J. K € N, ¢ € S(Ry; A (X)), and ¢ € CX(R), consider the function
Lkl ¢) - Ry x Xrp — C given by

o, A
Tixlow) = [ 2 aTu@)[ [T - 0)%o(g; +.r.0) do] da, (112)
Then, Ty x[¢p,] € t~LFEFD2 (¢ /)0 L0 ((0,00]); x Xrg).
In fact, Ly, ¥)(t,7t,0) € t—LHEED/21 =00 gD0((0 0], x [0, 00)5 x DXjp). [ |

Proof. We first prove the L*°-bounds. For J + K = 0, we have
Zsc[6, 0] < [supp [ 0l] s supseauppys [¢(5; +6.7.0)| € (¢/r)®Lis((0,00] x Xrg).  (113)

To handle the J + K > 1 case, we integrate-by-parts, starting from

2%tT ) i [ ] = /_ O:o (aieitAQ)A"‘lw(A)[ /0 (A— 5)%( +6.r.0)dodA. (114)
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Integrating-by-parts yields —2itZ; g [¢, Y] + (J — 1)Zj—2.k [P, Y] + -1 k[0, V'] + KLjk—1 if K #0
and
—2itT0[¢, ] + (J = 1)T-20[0,¢] + Lr-10[6,¢'] + L1 1[0, ] (115)
otherwise, where the last of these functions is defined by eq. (118).
So, Zj i|p, ] € t=LFEFD2I(1 /)12 ((0,00]; x X,.g) follows inductively.

In order to control derivatives, we use LZj i [¢, V| = L i [L¢, 1], which holds for all L € Diff(0Xy),
and the identities

8fIJ,K[¢7 1/1] (t, ft, 0) = 2ilIJ,K[8U¢(U7 T, 0)7 1/’] (ta ft? 0) + fﬁlIJ,K[rar(b(Uv T, 0)7 T/f} (tv ft? 0) (116)

Ly i [, V)(t, 7t,0) = iy 10 k(b V)t 71, 0) + t Ly i [rOr (0,7, 0), Y] (t, 7, ). (117)
Using these inductively, and using the L°°-bounds already proven, the final clause of the lemma
follows. .

Lemma 3.7. For each J € N, ¢ € S(Ry; A (X)), and ¢ € CX(R), consider the function
Zi[¢,¢] : Ry x X,,C.)’g — C given by

Lol = [ S ATp(a)0(5; + A, 6) A, (118)

Then, for each K € N, we have L;[¢,v](t,7t,0) € t*LJ/ZJf*OOA?O’g((O, ool X (0,00] x 0Xp). [ ]
Proof. We first prove the L*°-bounds. If J = 0, then
IZ5[6: 9]l < 1]l 2 sup acsupps [S((r/28) + A, )] € (/1) Lise((0,00) X Xpp).  (119)
If J > 1, then integration-by-parts yields
—2itZ5[¢, 9] = (J = 1)Ly -2[¢, Y] + Ly 11, ¥ + L1 [¢, 0], (120)
where ¢(0,7,0) = 0y¢(0,7,0). Applying this inductively allows the deduction of Zi[p,7] €
=L/ (t/r)KLOo ((0,00]¢ x X, 9) from the J = 0 case.

loc
To deduce the final clause of the lemma, we want to prove that the same L°°-bounds apply to

(tdt) OF LT (b, 4](t,7t,0) for every j,k € N and L € Diff(9Xy). Using the identities LZ;[¢,1)] =
Z[L, ),
OLs[¢, V)(t, 7t,0) = 27 L [0,0(0, 1, 0), (¢, 7t,0) + 7L, [rd.¢(o, r,0),¥](t, 7t,0)], (121)
OZLs[¢,)(t, 7, 0) = iZy4a [, P)(t, 7t,0) + t ' Ly[rdr¢(o,1,0), ¥](t, 7t,0), (122)

these bounds follow from those already proven. O

4. REMAINING CONTRIBUTION

Finally, we examine I [¢](t,z) =2 [5° ei02tii‘”(z)¢(0, r,0)o do for ¢ polyhomogeneous on X3P,
and supported near tf N bf. Specifically, we consider the case ¢(o,r,6) = ¢(o,or,§) for

oo, A, 0) € AEFB) (0, %), x (A, 0]\ x 9Xp) (123)

for some X, A > 0, index sets £, F, and «, 5 € R. Here, £ is the index set at 0 = 0, i.e. at tf, and F
is the 1ndex set at A = oo, i.e. at bf. In order to formulate the asymptotics of I, it is useful to
work with the manifold M /nf, which is defined analogously to M /nf with X in place of X, and
whose faces we label correspondingly. Recall that Cy = [0, 0], x X. We summarize the results of
this section in the following proposition:

Proposition 4.1. Given the setup above, I.[¢p] € Aloc(g” 22,0, )(C'l), where the index sets are
specified at kf, parF, and dilF respectively, and I_[¢] = exp(—ir?/4t)I_[¢] + I_ ohgl®] for some

I~ [¢] c Aloc (E+2,a+2),(F+1/2,6+1/2) (M/ f) (124)
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and I_ pne[@] € A$5(5+2’a+2)’(0’0)(01). Moreover, if x € C°(R) satisfies supp x € (—1,1), then

X(2tp(z)X)I_[¢] is Schwartz. [

Proof. The statment for I;[¢] comes immediately from Proposition 4.2 and Proposition 4.4.

The partial compactifications R” x X < (M /nf)\(dilFUY) and R} x X < C;\¥ are equivalent, in
the sense that the identity map on the interior extends to a diffeomorphism (M /nf)\ (dilFUX) = C1\X.
So, Proposition 4.2 tells us that

L_[¢] € A S22 (01 /nf)\dilF), (125)

where the index sets are specified at kf, parF, respectively On the other hand, the partial compactifi-
cations R} x X < (M /nf)\kf and R;" x X < [0, 00), x (0, 0c0]s x 0 Xy given by (t,7,0) v+ (t/r2,t/r,0)
are equivalent. So Proposition 4.7 tells us that

I_[¢] € A2t DFHFZERD) ((Nr me)\kf). (126)

loc

The last clause of this proposition follows from the last clause of Proposition 4.7. U

4.1. Control for very large time. The following establishes control of near kf:
Proposition 4.2. For ¢(o,\,0) € .A((;g’a)’(f’ﬁ)([O, Yo X (A, 00\ X 0Xy) and ¢(o,1,0) = ¢(0,071,0),
we have IL[¢](t,x) = p*IL[p](tp?, ) for some

Lefgl(r.2) € A @™ (C1\2), (127)

where C1\X = (0,00],; x X, where £ is the index set at (0,00], x Xy, i.e. as T — oo, and the co
denotes Schwartz behavior as T — oo. Moreover, the expansion at (0,00]; x 0Xy is given by

_ 9 Kk 1 o | |
Lldnn~ 2 NZ(—U“(J log"(r) [~ e TEN g A N logh () (128)
(j,k)eERj<y  K=0 A

where (0, A, 0) ~ 32 pee wj<a Pik(A, 0)o7 log o* is the polyhomogeneous expansion of ¢ as o — 0T,
so that

0ik(X0) € AT P ((A, 00y x 0 X). (129)
The integrals on the right-hand side of eq. (128) are well-defined oscillatory integrals (though not
necessarily absolutely convergent), e.g. via formal integration-by-parts. |

Proof. We have I.[¢](t,z) = p*IL[¢](tp?, x) for I.[p](T,x) defined by
Llol(ra) =2 / GNTEA S\ /7, A, O)A A (130)
A

Defining ¢+ (0,A,0) = 077 (¢(0, A, 0) — 32 pyee mj<y Pik(As )07 log o*) for v € R with v < a, we
have
0y € AVTA([0,3), x (A, 0]y x OXp). (131)
Let x € C2°(R) be identically 1 on [—1,1]. Then, we can write ¢(o, ), 0) = x(eX"H)¢(o, A, 0) for
all o, A >0 and 0 € 0X, so
9 K

Llel(r,z) = ) > ()" (i) log" (1) It jsi—n[0] (7, 2) + 17 Loy [p)(r,2)  (132)

r
(G k)eER<y  K=0

for
I % iNri A j
Ii,j,k[@](ﬂx) :/A 6)\ iAX(E)@j,k(Ave))‘l+J logk()‘) d)‘a
i % N (A A
Ii;y[so](f,x)z/A e “X(T—E)%(;,A,Q)AHW. (133)
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By Lemma 4.3, I jx(7,z) € A2 ((0,00), x X,) and Is (7, 2) € AZ((0,00], x X,), where

A loc
the (0,0) denotes the index set at (0, 00|, x X, and oo denotes Schwartz behavior as 7 — oc.

So, I+[p](T,x) € Af:é(g’v)(cl\il), and since v < « was arbitrary we conclude eq. (127). The
explicit expansion follows from the argument above and the second half of Lemma 4.3. O

Lemma 4.3. For ¢ € Ugen A27E([0,5)s x (A, 0]y x 0Xyp), for j € C and k € N, and for
X € C°(R), consider
, [ inrrin (AN (A Gk
I jkles X](T,7,0) 7//‘\ € x(rz)w(r,k,é’)/\ log™(A) dA. (134)
Then, Iy jrlp, X](T,2) € Afooc’o(((), ool X X)), where 0 is the order at (0,00], x 0X, i.e. as r — oo,
and the oo denotes Schwartz behavior as T — 0o. If (o, \,0) = p(X, 0) does not depend on o, then

e jrlo X (r,2) € A" ((0,00) x Xa), (135)
and moreover
Zogalo (o) = [ N0 0N logh () dh € AZ(0, o), x o). (136)
A

The second term on the right-hand side is a well-defined oscillatory integral, even though it may not
be absolutely convergent. |

Proof. 1t suffices to consider the case ¢ € A2Y([0, %), x (A, 0ol x 0 Xp), as we can write Z j ko, x] =

, -K
Ly jrrkA "0, X .
We first prove that Ty [, x|(7,2) € 77°L.((0,00]; x X,). First of all, if Rj < —1, then

loc

Ty ik, X(7,7,0) € L2.((0,00] x X,), as follows immediately from an ML-bound. Using

2irTealio ) = [ [2re ] (5

) E)‘P@ A, 9) X~ og"(A) dA, (137)

;7
integrating-by-parts yields

— 20Ty ke, x] = FiTe jo1kle, X+ ST T o1 ke, X+ Ta jo2 k[000p(0, A, 0), X]
+Zs j ok [MOrp(0, A, 0), x] + (§ — D) T j_2k[e, x] + KT+ j_2k[@, x]. (138)

Each term on the right-hand side has the same form as the original integral (possibly times an extra
LY, factor), but with j with smaller real part. Since the left-hand side of eq. (138) has one extra
factor of 7, this sets up an inductive argument to conclude O(7~>°) decay from the LY, estimate
already proven in the Rj < —1 case.

Now suppose that 0 ¢ supp x. Then, an ML-bound yields immediately that, if ®j < —1, then

syl X)(1,2) € PP HHFELES((0, 00]7 X Xo) (139)

for any € > 0. So, in this case the inductive argument above yields additionally rapid decay as
r — 00, i.e. that Zy jp[p, X](7,7,0) € 77°r™°L* ((0,00]7 x X,).
We now prove two sets of estimates on derivatives of Zy jx[p, x|. First of all, if n,m € N and

L € Diff(0Xy), then
ag(raT)mLIiJ}k[@’ X](Ta r, 9) € T_Oo o ((07 OO]T X XSB) (140)

loc

Secondly, if 0 ¢ supp(1 — x) and if ¢(a, A, 0) = ¢(A,0) does not depend on o, then, for m € N,

OrO" LIy j k[, x)(T,7,0) € T7°r=L¥ ((0, 00, x X,). These follow from applying repeatedly the
identities

LIy jkle,x] = Tejulle, X, OrZujkle, X] = iZy jrokle, X] (141)

1O Le jile,X] = —Tu jr1k10000(0, X, 0), x] — 7 Ty s 0, X (142)

For example, if ¢(o, \,0) = p(A, 6) does not depend on o, then the first term on the right-hand

side of eq. (142) is zero, so 0,2+ ; ke, X] = —Z_lr_inJH’k[(p, X'], and if x = 1 identically near the
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origin, then 0 ¢ supp x, so we can apply the improved L*>-estimates that apply to Z j11 ke, ] in
this case.
O

4.2. Asymptotics elsewhere, I,. To complete our discussion of I, we prove:

Proposition 4.4. For (o, \,0) € A.(f"")’(f’ﬁ)([o, Yo X (A, 00]\ X 0Xg) and ¢(o,r,0) = ¢(o,01,0),
we have I [@](t,r,0) = 201 [o](t/r%,r,0) for some
L lel(r,7,0) € A O0(Cr k). (143)
|
Proof. We have I, [¢](t,r,0) = 2021 [p](t/r?,r,0) for I, [¢](T,r,6) defined by

Lilgl(r,7,0) = / eNT*%(i, A, 0))\ . (144)
A r

Now let p(o,\,0) ~ Y.k eE Ri<a eir(\ 0)a? log¥ o denote the polyhomogeneous expansion of
w(o,\,0) at 0 =0, so

pix € AT ((A, 00\ x 9Xp) (145)
and, letting ¢y = 077 (0 =22 kyee mj<y Pik(As 0)o7 log® o), we have ¢ € ALFH) ([0,%)s x (A, 0]y X

0Xp). Let x € C(R) be identically 1 on [—1,+1]. Then, p(c, ), 0) = x(eX " Hp(a, A, 0), so we can
write

= 1\J k 1\ - 1I\7 -
Ligmro= >  (3) Z( )logﬂ () Thshn(rs,0)+ (2) Tip(ra)  (146)
. . r — K r r
(4,k)€E RF < k=0
for
L jalel(r,m,0) = / () )X ogh () d
+.J; ’ A ry Js ’ )
i [ inrria (A A 1y
I+ﬁ[80](7'77"79)—/A e (5 )en (5a0) A ax (14n)
(€7),(0,0

We now appeal to Lemma 4.6 to conclude that I [p](7,7,0) € A} (C’ \kf). Since v < a was
arbitrary, we can conclude eq. (143). O

Remark 4.5. Using the explicit expansions in Lemma 4.6, the proof of Proposition 4.4 shows that
the expansion of I [p|(T,,6) as r — oo is given by

[ 1yJ 1 K\ (% ixerti i K-
Lig~ > ()l () X <k>/A GNTHA G (O BN TogK T (A) .
(J,k)EERj<a K>k,(j,K)e&

(148)

Lemma 4.6. Let ¥ > 0 and x € CX([0,00)). Suppose that v € C, k € N, and that ¢ €
AL000(10,33), x (A, 00]y x (0,00], % [0,00), x 0Xy). Consider the integral
_ 1)\27'+z)\ A ¥ k

To il X (7,7, 0) = /A ¢( AT, 9) ( E))\ logF(\) dA. (149)

Then, Iy k[0, x]|(7,7,0) € loc(cl\kf) If p(o, A\, r,7,0) = (N, 0) does not depend on any of o, T,r,
then

TonaldXl(rr0) = [~ XG0 0N log () dh € OO (Ck), (150)
A

the integral on the left-hand side being a well-defined oscillatory integral. Here, the oo denotes
Schwartz behavior as v — oo. |
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Proof. We first prove that
Ty k0, x)(1,7,8) € Lis.(]0,00) x (0,00], x 0Xp). (151)

If Ry < —1, then [|Z4 5 k[, X]llee < [|@]lzoellX|loe [A° AYdA < co. In order to prove the claim
for Ry > —1, we use an inductive argument. The key is the identity exp(i\27 + i\) = —i(2\ +
1)719) exp(iA27 +i)), hence

To okl X (7.7, 0) = /A [2 AT‘: : ;Aeiwm] ¢>(;, A7, T, a)x(%)m log"(A) dA. (152)

Integrate-by-parts, noting that no boundary terms arise:

o0

A

Lo mil® X = Ti -1l X+ Zi y-1kld0, X] + L -1,k [00, 0 (0)]
+ 9L 1 k[ x] + Ty k-1 (Y, x], (153)

where
oo, A\, r,7,0) = ! (aggb(JrT)\H)—{—)\iqb(arT)\H))
9 0 ) 2)\7_ + 1 80' 20 ) ) a)\ » ) ) (154)
e A%000(10, %), x (A, 00]x X (0,00], x [0,00); x OXp)
b0(0, 07,7, 0) = —2ATOTATTO) 1000010 53) ¢ (A, 00]x x (0,00, % [0, 00)s X OXp),

(2AT +1)2
(155)

and ¥ = i(2A7 +1)"1p € A2009(]0, ), x (A, 00y x (0, 0], x [0,0), x Xg). Since the right-hand
side of eq. (153) involves only v — 1 in place of +, this identity can be used repeatedly to reduce the
to-be-proven claim eq. (151) to the Ry < —1 case.

A modification of this argument shows that if 0 ¢ supp x, then

Ty v kld X)(T,7,0) € (1/1)° Lis.([0,00)7 x (0, 00], x 0Xp). (156)

Indeed, in this case, the integrand in eq. (152) is supported for A ~ r. Thus, the initial ML-bound
yields T, - x[¢, X] (7,7, 0) € r™FTLLX ([0,00), x (0, ¢, x 9Xp). The inductive argument then shows

that the same bound holds with v 4+ K in place of v, for all K € N, which then implies eq. (156).

In order to deduce that 7 . [0, x| € A%0(10, 00), x (0, 0], x 0Xg), we want to show that

loc
(roy )Y (10:) LIy k16, X) (1,7, 0) € LS, ([0,00)7 x (0, o0, x 9X4p) (157)

for all j,x € N and L € Diff(0X). As elsewhere, we use LI, - [0, x| = T4, 1[L¢, x|, and now
we have 70;Z k(¢ X] = iTTq y12k[0, X] + L4 4 k[0, x| for (o, A\, 7, 7,0) = 70-¢(0, A\, r,7,0) and
TaT‘I+,’Y,k[¢7 X] = I—l—,’y,k[wa X] - I—I—,’y,k[qsa UX/(U)] for 1/}(0'7 AT, 9) = (_Uaa + T8T)¢(Uv AT, T, 9) So,
the desired bounds in eq. (157) follow from the L*>°-bounds proven above via the usual inductive
argument.

Suppose now that ¢(o, A, 7, 7,0) = ¢(A, 0) does not depend on any of o, 7,r. Then, 0:Z; . [0, x| =

Ly pyoplds x| + ST T ke, X and 0Ty L k[d x] = =TTy k[é,0X/ (0)]. So, a similar
inductive argument to the above shows that
afLI+,’y,k[¢a X] € Lfg)c([()? OO)T X (Oa OO]S X aXQ) (158)
0ROl LI k[0, x] € 17 L ([0, 00)7 x (0, 0], x 9Xp) (159)
for all j,x € N and L € Diff(0Xy). These estimates suffice to show that
Ti k6,77, 8) € A ([0,00)- x (0,00, x 9Xo) (160)

and that only the O(1) term in the r — oo expansion is nontrivial. It can be checked, e.g. via the
integration-by-parts argument above, that this leading term is that specified by eq. (150). O
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4.3. Asymptotics elsewhere, remaining case. Finally, to complete our discussion of I_:

Proposition 4.7. For p(o,\,0) € AEg’“)’(f’ﬁ)([o, Yo X (A, 00\ X 0Xy) and ¢(o,1,0) = ¢(0,071,0),
we have
I_[g](t,2) = I pnglee](t/7%,7,0) + I_ osc[p) (t /72, /7, 0) (161)
for
I ongle)(r,7,0) € r=2AE 00 ¢\ k) (162)

loc
and I_ osclp](T,8,0) € 67i/477'1/2872./4{5070()’(?’6)([0, )+ x (0,00]s x 0Xy), where & is the index set
as s = oo and F is the index set as 7 — 0. Moreover, if x € C°(R) satisfies supp x € (—1,1),

then x(28X)1_ osc[¢](T, 8,0) € A >°([0,00) - % (0,00]5 x 0Xp). [ ]
Proof. Let ¢ € C°(R) satisfy suppy € (—1/2,1/2) and 0 ¢ supp(1 — 1»). Now define
I osclip, ¥](7,5,0) = 32/ N TRy (207 — 1)go<£,/\,9)>\d)\, (163)
r2 Ja s
I 0) = 2 [T e rin1 Z p2ar — 1)) 2, A, 6) A dA 164
~neln)(rr,0) = 5 [ eI = (207 = 1) (7,0, 0) N (164)

Then eq. (161) holds. We just need to check that each of these integrals lies in the expected function
spaces. We begin with I_ ;.. Let

o, N0)~ > (A 0)07logk o (165)
(j,k)eERj<a

denote the o — 07 expansion of ¢, so ¢; k(X 0) € A((;f’ﬁ)((A, oo]y x 0Xp). Consider the function
¢~ defined by

oy(o, X, 0) =077 {cp(a, A, 0) — Z @i k(A 0)a? logh 0} e A%D)([0,8), x (A, 0]y X dXp).
(k)€€ Rj<y
(166)
Then, we have

= FOE\ N ] 1\
5 L-phgle, ] = > > . (*) log (;)I—,phg,l-&-j,ﬁ[@j,kaw]"*' (;) I_ phg 1440007, ¥,

(j,k) €€ Rj <y 5 =0 "

(167)
where the quantity I_ ¢ 4, is defined by Lemma 4.9. That lemma then gives that each term on
the right-hand side of eq. (167), and therefore I_ y.[p, 9] itself, has the required form, except with
a conormal error of order . But since v < o was arbitrary, eq. (162) follows.

Moving on to the other oscillatory integral, we introduce the coordinate § = A7 — 1/2. In terms
of this coordinate,

52]7,050 [, Y)(7,5,0) = e_i/4Tff,OSC[SO» (6 + 1)v(d)](7,5,0) (168)
and _ © o 1,0 1\ 1,0 1
T sclips 0], 5,0) = /_Oo S Imp0)p((5+5), = (5+ 5),6) o (169)

We can split this, for each v € R, as
k
5 k i e s .
I—,OSC[()Ou w] = Z Z (ﬂ) (_l)k s logk (S)I—,osc[@j,ka wj,n] +s 71—,050[9077 1/}7]7 (170)
(j.k)€ERj<y k=0
where 1; .(26) = (0 + 1/2)7 log™(§ + 1/2)1(25) and 1~ (28) = (6 + 1/2)71(25). Now let

pieN0) ~ S AT log" (Nl (0) (171)
(4" k") eFR'<B
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denote the expansion of ¢; (A, 6) as A — oo, and let )\_“fcp} (A, 8) denote the error from truncating
the expansion to #j’ < . We use similar notation for ¢,. Then, for each 7,7 € R,

k' /
=2 k /_ -/ !/ ~ -/ k)/ -/ kl
L osclpjmtbinl = 3 Z(F)(—l)’“ “r log" (1) oscl] 0]

(') eF Ry’ <y k=0
+ T,yi—,osc [(P‘;y’k‘? ¢Zk‘]7 (172)

k/
~ k/ /_ -/ /_ ~ N i’ k!
I osclipy, ] = > > <H>(—1)’“ "9 logh T (r) L sl M 0l ]

(4 k") eF Ry’ <~' k=0
+ 7V I oscle? 9], (173)

where wg:,;“(%) = (6 +1/2) log" (6 + 1/2)vj £(25), and similarly for the~ other undefined terms.
The result then follows from Proposition 4.10. Indeed, we have that /_ o is a sum of four types
of terms:

e First, consider the “main” terms proportional to s~ log¥(s)7 log" (7)1 osc [apg;’f, wglﬁ%]

Noting that I — 08¢ [cp;::;f, j,,:{] is completely independent of o, the last clause of Proposi-
tion 4.10 yields

T osell 007 € 7112C%°([0, 00),: O (9X)). (174)

e Now consider the terms s/ logk(s)TVIZ_psc[go}k, w;k]. Noting that I~_7OSC[<p]7k, w;k] does not
depend on s, we have

I oscl] oo 03] € T12AD ([0, 00) 7 x 9Xg). (175)

e Now consider the terms s~ 777 logk (T)IN,’OSC[QO%’]C, w%k]
By the last clause of Proposition 4.10, f,,osc[go‘%’k, w%k] € Tl/QA?(;EO’O)([O, 00); % (0,00]5 X
0Xp).
e Finally, in 775_7/177050[90?/,1/};/], I,,osc[golyl,wzl] € 7'1/2/1?(;2([0, 00)r X (0,00]s x 0Xp) by
Proposition 4.10.
Putting this all together, I_ o[¢](7,5,0) € 7'1/2,41(53)’(?’7/)([0, 00)r X (0,00]s X 0Xp). Taking
v — a and 7' — B completes the proof that I_ s lies in the desired function spaces.
If x € C°(R) satisfies supp x € (—1,1), then x(25X)1_ osc[](T, 5,8) € A7 ([0, 00)7 X (0, 005 X

loc
0Xy), as the corresponding clause of Proposition 4.10 shows that each of the terms I_ .. appearing

above is Schwartz when multiplied by y(2sX). O

Remark 4.8. The proof shows that the r — oo expansion of I_ ;[¢, ] is given by

2 1 .] 1 K o0 i2T—i
Logovl~2 Y (Nee(D) ¥ ( ) [ e
re . r r , k) Ja
(4,k)eERj<a K>k,(j,K)e&
;. k(N NI logB R (N) dN, (176)
analogously to eq. (148). The s — oo expansion of I_ [, 1] is given by

—i/4T
e
I—,OSC[% %D] ~

. K\ -
Z s/ logk(s)(—l)k Z (k;)-[—,osc[(pj,Ka (5 + 1)¢j,K—k(5)]7
(J,k)e€ERj<a K>k, (j,K)e€

(177)
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where

I s (0K Y k—k) = /

—00 T

> eia?/T(d +1/2) 1ogh k(5 + 1/2)1#(25)%,1((1 (5 + %),9) dé. (178)

We do not write the 7 — 0 expansion.

Lemma 4.9. Let ¢ € C°(R) satisfy suppy € (—1/2,1/2) and 0 ¢ supp(l — ). Fiz ¥, A > 0. Let
¢ € AX000([0, %), x (A, 00y x (0, 00], x [0,00), x 0Xy), and consider, for v € C and r € N,

T phgyld ¥)(7,7,0) = / eNT—“ufw(zATf1))¢(3,A,r,f,e)m log®(\)dA.  (179)
A r
Then, we have I_ yhe  xlp, ¥(T,7,0) € A?O’g([(), 00)r X (0,00, x 0Xg). If ¢p(o, A\, 7, 7,0) = d(A,0)
depends only on A, 0, then this can be improved to
L g el6, 01, 7,0) € AGPOV (0, 00) ¢ (0, 00], x 8Xo), (180)
and I_ phg ~x[0,Y](T,s,0) does not depend on r in this case. |

Proof. We first prove that I_ yhe 4 «[@](7,7,6) € L%, ([0,00), x (0,00], x 0Xg). If Ry < —1, this
follows immediately from an ML-bound. Otherwise, we use an integration-by-parts argument as
usual:exp(iA2r — i) = —i(2A7 — 1) 710 exp(iA2T — i)), so

o0 —i 0

I = —_

,phg,’y,ﬁ,[qs, w] /A |:2)\7_ — 19\

Note that the integrand is well-defined, since the factor 1 — t)(2A7 — 1) vanishes when 2A7 — 1 is
sufficiently small. Integrating-by-parts, noting that no boundary terms arise,

I—,phg,%m[d)a ¢] = I—,phg,v—l,n[ﬁs(]a wO] - ’YI—,phg,'y—l,n[qbla ¢0] - K‘I—,phg,'y—l,n—l[gbla ¢0]7 (182)

where 19 € C®((—1/2,+1/2)) is identically 1 near the origin and satisfies supp 1o € ¥~ ({1}), and
where

(1 (v~ 10)6( 2, A 0) N Tog(A)F X (181)

2T l

do(0, A, 7, 7,0) = (1 = (247 — 1)) | — B =17 T w1 (005 +A0)] 6(0, A, 7, 7, 0)
-3 f?_T (207 = 1)g(0. A,y 7. 6), (183)
hr(. A rr0) = (1= p(2ar - 1) —AZAn D0, (184)

Since the three functions (1 — ¥(2A7 — 1))/(2AT — 1), (1 — ¥(2A7 — D)AT/(2A7 — 1)2, 9 (2A7 —
DAT/(2A7 — 1) all lie in A%%00([0, %), x (A, 00]x x (0,00], x [0,00), x 0Xp), we have

o(0, A1, 7,0),61(0, A, 1, 7,0) € ALPO0([0, )5 x (A, 00]x x (0, 00]; x [0,00)- x 0Xp).  (185)

Thus, each term on the right-hand side of eq. (182) has the same form as the original oscillatory
integral, except with v — 1 in place of v and possibly x — 1 in place of &, if k > 0. So, eq. (182) can
be used inductively to conclude the desired L°°-bound from the Ry < —1 case.

In order to prove conormality, we want to prove that

(T&T)j(rar)kLI_@hgmH[ap] (1,5,0) € Lix.([0,00) x (0,00], x 0Xp) (186)

for all j,k € N and L € Diff(0X). The angular derivatives L are handled via differentiation under
the integral sign as elsewhere, and for the other directions we use the following identities:

TO_ phg @ Y] = iT1- phg yt2,6[0, Y] + I phg i@ V] — I phgy.x[@, Yo (187)
for (o, \, 1, 7,0) = 70:0(0, A\, r,7,60) and w(o, A\, r,7,0) = 2A7¢ (AT — 1) (0, A\, 7, 7, 6), and

rarl—yphgv%fi [¢7 1” (7-7 T, ‘9) = I—,phg,w,n[@ 'QZ}] (188)
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for ¢(o, A\, r,7,0) = (—00, + 10;)p(0, \,r,7,0). Each of these has the same form as the original
integral, so, a similar inductive argument to the above shows that the bounds eq. (186) follow from
those already proven.

Finally, suppose that ¢(o, A\, 7, 7,0) = ¢(\,0) depends only on A, 0. Then, eq. (187) can be
improved to

aTI—7Phg7%H[¢7 w] (T> T, 9) = iI—7phg77+2,H[¢7 w] (7_7 T, 0) - I—,phgﬁ-i-lﬁ[ll %] (Tv T ‘9) (189)

for IT = (A7)~ ', and now we simply have OsI_ phg~.x[¢, 1] = 0. Noting that each term on the
right-hand side of eq. (189) has the same form as the original integral, the usual inductive argument
yields polyhomogeneity. O
Proposition 4.10. Let v € C(R) satisfy suppy € (—1/2,1/2). Fix ¥, A > 0. Let ¢ €
AL000(10, %), x (A, 00]) X (0,00]5 x [0,00), x 0Xg), and consider, for v € C. Consider

Tl Wm0 = [ Pt u@as(L (54 5), 15+ 5).5.m6) a6 (190)

Then, Ji[o, ¢](1,s,0) € 72 A0([0,00), x (0,00]s x Xg). If x € C(R) satisfies supp x €

loc

(—1,1), then x(2sX)Tk[d, ¢] is Schwartz.

If (o, N\, 8,7,0) = ¢(0,s,0) does not depend on X\, T, then Ji[d,V](T,0) € Tl/2+k¢4?()’£0’0)([0, 00); X
(0,00]s x 0Xp), where the (0,0) is the index set as T — 0. [
Proof. (I) We begin by proving the weaker claim that

Torl, ¥] € TPLE([0,00)- x (0, 005 x 9Xp). (191)
As with the other integrals analyzed elsewhere in this paper, this is proven using integration-
by-parts: if £ = 0, then this bound is immediate, and otherwise, if k > 1, use
So,

— 2 T[6,8] = (2 — 1) 2l 0] + 2Tk ol A ()]
+ Jok-2[0050, (A +1/2) TAY(A)] + Tok-2[A0r¢, (A +1/2) T Ap(A)]. (193)

Using this identity inductively, Jax (6, ¥] € 7°LE2, ([0, 00), x (0,00]s x 0Xjp) follows from the
k =0 case.
(IT) The next goal is to improve this to the optimal

Tilo, 0] € TV2EL ([0, 00), x (0,005 x OXjp) (194)
In order to improve upon these bounds when k > 1, we expand ¢ in Taylor series around
6=0:
Sirtiz

1 1\ 1 1 o101
¢<g<(5+ 5), ;(5+ 5),8,7’, 9) :jl—%;SJ W(ZS(JL]z)(%’ E’S’T’H)

) 1 /1 1\ 1 1
—_ AV = plnge)(Z ) = -
+/0 (65— A) ﬁﬂ;m PRl (S(a+5). (A +5).570)da, (195)
where ¢U172) (g, \, 5, 7,6) = 853;18&'%;5(0, A, 8,7,0). So, for any J € N,
Tilo ] = Teanlo U]+ Y Tijipld: ¥) (196)

Jit+j2<J
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where
R ) e — ¢<j1,j2>(i L. 0) / T G0 gtz (25) 4 (197)
R J1ljalsitri2 2s"20" 7 oo
and
too 0
Tenlovl = [~ e™reue)] [ 6-a)
« Y g0 (H(A g D) (A4 1)) dA]do (198)
L Sl iz s 2/ 1 2,777

J1tje=J+

The method of stationary phase (which in this case amounts to Parseval-Plancherel),
applied to the integral

o +oo .
i) = [ e mi(20) ds (199)
yields that J;[¢] € 71/2t70>(0, 00),. So,
Tjr 9] € T/2HEHITR2 A30([0, 00) 7 x (0, 00]s x OXp). (200)

In order to estimate Jj j11[¢, 1], we use a similar integration-by-parts argument as before.
We prove, via induction on k, that

Tieg1[0, ] € TLEHTFD2I 150 (10 00), x (0, 00]s x DXp), (201)
which is trivial in the k£ = 0 case. Integrating-by-parts, we can write —2@'7_1.7;6, Jeilo, Y] =
(k= 1)Tk—2,741[0, ] + 2Tk—1,741[0, V'] + JTr—1,5[¢, 9] if J > 1 and, otherwise,

=2 Tl 9] = (= 1) Ti21[6,9] + 27k 1116,8] + T, 0 (202)
for 1(26) = (6 + 1/2)~7~14)(26) and
gt )2 g §iz

1t J1lga! Ooir ONI2

@(07 A? 8’ 7-7 9) = ¢(07 A? 87 7—7 9)’ (203)

where Ji_1[p, ¢] is defined by eq. (190). The method of nonstationary phase shows that
Te—1,0+1[0, ¥] € 7L ([0, 00)~ x (0, 00]s x Xp). (204)

Moreover, by eq. (191), we have Jy.17_1[p, 4] € THEH/=D/2IL00 (10, 00), x (0,005 x 0Xp).
So, if we know that

Ti—2,74110, V], Tie1,7[0, 9] € THFFI=D2I L2 (10, 00), x (0, 00]5 x D Xp), (205)

then we can conclude that eq. (201) holds. As the sum of the subscripts of these integrals
are 2 smaller than J 4+ K, this sets up an inductive algorithm to deduce the claim from the
k 4+ J = 0 base case which is already known.

Returning now to eq. (194), this follows from eq. (196) combined with eq. (200) and
eq. (201), as long as J is sufficiently large.

(IIT) Having now proven the optimal L*°-bounds eq. (201), we upgrade this to conormality by
estimating derivatives. We just need to do this for J y1[¢,1]. We can do this using the
usual argument: LJy j11(0, Y| = Tk, 7+1[L¢, Y] for L € Diff(0Xy), s0s Tk, 4110, ¥|(7,5,0) =
Tk, g+1[(005 + 50s)p(0, A, s, T, 0),1/;], where @, 1) are as above, and

TaTjk,J+1[¢7 71’] (7—7 S, 0) = _T_ljk+2,J+1 [¢a ¢] (7_7 S, 0) + jk,J—H [()‘a)\ + 7_87)410(0-7 )‘7 S, T, H)a 172)] (206)
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So, via the usual inductive argument, (s95)"™(79:)" LTy, j+1[¢, ¥ € TLEFIFD2I L ([0, 00), x
(0,00]s x 0Xp) for all m,n € N, which means that
Tigi1]6, 1] € TLEFTFN2I 42010 00), % (0, 00]5 x 0 Xp). (207)

(IV) Consider now x(2sX)Jk[¢, ], where x is as in the statement of the proposition. Then,
X(28%) Tk j, - @, Y] = 0 identically, for all j,j2 € N. So, the estimates above give Schwartz
behavior as 7 — oo.

(V) Suppose now that ¢(o, A\, s, 7,0) = ¢(0o,s,0) does not depend on A, 7. Then, Ji[o,¢] =

Z}]:O Tk.j0(¢; 1/’] + Tk, 7+1[0, 7], where
1

Trolovt) = 509 (oos.0) [ e Irab00) 45 = oo (1 5. 0)Filul, (209

]‘ J
Tig1l6, 4] = /_ ; &7 3h4p(20) /0 ' (J(il)i)m¢ (2 (A+%),s,0) anlas.  (209)

where ¢\ (0, 5,0) = 82¢(0, 5,0). Instead of eq. (200), we now have

Trold, 0] € /2 450 ([0, 00) % (0,00] x 9Xp), (210)
since J;[¢] () € 71/2*#C>°([0, 00),). On the other hand, we can improve eq. (206) to
Or T g1[6, 0] = 72 Tig2,01116, 9] (7, 5,0). (211)

Note that the the growth of the 772 factor is cancelled out by the extra 72 decay of Jy12,7+1
versus Jx j+1. S0, the usual inductive argument yields

Te,g1[0, 9] € THERTED2I 00 ([0 00) . x (0, 00]5 x 0X). (212)

Combining the estimates above, we conclude the final clause of the proposition.
O

5. PROOF OF MAIN LEMMA

We now turn to the proof of Theorem C, our “main lemma.” Let £, F,G, «, 3,7, ¢ be as in the
statement of that theorem. Let Xiow, Xtfnbf, Xhigh € C°°(X;E) be a partition of unity as in the
introduction, so Xiow + Xtfnbf + Xhigh = 1 and

supp Xiow N (bf U oof) = &, supp xesnne N (zf U oof) = @, supp xuign N (zf U tf) = @, (213)

and we can choose that supp ¢iow N (SUPP Xtfrbt U SUPP Xhigh) = &. Moreover, bt can be chosen
to be supported over X [R] for some R, that is over a collar neighborhood of the boundary of X.
We split Ii[¢] as in eq. (36). We analyze each piece separately. First of all, according to
Proposition 2.1,
It [Xlowgb] c A(5/2+1’a/2+1)’(f+276+2)’(0’0)(01). (214)
On the other hand, Proposition 3.1 says that I} [Xnigh¢] € A:20:(0.0) "and, together, Proposition 3.1
and Proposition 3.3 say that

[—[Xhigh¢] c Aoo,oo,(O,O)(C) +efi(17x(t))r2/4tAoo,oo,(g+1/2,’y+1/2),00,00(M)
_ e—i(l—X(t))7"2/4tAoo,oo,(g+1/2,7+1/2),oo,(0,0)(M)‘ (215)

Regarding I, [xsnbs¢], says Proposition 4.1 that I [xinped] € A 12642000 (0. Regarding

I_[xttnbe@], the same proposition says that I_[xiped] = exp(—z’r2/4t)f_ [Xttrbe®] + I phe [Xttnbed]
for some

I [xutrbrg)] € AT H2842,(G+1/27+1/2) 0000y, (216)

and I_ png[xirnnrg] € AT HEAHD00(Cy). So, summing up I+[¢] = It [Xiow®] + I+ [Xtrnbed) +
I+ [Xnigh¢], we conclude Theorem C.
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APPENDIX A. MICROLOCAL SUPPLEMENT
The goal of this appendix is to sketch a microlocal proof of the following proposition:

Proposition A.1. Suppose that f € S(X), and let p1(o,x) = eT9"R(0? +i0)f(x). Then, letting
I_[p_] = exp(—i(1 — x(t))r?/4t)Iosc[p] + I pnglp] denote the decomposition of I_[p_] provided in
Theorem C, it must be the case that the linear combination

Tong = L [p4] = 1 phgleo-] (217)
1s Schwartz at dilF. [ |

Proof. First of all, note that because Iy, is already polyhomogeneous on C1, it suffices to prove
that I,ng is Schwartz in dilF°. Let My denote the manifold-with-boundary resulting from taking
[Ry x X;{£o0} x 0X] subtracting the boundary hypersurfaces corresponding to {£oo} x X and
blowing down the boundary hypersurfaces corresponding to Ry x X. Concretely, this mwc is
identifiable with Ry, x [0,00), x 0Xy near the boundary. We utilize Melrose’s sc-calculus on M.
See [Vas18] for an introduction.

To show that I,hg is Schwartz at dilF°® means to show that WFy.(Ipng) = @, where WF is
Melrose’s notion of sc-wavefront set. Let *°0* My denote the zero section of the sc-cotangent bundle
over dilF°. Because I}, is conormal,

WF(Ipng) € *“0" Mo, (218)
as follows e.g. via repeated applications of ellipticity. In order to study WFg.(Iphg) further, we use
the relation of I[p] = I[py] — I_[p—_] to u(t,z) = (U(t)f)(x) given by eq. (16). Indeed,

WFs(eFlp(z)) = @ (219)
for any F € R and ¢ € S(X). (If this looks strange, recall that dM, does not contain any points

where r # 00.) So, WFg(u) = WFg(I[¢]). Because I[p] = exp(—i(1 — x(2))r%/4t) Losc[o—] + Ipng:
we have

WFe(Ipng) € WFsc(exp(—i(1 — X(t))/4tp2)1086[907]) U WF(I[¢])
= WF(exp(—i(1 — X(t))/4t92)1080[907]) U WFg(u). (220)

By the conormality of Ios, we have WFy(exp(—i(1 — x(t))/4tp*)Iosc) C graphgy, (2(r/t) dr +
(r/t)?dt) the right-hand side being the graph over OMy of the 1-form —d(r?/t) = —2(r/t)dr +
(r/t)? dt, which is a smooth, nonvanishing section of S*T* M. Because it is nonvanishing,
WF(exp(—i(1 — x(t))/4tp*) Iosc) N 0* My = @. (221)

Combining this with eq. (218) and eq. (220), we have WF(Ipng) € WFc(u)N*0* My. To summarize,
to prove that WF.(Ipng) = @, it suffices to prove that WF.(u) N*¢0* My = @.

In order to accomplish this, one can use a standard argument based on the splitting v =
ug 4+ u_, where uy (t,x) = 1ysou(t, ). As WFge(u) C (WFg(u_) UWFg(uy)), it suffices to prove
WFq(ur) N*0* My = & for each choice of sign. To this end, note that uy satisfy the PDE

—i0uy = Pug F16(¢) f(x) (222)

in the sense of distributions. As WF.(0(t) f(z)) is contained at fiber infinity (as can be seen using
the Fourier transform in a local coordinate patch), it is irrelevant as far as sc-wavefront set in the
interior of the fibers is concerned. We have P = A, mod DiffL;=2(My), where the ‘—2’ indicates two
orders of decay. So, the principal symbol of P is

p(7,6) =7+ g 1 (€,€) € C=(*T* Mp). (223)

Associated to this function is the Hamiltonian vector field Hy, = (9;p)d;+ (9¢p) - 0y = 8, +2g7 (&, —).
Let H, = pH),, which restricts to a vector field on **Tj,, M. The Duistermaat-Hérmander theorem
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— see [Vas18] for a precise statement in the context of the sc-calculus — then says that the portion
of WFc(u4) in 5T} Mo Mo consists of maximally extended integral curves of H,. Those in the zero
section %¢0* My are of the form

Yo, = (0" Mo) N {0 = o}, (224)
as follows from the explicit formula for H,. Because u+ vanishes when 4t < 0, it has no sc-wavefront
set over the corresponding copy of dilF°. So, vg, € WFgc(us), which, by Duistermaat-Hoérmander,
implies WFg.(us) N50* My = @. O

APPENDIX B. NECESSITY OF NF AND DILF

In this appendix, we summarize the role of nf, dilF and why it is not possible to blow down either
while maintaining the exponential-polyhomogeneous form of solutions of the Schrodinger equation.
We only sketch the argument, and, for simplicity, we work in the dim X =1 case.

Lemma B.1. If 01,05, ag, a1, as are polyhomogeneous functions on a mwe M and p € OM are such
that 01,02 are real-valued, ay € C*°(M;C*), a1 extends continuously to a neighborhood of p, and
this extension vanishes at p, and eiel(ao +ay) = €%2qy, then, near p, the difference 61 — 0y is, in a
neighborhood of p, conormal at each adjacent boundary hypersurface to every negative order. |

Proof. The function ag + a; is nonvanishing near p, so b = (ag + a1)~"! is well-defined there, and

a straightforward argument shows that b is polyhomogeneous, with a continuous extension to the
boundary of M near p. Let b be a globally polyhomogeneous function extending continuously to all
of OM and satisfying b = b near p. Then,

171 = pay, (225)

near p. Since ag is polyhomogeneous, and since ag + a; is uniformly bounded near p, it must be
that ag extends continuously to a neighborhood of p. So, the right-hand side of eq. (225) extends
continuously to a neighborhood of p.

Moreover, the extension of as to the boundary must be nonvanishing near p, and likewise for b,
so bag is nonvanishing near p. This implies that the difference

01 — 0y = —ilog(baz) (226)
is, near p, polyhomogeneous with all index sets in {z € C: Rz > 0} x N, which is equivalent to the
desired result. O

The elementary proof is omitted for brevity’s sake.
Consider now the Gaussian wavepacket

G(t,x) ! ( v ) (227)
= ——exp| — )
T Arai P\ T 2

This solves the free Schrodinger equation in 1D with Schwartz initial data.

Proposition B.2. The Gaussian wavepacket above is not of the form ae for 0 real-valued and
a,d polyhomogeneous on M /unf or M/dilF. [

Below, we will use the same names to refer to faces of the M/f as the corresponding faces in M.
Proof sketch. First, suppose, to the contrary, that G = e!*Gy for some ¢, Gy polyhomogeneous on
M /nf. Looking at the ¢ — 07 behavior of G in compact subsets worth of 7, it must be the case that

* the index set & of ¢ at X can be taken to contain no terms (j,k) € C x N with j < 0.

Near the corner ¥ NdilF C M /nf, we can use p = 1/r and s = t/r as a coordinate system. In terms
of these coordinates,

pl/2 1
G=-Fr_—__ ). 298
Jp ¥ 2is P ( P 2isp) (228)
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For s > 0, this has the form p'/2 exp(i/(2sp))C®(RS x [0,00),;C*) near p = 0. Consequently,
applying Lemma B.1,

¢ = 1/(2sp) mod A°~ (R} x [0,00),,). (229)
But, for no index set &y can p € A2 (([0,00)s x [0,00),) be consistent with eq. (229), since this
forces (—1,0) € &, in conflict with our earlier observation (). So, the supposition that G has the
stated form on M /nf is not tenable.

We now turn to M/dilF. Since (1 + 2it)~'/2 is polyhomogeneous on C, and therefore on M /dilF,
in order to prove the desired result it suffices to prove that we do not have (1 + 2it)'/2G = ¢#q for ¢
real valued and a, ¢ polyhomogeneous on M /dilF. Near the corner nf NparF, we can use coordinates
0 =1/t'/2 and 7 = t/r?. In terms of these coordinates, (1 4 2it)'/2G = exp(—1/7(0* + 2i)). So,
for o > 0, (1 4 2it)"/2G is Schwartz as 7 — 0t. It follows that a is Schwartz at nf, however,
restricting to o = 0, (1 + 2it)'/2G has magnitude 1, and therefore so does a. This contradicts the
joint expandability of a at the corner, and therefore polyhomogeneity.
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