
ASYMPTOTICS IN ALL REGIMES FOR THE SCHRÖDINGER EQUATION
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SHI-ZHUO LOOI AND ETHAN SUSSMAN

Abstract. Using the recent analysis of the output of the low-energy resolvent of Schrödinger
operators on asymptotically conic manifolds (including Euclidean space) when the potential is
short-range, we produce asymptotic expansions for the solutions of the initial-value problem for
the Schrödinger equation, assuming Schwartz initial data. Asymptotics are calculated in all joint
large-radii large-time regimes, which correspond to the boundary hypersurfaces of a particular
compactification of spacetime.
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1. Introduction

In recent works [Hin22; LS], wave propagation on stationary, asymptotically flat spacetimes
has been analyzed using Vasy’s spectral methods [Vas21a; Vas21b], which involve low-energy
resolvent estimates for Schrödinger operators (i.e. for the “time-independent” Schrödinger equation,
in physicists’ preferred terminology) and are closely related to earlier work of Guillarmou–Hassell–
Sikora [GH08; GH09; GHS13], with numerous precursors in the wider literature. These tools apply
to Schrödinger operators with short range potentials, which in [Hin22; LS] means decaying cubically
or faster. The quadratic case is similar, requiring only minor modifications. Long range potentials
(e.g. any Coulomb-like potential, decaying like ∼ r−1) require serious modifications which we do not
discuss here.

We focus on the 3-dimensional case of most physical interest, for which the spectral methods are
most developed. Let (X, g) denote an asymptotically conic manifold [Mel94; Mel95] (see below), and
let ρ denote a boundary-defining-function on X. Let S(X) =

⋂
k∈N ρ

kC∞(X) denote the Fréchet
space of Schwartz functions on X. The reader is invited to consider the case of exact Euclidean
space. Then,

X = R3 = R3 ∪∞S2, (1)
which is the compactification of R3 constructed by adding on the 2-sphere ∞S2 at infinity, and g is
the exact Euclidean metric. The results below are novel even in this case. Here, a convenient choice
of bdf is ρ = 1/⟨r⟩, where r is the Euclidean radial coordinate and ⟨r⟩ = (1 + r2)1/2 is the Japanese
bracket. Also, S(X) = S(R3) is just the usual set of Schwartz functions on 3-dimensional Euclidean
space. Because of our familiarity with the Euclidean case, even when working with general X
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it is usually easier to use the coordinate r(x) = ρ(x)−1 ∈ C∞(X◦) in place of the bdf ρ(x). For
example, g is given to leading order (with respect to some collar neighborhood of the boundary) by
dr2 + r−2g∂X for g∂X a Riemannian metric on X. This is the metric of an exact cone. However, it
should be kept in mind that, in the exact Euclidean case, r(x) = ⟨r⟩−1, where r is the Euclidean
radial coordinate. This slightly overloaded notation should not cause confusion. Whenever we use
‘r’ below, we mean ρ(x)−1.

In this paper, we apply Vasy–Hintz–Looi’s low-energy toolkit to the Schrödinger initial value
problem {

−i∂tu = ∆gu+ iA · ∇gu+ (V + 2−1i∇g ·A)u,
u(0, x) = f(x),

(IVP)

posed on the manifold Rt ×X◦, where f ∈ S(X),
• ∆g is the positive semidefinite Laplace–Beltrami operator,
• ∇g : C∞(X◦)→ V(X◦) is the gradient operator which is anti-self-adjoint with respect to

the L2(X, g)-inner product, A · ∇gu(x) = g(A(x),∇gu(x)), and ∇g· is the corresponding
divergence operator, and
• A ∈ r−2V(X;R), and V ∈ r−3C∞(X;R).

Note that the coefficients of the PDE are static, i.e. constant in the time coordinate t. Moreover,
the differential operator

P = ∆g + iA · ∇g + 2−1i∇g ·A+ V ∈ Diff2(X◦) (2)

is formally symmetric with respect to the L2(X, g)-inner product, ⟨ϕ, ψ⟩L2(X,g) =
∫
X ϕ

∗ψ dVolg.
This enables the application of spectral-theoretic tools. We also make the following assumptions, as
in Hintz’s work:

(I) (No zero energy resonance or bound state.) The operator P has trivial nullspace acting on
r−1C∞(X).

(II) The high energy estimates stated in [Hin22, Def. 2.9] apply.
In [Hin22, Def. 2.8], (I) is stated using the conormal space A1(X) instead. In the present context,
these formulations are equivalent. The high energy estimates apply whenever the metric g is
non-trapping or exhibits only normally hyperbolic trapping. In particular, (II) holds in the exact
Euclidean case or in any sufficiently small perturbation thereof.

Theorem A. The solution of the initial-value problem eq. (IVP) is of exponential-polyhomogeneous
type on the compactification M ←↩ (0,∞)t ×X given by the iterated blowup

M = [[[0,∞]t ×X; {∞} × ∂X];β−1({∞} × ∂X) ∩ cl β−1({∞} ×X)], (3)

where β : [[0,∞]t ×X; {∞} × ∂X]→ [0,∞]t ×X is the blowdown map.

We will explain the construction of M in more detail below. For now, see Figure 1, which
describes M near β−1([0,∞]× ∂X) via an atlas. Also, see the discussion below for the definition of
the notion of exponential-polyhomogeneity appearing in the theorem. It is a term used to state that
asymptotic expansions hold without specifying the forms of those asymptotic expansions. More
precise theorems (in particular, Theorem B) appear later.

As far as we are aware, Theorem A should hold in any number of dimensions, not just d = 3,
and for any A ∈ r−1V(X) and V ∈ r−2C∞(X), regardless of whether or not there is a zero energy
resonance or bound state. Our techniques are quite general, but – as described below – the spectral
side has yet to be developed sufficiently for our techniques to apply. E.g. we cite [Hin22; LS] as a
black box, but these works are restricted to the d = 3 case. Extending them provides an avenue for
further work.
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Figure 1. The mwc M ⊃ Rt×X, with an atlas of coordinate charts near clM{ρ = 0}
depicted. Here, r = 1/ρ. The Cauchy hypersurface clM{t = 0} is Σ. Note that some
of the faces appear disconnected only because the drawing is in 1+1D.

1.1. More precise form of the main theorem. For a function v ∈ C∞(M◦) to be of exponential-
polyhomogeneous type on the manifold-with-corners (mwc) M means that v can be written as a finite
sum v =

∑N
n=1 e

iθnvn for θn, vn ∈ C∞(M◦) polyhomogeneous functions on M . Polyhomogeneity
is a generalization of smoothness due to Melrose [Mel92; Mel93] – and used widely since – which
allows bounded powers of logarithms to appear in Taylor series. Such “generalized Taylor series”
are called polyhomogeneous expansions. The specific combinations of logarithms and powers allowed
are specified by an index set Ef ⊂ C×N at each boundary hypersurface f ⊂M of M . (An index set
consists of a pair of numbers that are used to characterize the singularities of a distribution or a
solution to a PDE.) Schematically, a polyhomogeneous function v : M◦ → C with index set Ef at f
admits the polyhomogeneous expansion

v ∼
∑

(j,k)∈Ef

vf;j,kϱ
j
f logk(ϱf) (4)

at f, where ϱf ∈ C∞(M) is a boundary-defining-function of f and the vf;j,k ∈ C∞(f◦) are polyhomo-
geneous functions on f, which itself is a mwc of one lower dimension. Polyhomogeneity at corners
guarantees the existence of joint asymptotic expansions there. This is equivalent to saying that
the polyhomogeneous expansions at adjacent boundary hypersurfaces are compatible. Concretely,
this means that (vf;j,k)f∩F;J,K = (vF;J,K)f∩F;j,k for any adjacent boundary hypersurfaces f,F and
(j, k) ∈ Ef , (J,K) ∈ EF. So, the notion of exponential-polyhomogeneous type is a formalization of
the notion of admitting a full atlas of (term-by-term differentiable, in all directions) asymptotic
expansions in terms of elementary functions. If M is compact, then, in some sense, exponential-
polyhomogeneity means that our set of asymptotic expansions is complete. (The opposite extreme
is when M has no boundary, in which case exponential-polyhomogeneity just means smoothness
and therefore says nothing regarding asymptotics.)

We refer to the cited works [Mel93; Mel92][Gri01][Hin22][She22] for further discussion of polyho-
mogeneity and the function spaces capturing it, as well as for the related notion of conormality,
which e.g. features in the assumptions of the theorem. Our notational conventions mostly follow
[Hin22; LS] and are explained as needed. In particular, “A(E,α)” is used to refer to partially
polyhomogeneous behavior with index set E and a conormal error of order α ∈ R, and “AE” means
purely polyhomogeneous behavior. One abbreviation used throughout is that, for j ∈ R and k ∈ N,
“(j, k)” means the index set {(j + n, κ) ∈ C× N : n ∈ N, κ ≤ k}. Also, ‘∞’ means empty index set,
i.e. Schwartz behavior. For instance, A∞(X) = S(X), and A(j,0)(X) = r−jC∞(X).

So, Theorem A states that solutions of the Schrödinger equation (with Schwartz initial data) are
governed by four asymptotic regimes (five if we include the Cauchy hypersurface Σ = {t = 0} ⊂M)
one regime for each of the four boundary hypersurfaces nf,dilF,parF, kf ⊂ M of the mwc M
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appearing in the theorem. A more precise version of the theorem – which, when combined with
Proposition 1.1, which studies the sum over eigenfunctions in eq. (5), yields Theorem A – is:

Theorem B. Let ϕ1, · · · , ϕN ∈ S(X) denote the (automatically Schwartz) eigenfunctions of P ,
so that Pϕn = −Enϕn for some En > 0. Let f ∈ S(X). If u ∈ C∞([0,∞)t × X◦) solves the
initial-value problem eq. (IVP), and if χ ∈ C∞

c (R) satisfies 0 /∈ supp(1− χ), then

u(t, x) = exp
[
− i(1− χ(t))

4tρ(x)2

] uphg(t, x)
(t+ iϵ)3/2 +

N∑
n=1

e−iEntϕn(x)⟨ϕn, f⟩L2(X,g) (5)

for uphg = uphg[χ] polyhomogeneous on M , with uphg ∈ A(0,0)∪(1/2,0)∪E,(0,0)∪F ,(0,0),∞,(0,0)(M) for
some index sets E ⊂ (2−1N≥2) × N, F ⊂ N≥1 × N, where the index sets are specified at kf, parF,
dilF, nf, and Σ, respectively. So, the index set at kf is (0, 0)∪ E, the index set at parF is (0, 0)∪F ,
the index set at nf is empty, and the remaining index sets are (0, 0).

Moreover, the leading order behavior kf ∪ parF has the following form: for some w ∈ C∞(X) and
polyhomogeneous v ∈ A1−(X).

uphg(t, x)− χ(r/t)w(x)− χ(r2/t)v(x) ∈ A(1/2,0)∪E,F ,(0,0),∞,(0,0)(M), (6)
The restriction w|∂X is constant, being of the form Λ(f) for some linear functional Λ : S(X)→ C.
In fact, w(x) = −

√
πirP−1f , where P−1f ∈ r−1C∞(X) is the unique solution to Pw = f in A1(X),

and letting
L = −i d

dσMexp(−iσr)PMexp(iσr)

∣∣∣
σ=0
∈ Diff1(X◦), (7)

in which M• : w 7→ •w denotes a multiplication operator, the function v is given by v(x) =√
πiP−1(−r+LP−1)f . The functional Λ is given by Λ(f) = ⟨f, u(0)⟩L2(X,g) for some u(0) ∈ C∞(X)

constant at ∂X.

Remark. Under the stated assumptions, it is the case [Hin22, §2] that we have a well-defined
one-sided inverse P−1 : A2+α(X) → Aα−(X) for any α ∈ (0, 1), where Aα−(X) =

⋂
ϵ>0Aα−ϵ(X).

So, P−1f ∈ A1−(X). A standard argument lets us upgrade this to P−1f ∈ ρC∞(X). Because L,
which is given by

L = −2r−1(r∂r + 1) mod r−2 Diff1
b(X),

(cf. [Hin22, below eq. 1.11], our L being related to L(σ) there by L = −iL′(σ)|σ=0) satisfies
Lρ ∈ ρ3C∞(X), it is the case that LP−1f ∈ ρ3C∞(X) and therefore that P−1LP−1f ∈ A1−(X).
This will not in general be smooth – but it can be shown that P−1LP−1f is still polyhomogeneous.
This justifies the description of the profiles v, w in Theorem B. We refer to [Hin22, §3] for the details,
which also include the large r asymptotics of w.

For the reader uncomfortable with the notion of polyhomogeneity, the following L∞-based
corollary follows immediately from the theorem:

Corollary. For any K ∈ N,

u(t, x) = exp
[
− i(1− χ(t))

4tρ(x)2

]χ(r/t)w(x) + χ(r2/t)v(x)
(t+ iϵ)3/2 +

N∑
n=1

e−iEntϕn(x)⟨ϕn, f⟩L2(X,g)

+O
( 1
⟨t⟩3/2

〈r
t

〉−K〈 t
r

〉−1/2)
. (8)

The big-O term in eq. (8), which is bounded above by O(r1/2/t2), is suppressed relative to the other
terms as t→∞ in t≫ r. That is, for any c, ϵ > 0 the big-O term is o(t−3/2) if r = o(t). Moreover,
for any ε > 0,

u(t, x) = exp
[
− i(1− χ(t))

4tρ(x)2

] Λ(f)
(t+ iϵ)3/2 +O

(〈 rt

t+ r2

〉−4+ε)
, (9)
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The big-O term in eq. (9) suppressed relative to the other terms for t ∼ r2. That is, if cr2 < t < Cr2

for some 0 < c < C, then the big-O term is O(t−2+ε/2) = O(r−4+ε). ■□

Remark. One minor improvement of Theorem B is that the index sets E ,F can be related to the
polynomial decay rate of the coefficients of P − ∆g0 for g0 the exactly conic metric on which g
is modeled. The larger the degree, the smaller these index sets can be taken. This improvement
follows from Theorem C below and a corresponding improvement of [LS].

The proof below is essentially constructive, in the sense that it yields an algorithm for computing
the asymptotic expansions of uphg in all possible regimes, not just kf ∪ parF, and not just leading
order. The algorithm can be extracted from the proof below. It produces expansions on M in terms
of the coefficients of the expansions in [LS]. Insofar as these coefficients are explicit, so too are the
asymptotics on M .

Remark. Since [LS] is as-of-yet unpublished, it is worth mentioning that if [Hin22, Thm. 3.1] is used
instead of [LS], then one gets Theorem B except with only conormal estimates of the remainder in
eq. (6). In particular, the L∞-based corollary above can still be deduced. Moreover, this applies
even if V,A merely satisfy symbolic estimates (so, do not necessarily extend smoothly to ∂X), except
in this case w, v are only known to be partially polyhomogeneous.

1.2. Geometric setup and spacetime compactification. Concretely, that (X, g) be an asymp-
totically conic manifold means that X is a smooth manifold-with-boundary and g is a Riemannian
metric on X◦ satisfying the following: for some ρ̄ > 0 and embedding ι : [0, ρ̄]ρ× ∂X → X satisfying
ι(0,−) = id∂X (that is, a collar neighborhood of the boundary), and for some Riemannian metric
g∂X on ∂X, the pullback ι∗g has the form

ι∗g − ρ−4dρ2 − ρ−2g∂X ∈ ρC∞(Sym scT ∗([0, ρ̄)ρ × ∂X)), (10)

where scT ∗X is the vector bundle over X whose smooth sections are given by C∞(X)ρ−2dρ,
C∞(X)ρ−1ω for ω ∈ Ω1(∂X). That is, g differs from the exactly conic metric ρ−4dρ2 + ρ−2g∂X by
suitably decaying terms. In the exact Euclidean case, g∂X is the standard metric (or any scalar
multiple thereof) on the 2-sphere at infinity. The first component of ι−1 serves as a boundary-
defining-function (bdf). That is, there exists a bdf ρ ∈ C∞(X; [0,∞)) such that ρ(ι(ϱ, θ)) = ϱ for
all ϱ ∈ [0, ρ̄]. That this is a bdf means that ρ−1({0}) = ∂X and that dρ is nonvanishing on ∂X.
Going forwards, we will identify [0, ρ̄]ρ × ∂X with its image under ι. We will use the notation
Ẋ[R] = [0, R−1]ρ × ∂Xθ, and this can be considered as a subset of X as long as R > ρ̄−1. The
subscripts here signal preferred variable names used to parametrize each factor, and similar notation
is used throughout below.

We now describe the construction of M in a bit more detail. As a starting point, let C denote
the “cylinder” C = [0,∞]t ×X. Consider the mwc

M/parF = [C; {∞} × ∂X] = C◦ ∪ Σ ∪ nf ∪ dilF0 ∪ kf0 (11)

resulting from performing a polar blowup of the corner {∞} × ∂X ⊂ C of C. Here, Σ = {t = 0},
and the remaining three boundary hypersurfaces nf,dilF0, kf0 are the lift of [0,∞]t × ∂X, the front
face of the blowup, and the lift of {∞} ×X, respectively. Then, M can be constructed in terms
of M/parF as M = [M/parF; dilF0 ∩ kf0], which is the result of performing a polar blowup of the
corner dilF0 ∩ kf0 of [C; {∞} × ∂X]. The construction of M is depicted in Figure 2. The notation
M/parF indicates that this mwc is, as a topological space, the quotient resulting from collapsing
parF.

There are a number of other compactifications of R+
t ×X◦ via mwcs used in this paper. In the

next subsection, we use C1 = [0,∞)t/r2 ×X. We refer to the boundary hypersurfaces {t/r2 =∞},
{r =∞}, and {t = 0} of this mwc as kf, parF1, Σ1 respectively. As the notation suggests, a small
neighborhood of kf in C1 is identifiable with a neighborhood of kf in M , and the interiors of parF1,Σ1
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are identifiable with their counterparts in parF,Σ, respectively. An alternative construction of M
involves blowing up the lower corner of C1 and then blowing up the new lower corner of the resultant
mwc, which we call M/nf.

Another compactification of note is M/dilF, which is the result of blowing down dilF in M . In
§B, we address the question as to whether Theorem B holds on M/f for f ∈ {nf, dilF}. The upshot
(which holds also for parF, but requires a different argument) is that Theorem B fails on both.
(A similar analysis also applies to Theorem A, but we do not present it.) In the Euclidean case,
we can also define M/kf using the coordinates 1/t ∈ [0,∞), xj/t1/2 ∈ R near the blown down
locus, but if bound states are present then it can be immediately concluded from Theorem B that
exponential-polyhomogeneity does not hold on this compactification. So, in some sense, the mwc M
is the simplest mwc on which solutions of the Schrödinger equation with Schwartz initial data have
the desired form. However, it is expected that, when g is a Schwartz perturbation of an exactly
conic metric and A, V are Schwartz, then the theorems above hold, mutatis mutandis, with M/parF
in place of M . This is expected to follow from the collapsibility, in this case, of the transitional
asymptotic regime in [Hin22; LS] vis-à-vis exponential-polyhomogeneity.

C

Σ = {t = 0}

{t =∞}

[0,∞]t × ∂X

1/r
t

1/r
1/t

{∞} × ∂X

Σ

[C; {∞} × ∂X]
nf

dilF0

kf0

1/r
t

t/r

1/t

1/r
r/t

dilF0 ∩ kf0

Figure 2. The cylinder C = [0,∞]t×X and the blowup M/parF = [C; {∞}× ∂X]
constructed in the process of constructing M . The submanifolds to be blown up are
depicted in blue and green.

1.3. Outline of proof. Consider the differential operator P = ∆g + iA · ∇+ 2−1i∇g ·A+ V . The
hypotheses are such that P : C∞

c (X◦)→ L2(X, g) defines an essentially self-adjoint operator. The
closure is the map H2(X, g)→ L2(X, g) given by restricting P : D′(X)→ D′(X), defined in the sense
of distributions, to the L2-based Sobolev space H2(X, g). The spectrum σ(P ) = σpp(P ) ∪ σac(P ) of
P consists of finitely many negative eigenvalues and a continuous spectrum on the whole nonnegative
real axis, so σpp(P ) = {−E1, · · · ,−EN} for some 0 < EN ≤ · · · ≤ E1, and σac(P ) = [0,∞). Note
the absence of embedded eigenvalues (recall that we are assuming the nonexistence of a bound state
at zero energy) or of singular continuous spectrum. That EN ̸= 0 is the assumption that no bound
state exists at zero energy. Here N ∈ N, with N = 0 corresponding to the absence of pure-point
spectrum. Let Π : Borel(R)→ L(L2(X, g)) denote the spectral measure of P . So, for each Borel set
S ⊂ R, Π(S) is a projection operator on L2(X).

Via the functional calculus, there exists a 1-parameter subgroup U : t 7→ U(t) ∈ U(L2(X, g)) such
that the solution u(t, x) : Rt ×Xx → C to eq. (IVP) is given by u(t, x) = (U(t)f)(x), and U(t) is
given by

U(t) =
∫ ∞

−∞
eiEt dΠ(E), (12)

this integral being well-defined e.g. when applied to an element of S(X).
For each n ∈ {0, . . . , N}, let ϕn be an L2(X, g)-normalized bound state with Pϕn = Enϕn, such

that ϕ0, · · · , ϕN are orthogonal. Via a standard elliptic estimate – e.g. ellipticity in Melrose’s
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Diffsc(X) [Mel94] – we have ϕn ∈ S(X) for each n. Let

Πpp(E) =
N∑
n=1

δ(E − En)ϕn⟨ϕn,−⟩ (13)

be the spectral projection onto the pure-point spectrum. Stone’s theorem says that the spectral
projection onto the continuous spectrum, Πac(E) = Π(E)− Πpp(E), which is supported on [0,∞)E ,
has Radon–Nikodym derivative given by

dΠac(E) = 1
2πi(R(E + i0)−R(E − i0)), (14)

where, for each E /∈ σ(P ), R(E) : L2(X, g)→ H2(X, g) denotes the resolvent R(E) = (P − E)−1,
and where, for each E > 0, R(E ± i0) = limϵ→0+ R(E ± iϵ), these limits existing in the strong
operator topology.

Combining eq. (14) and eq. (13),

U(t) =
N∑
n=0

e−iEntϕn⟨ϕn,−⟩+ 1
2πi

∫ ∞

0
eiEt(R(E + i0)−R(E − i0)) dE, (15)

the integral being absolute convergent in the strong sense. In other words, for any f ∈ S(X),

(U(t)f)(x) =
N∑
n=0

e−iEntϕn(x)⟨ϕn, f⟩+ 1
2πi

∫ ∞

0
eiEt(R(E + i0)−R(E − i0))f(x) dE, (16)

where, for each x ∈ X◦, the integral on the second line is absolutely convergent.
The terms on the first sum in eq. (16) are easily analyzed — see Proposition 1.1. The crux of our

problem is to analyze the oscillatory integral I(t, x) = I+(t, x)− I−(t, x), where

I±(t, x) =
∫ ∞

0
eiEtR(E ± i0)f(x) dE = 2

∫ ∞

0
eiσ

2tR(σ2 ± i0)f(x)σ dσ. (17)

The key input, coming from [Vas21a; Vas21b][Hin22; LS] is a detailed analysis of the output
e∓iσrR(σ2±i0)e±iσrf(x) : R+

σ×Xx → C of the “conjugated (limiting) resolvent” e∓iσrR(σ2±i0)e±iσr

for f ∈ S(X). Indeed, we have the following result. Let Xsp
res = [[0,∞]σ×X; {∞}×∂X]←↩ R+

σ ×X.
Label its faces zf, tf,bf,∞f, as in Figure 3. Then:

Theorem ([Hin22; LS]). For any f(x) ∈ C∞([0,∞)σ;S(X)), there exist u0 ∈ ρC∞(X) and
u1 ∈ A(1,1)(X) such that

e∓iσrR(σ2 ± i0)e±iσrf(σ, x) = u0(x)± iσu1(x) + ϕ±(σ, x) = φ±(σ, x) (18)

for ϕ±(σ, x) ∈ A(2,1)∪E0,F0,(1,0)
loc (Xsp

res\∞f) and φ±(σ, x) ∈ A(0,0)∪(2,1)∪E0,(1,0)∪F0,(0,0)
loc (Xsp

res\∞f) for
some index sets E0 ⊆ N≥3 × N and F0 ⊆ N≥2 × N. Here, the index sets are specified at the faces
zf, tf,bf.

In fact, u0(x) = P−1f(0, x) and u1 = −P−1LP−1f(0, x) ∓ iP−1f ′(0, x), where f ′(σ, x) =
∂σf

′(σ, x) and L is as above.

We supplement this with the usual high-energy bounds, namely that if f(x) ∈ S(X), then

e∓iσrR(σ2 ± i0)f(x) ∈ A(1,0),∞
loc ((0,∞]σ ×Xx), (19)

where the ‘∞’ denotes Schwartz behavior as σ → ∞. Indeed, if we are given f ∈ S(X), then we
write e∓iσrR(σ2 ± i0)f(x) = e∓iσrR(σ2 ± i0)e±iσrf̃(σ, x) for f̃(σ, x) ∈ C∞([0,∞)σ;S(X)) given by
f̃(σ, x) = e∓iσrf(x).
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In order to understand the cancellations between I±(t, x) in I(t, x) = I+(t, x) − I−(t, x), it is
useful to note that the expansion of R(σ2 ± i0)f(x) has the form

R(σ2 ± i0)f(x) ∼
∑

(j,k)∈(0,0)∪E0

(±iσ)j logk(±iσ)ϕj,k(x) (20)

for some ϕj,k ∈ C∞(zf◦), assuming that (0, 0) ∈ E0, where the key point is that ϕj,k does not depend
on the choice of sign. So, in the expansion of the spectral projection (R(σ2 + i0)−R(σ2 − i0))f(x),
all of the terms with even j up to the first logarithmic term cancel. In particular,

(R(σ2 + i0)−R(σ2 − i0))f(x) ∼ 2iσϕ1,0(x)− πiσ2ϕ2,1 +
∑

(j,k)∈E0

σj logk(σ)ϕ̃j,k(x) (21)

for some ϕ̃j,k ∈ C∞(zf◦). So, combining the theorem of Hintz–Looi with eq. (19), we have:

Corollary. Let f ∈ S(X). For any ϵ > 0, there exists ϕeven(σ, x) ∈ A(2,1)∪E0,F0,∞,∞
loc (Xsp

res) such that

R(σ2 ± i0)f(x) = e±iσr−ϵσ2(u0(x)± iσu1(x)) + ϕeven(σ, x) + e±iσrϕ±(σ, x) (22)

for some ϕ± = ϕ±[ϵ] ∈ A(2,0)∪E0,F0,(1,1),∞
loc (Xsp

res) (differing from the ϕ± in eq. (18)), where the
final ‘∞’ means Schwartz behavior as σ → ∞. Moreover, u0(x) = P−1f̃(0, x) = P−1f(x) and
u1(x) = −P−1LP−1f̃(0, x)∓ iP−1f̃ ′(0, x) = −P−1LP−1f(x)− P−1(rf(x)). ■□

Another version of our main theorem, which we will also call our “main lemma,” is:

Theorem C (Main lemma). Let E ,F ,G denote index sets and α, β, γ ∈ R∪ {∞}, and suppose that
min{α,ℜj : (j, k) ∈ E} > −2. Let ϕ ∈ A(E,α),(F ,β),(G,γ),∞(Xsp

res). Then, letting

I±[ϕ](t, x) = 2
∫ ∞

0
eiσ

2t±iσrϕ(σ, x)σ dσ : Rt ×Xx → C, (23)

we have I+[ϕ] ∈ A(E/2+1,α/2+1),(F+2,β+2),(0,0)(C1), and for any χ ∈ C∞
c (R) such that 0 /∈ supp(1−χ),

a decomposition of I−[ϕ] of the form I−[ϕ] = exp(−i(1 − χ(t))/4tρ2)Iosc[ϕ] + I−,phg[ϕ] for some
functions

I−,phg[ϕ] ∈ A(E/2+1,α/2+1),(F+2,β+2),(0,0)(C1) (24)

and Iosc[ϕ] ∈ A(E/2+1,α+1),(F/2+2,β+2),(G+1/2,γ+1/2),∞,(0,0)(M). Here, the index sets on C1 are speci-
fied in the order at kf, parF1, and Σ1, respectively.

Together with eq. (16) and eq. (22), Theorem C yields the theorems above. Indeed, the integral I
above is given by I(t, x) = I+[φ+]− I−[φ−] where

φ± ∈ A(1,0)∪(2,1)∪E0,(1,0)∪F0,(0,0),∞(Xsp
res) (25)

are as in eq. (18). Each I±[φ±] has the form described by our main lemma, Theorem C, and it turns
out that the combination Iphg = I+[φ] − I−,phg[φ] must be Schwartz at dilF ∪ nf. We provide a
proof via microlocal analysis in §A, but the simplest way to see this is that each term in the Taylor
series of Iphg at Σ differs from that of the solution u(t, x) by a Schwartz function (coming from Iosc
and the sum over bound states in eq. (5)). But, the initial data is Schwartz, eq. (IVP) implies that
each term in the Taylor series of u(t, x) at Σ is Schwartz. So, each term in the expansion of Iphg at
Σ is Schwartz. Since Iphg is polyhomogeneous already on C1, this implies Schwartzness at dilF ∪ nf
when viewed as a function on M . So, in fact

eir
2(1−χ(t))/4tI(t, x) ∈ A(1,0)∪(1+E0/2),(3,0)∪(F0+2),(3/2,0),∞,(0,0)(M)

⊆ (t+ iϵ)−3/2A(−1/2,0)∪E,(0,0)∪F ,(0,0),∞,(0,0)(M) (26)
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where E = (1, 0) ∪ (−1/2 + E0/2) ⊂ (2−1N≥2) × N and F = F0 − 1 ⊂ N≥1 × N. So, combining
eq. (16) and eq. (26), we get the desired eq. (5) for

uphg ∈ A(−1/2,0)∪E,(0,0)∪F ,(0,0),∞,(0,0)(M) (27)

defined by uphg = (t+ iϵ)3/2eir
2(1−χ(t))/4tI(t, x). Theorem B requires a slightly more refined analysis

of uphg. To this end, write

I(t, x) = 2
∫ ∞

−∞
eiσ

2t+iσr−ϵσ2(u0(x) + iσu1(x))σ dσ + I+[ϕ+]− I−[ϕ−], (28)

where ϕ± ∈ A(2,0)∪E0,F0,(1,1),∞(Xsp
res) are as in eq. (22). Note that the ϕeven term in eq. (22) does

not contribute. The first term in eq. (28) is explicitly computable:

exp
( ir2

4(t+ iϵ)
) ∫ ∞

−∞
eiσ

2t+iσr−ϵσ2(u0(x) + iσu1(x))σ dσ = −
√
πi
[ ru0(x)
2(t+ iϵ)3/2

+ i(r2 + 2it− 2ϵ)u1(x)
4(t+ iϵ)5/2

]
∈ (t+ iϵ)−3/2A(0,0),(0,0)∪(1,1),(0,1),(−1,1),(0,0)(M). (29)

Applying Theorem C to I[ϕ] = I+[ϕ+] − I−[ϕ−], the conclusion is that I[ϕ] = exp(−i(1 −
χ(t))/4tρ2)Iosc[ϕ] + Iphg[ϕ] for

Iosc[ϕ] ∈ A(2,0)∪(1+E0/2),F0+2,(3/2,1),∞,(0,0)(M) = (t+ iϵ)−3/2A(1/2,0)∪E,F ,(0,1),∞,(0,0)(M) (30)
and some Iphg[ϕ] ∈ AE,F ,(0,0)(C1). Combining eq. (28), eq. (29), and eq. (30), the result is, assuming
without loss of generality that (1, 1) ∈ F , that uphg ∈ A(0,0)∪(1/2,0)∪E,(0,0)∪F ,(0,1),(−1,1),(0,0)(M).
Combining this with eq. (27), we get

uphg ∈ A(0,0)∪(1/2,0)∪E,(0,0)∪F ,(0,0),∞,(0,0)(M), (31)
which was what was claimed in Theorem B. In order to complete the deduction of that theorem, we
need to verify that uphg has the claimed behavior at parF ∪ kf. Combining eq. (28), eq. (29), and
eq. (30),

uphg = −
√
πi exp

( i(1− χ(t))r2

4t − ir2

4(t+ iϵ)
)[
ru0(x) + i(r2 + 2it− 2ϵ)u1(x)

2(t+ iϵ)
]

+A(1/2,0)∪E,F ,(0,1),(−1,1),(0,0)(M). (32)
This can be simplified using that (I)

r2(t+ iϵ)−1u1(x) ∈ A(−1,0),(−1,1)(C) ⊆ AE,F ,(0,1),(−1,1),(0,0)(M), (33)
(II) (1−χ(r/t))ru0(x) ∈ A∞,∞,(0,0),(0,0),(0,0)(M) and (1−χ(r2/t))u1(x) ∈ A∞,(1,1),(1,1),(1,1),(0,0)(M),
and (III) the exponential differs in eq. (32) from 1 only in a neighborhood of Σ disjoint from all
boundary hypersurfaces of M besides nf, so

uphg = −
√
πi(χ(r/t)ru0 − χ(r2/t)u1(x)) +A(1/2,0)∪E,F ,(0,1),(−1,1),(0,0)(M). (34)

Since χ(r/t)ru0(x) ∈ A(0,0),(0,0),(0,0),∞,∞(M) and χ(r2/t)u1(x) ∈ A(0,0),(1,1),∞,∞,∞(M), combining
this with eq. (31) shows that the error term in eq. (34) lies in

A(1/2,0)∪E,F ,(0,1),(−1,1),(0,0)(M) ∩ (A(0,0)∪(1/2,0)∪E,(0,0)∪F ,(0,0),∞,(0,0)(M) ∪ A(0,0),(0,0),(0,0),∞,∞(M)

∪ A(0,0),(1,1),∞,∞,∞(M)) = A(1/2,0)∪E,F ,(0,0),∞,(0,0)(M); (35)
for each boundary hypersurface. In summary, we have improved eq. (34) to eq. (6), which completes
the deduction of Theorem B from Theorem C.

So, we can regard the main theorems in this paper as corollaries of the “main lemma” Theorem C,
when the latter is combined with the Hintz–Looi theorem cited above and a bit of computation
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Figure 3. The mwc Xsp
res, with an atlas of coordinate charts (left), and the supports

of the cutoffs χlow, χtf∩bf , χhigh (right). Since E = σ2, “high” means high energy,
and “low” means low energy.

(which, it should be mentioned, is not even necessary if a less sharp theorem is desired). We will
prove Theorem C over the course of three sections, §2, §4, §3. The idea is to write

I±[ϕ] = I±[χlowϕ] + I±[χtf∩bfϕ] + I±[χhighϕ] (36)
for χlow, χtf∩bf , χhigh ∈ C∞(Xsp

res) a partition of unity on Xsp
res such that the support of χlow is disjoint

from bf ∪ ∞f, hence supported at low energies and radii, the support of χtf∩bf is disjoint from
zf ∪∞f, and the support of χhigh is disjoint from zf ∪ tf, hence supported at high energy. The low
energy contribution I±[χlowϕ] is analyzed in §2, the high energy contribution I±[χhighϕ] is analyzed
in §3, and the final contribution I±[χtf∩bfϕ] is analyzed in §4.

Below, we compute, for all ϕ± as in Theorem C, full asymptotic expansions of Iphg[ϕ] at dilF∪ nf.
It is not always the case that Iphg[ϕ] is Schwartz there. It may therefore seem a bit miraculous
that, as stated above, Schwartzness does hold when ϕ±(σ, x) = R(σ2 ± i0)f(x) for f ∈ S(X). In
principle, it should be possible to prove this fact by verifying that all of the terms in the expansions
below vanish at dilF ∪ nf. We present an alternative argument in §A based on microlocal tools.
These tools are based on spacetime Fourier transforms, whereas we only work with the Fourier
transform in time elsewhere in this paper. One takeaway: that which is transparent when working
with spacetime methods may be hidden when working with spectral methods, and vice versa.

1.4. Bound states. The contribution from bound states is a finite sum of functions v : Rt×Xx → C
of the form w(t, x) = e−iEtφ(x) for some E ∈ R and Schwartz φ ∈ S(X).

Proposition 1.1. If v(t, x) = e−iEtφ(x) for some E > 0 and Schwartz φ ∈ S(X), then v is of
exponential-polyhomogeneous type on M and Schwartz at nf ∪ dilF ∪ parF. ■

Proof. On the cylinder C = [0,∞]t ×X, each such v is already of exponential-polyhomogeneous
type, with

v ∈ e−iEt ⋂
k∈N

ρ(x)kC∞(C) = e−iEt ⋂
k∈N

ϱknfϱ
k
dilFϱ

k
parFC

∞(M). (37)

We can choose ϱkf = t−1ρ(x)−1(ρ(x)+1/tρ(x))−1, ϱparF = ρ(x)+1/tρ(x), and ϱdilF = ρ(x)(ρ(x)+
1/tρ(x))−1, as follows from the construction of M from M/ parF. So, t = ϱ−1

dilFϱ
−2
parFϱ

−1
kf is polyho-

mogeneous on M . □

2. Low energy contribution

We now analyze I±[ϕ](t, x) = 2
∫∞

0 eiσ
2t±iσ/ρ(x)ϕ(σ, x)σ dσ for ϕ polyhomogeneous on X+

res and
supported away from bf ∩ ∞f, in other words within {σ < Σ} for some Σ > 0. This therefore
constitutes the low energy contribution to our overall integrals. We begin with a few geometric
preliminaries. Let λ = σ/ρ(x), so that the map R+ ×X◦ ∋ (σ, x) 7→ (λ, x) ∈ R+ ×X◦ extends to a
diffeomorphism

ι : Xsp
res\(bf ∪∞f)→ [0,∞)λ ×X (38)
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Let φ = ϕ ◦ ι−1 ∈ C∞((0,∞)λ ×X◦
x). Then, ϕ being supported away from bf ∩∞f is equivalent to

suppφ ⋐ [0,∞)λ ×X. That is, φ(λ,−) vanishes identically if λ is sufficiently large. In terms of φ,

2−1I±[ϕ](t, x) =
∫ ∞

0
eiEt±iσ/ρ(x)φ(σ/ρ(x), x)σ dσ = ρ(x)2

∫ ∞

0
eiλ

2tρ(x)2±iλφ(λ, x)λ dλ. (39)

In order to express the spacetime asymptotics of I±[ϕ], it is convenient to work with the
compactification

C1 = [0,∞]τ ×Xx ←↩ R+
t ×X◦

x (40)
defined using τ = tρ(x)2. As mwcs, C1 ∼= C, but these differ as compactifications of spacetime
(except over spatially bounded regions). The three boundary hypersurfaces of C1 are Rτ × ∂X,
{∞} ×Xx, and {0} ×Xx. Note that

M/nf ∼= [C1; {0} × ∂X], (41)
which is a precise way of saying that C1 results from M by blowing down both nf and dilF. This
blowdown identifies kf with {∞}τ ×X, parF\dilF with (0,∞]τ × ∂X, Σ\nf with {0} ×X◦, and
maps nf ∪ dilF to the corner {0}τ × ∂X.

So, in order to specify asymptotics of I±[ϕ] on M , it suffices to specify them on C1. The main
proposition of this section, most of the details of the proof of which are relegated to Proposition 2.3,
below, reads:

Proposition 2.1. Suppose that φ(λ, x) ∈ A(E,α)
c ([0,∞)λ;A(F ,β)(Xx)) for some index set E ⊆ {z ∈

C : ℜz > −2} × N, α ∈ R>−2 ∪ {∞}, index set F ⊂ C× N, and β ∈ R ∪ {∞}. Then,

I±[ϕ](t, x) ∈ A(E/2+1,α/2+1),(F+2,β+2),(0,0)(C1), (42)
where E/2 + 1 is the index set at {∞}τ ×X, F + 2 is the index set at [0,∞]τ × ∂X, and (0, 0) is
the index set at {0} ×X. ■

See below for notational conventions regarding the Fourier transform.

Remark 2.2. The proof shows that the expansion of I±[ϕ] at [0,∞]τ × ∂X, i.e. as r →∞, is just

I±[ϕ](t, x) ∼
∑

(j,k)∈F ,ℜj≤β
ρ(x)j+2 logk ρ(x)Fξ→τ (e±iξ1/2

φj,k(ξ1/2, θ))(τ), (43)

where φj,k(λ) ∈ A(E,α)
c ([0,∞)λ × ∂Xθ) are the coefficients in the polyhomogeneous expansion of

φ(λ, x) at [0,∞)λ × ∂X, i.e. as x→ ∂X .
Similarly, if we let φj,k(x) ∈ A(F ,β)(Xx) denote the coefficients in the λ → 0+ expansion of

φ(λ, x), then the τ →∞ expansion of I±[ϕ] is

I±[ϕ](t, x) ∼ ρ(x)2 ∑
(j,k)∈E,ℜj≤α

[ ∞∑
j0=0

∑
K≥k s.t. (j,K)∈E

(±i)j0
j0!2K φj−j0,K(x)cj/2,K,k

]
|τ |−j/2−1 logk |τ |.

(44)
If λj logk(λ)φj,k(x) denotes the leading term in the λ → 0+ expansion of φ(λ, x), then the
leading term in the τ → ∞ expansion of I±[ϕ] is given by I±[ϕ] ∼ ρ(x)2φj,ki1+j/2(−1)kΓ(1 +
j/2)τ−j/2−1 logk(τ).

Proof. Rewriting the integral in terms of ξ = λ2σ2/ρ(x)2, we have I±(t, x) = Ĩ±(tρ(x)2, x) for

Ĩ±(τ, x) = ρ(x)2
∫ ∞

0
eiξτ φ̃±(ξ, x) dξ = ρ(x)2Fξ→τ (Θ(ξ)φ̃±(ξ, x))(τ), (45)

where φ̃±(ξ, x) = e±iξ1/2
φ(ξ1/2, x). Because φ(λ, x) ∈ A(E,α)

c ([0,∞)λ;A(F ,β)(Xx)), we have

φ̃±(ξ, x) ∈ A(E/2,α/2)
c ([0,∞)ξ;A(F ,β)(Xx)). (46)
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So, via Proposition 2.3, the Fourier transform on the right-hand side of eq. (45) lies in the function
space A(E/2+1,α/2+1)(Rτ ;A(F ,β)(Xx)).

The form of the expansions given follow from Proposition 2.3. Indeed, the large-τ expansions
are stated as part of that proposition: letting φ̃±;j,k ∈ A(F ,β)(X) denote the coefficients in the
expansion of e±iξ1/2

φ(ξ1/2, x) as ξ → 0+, then the expansion of ρ(x)−2I±[ϕ] at {∞}τ ×X is given
by

φ(x)−2I±[ϕ](t, x) ∼
∑

(j,k)∈E,ℜj≤α
|τ |−j/2−1 logk |τ |

[ ∑
(j,K)∈E,K≥k

φ̃j/2,K(x)cj/2,K,k
]
, (47)

where the c• = c•;+’s are given by eq. (61) below. Since φ̃j/2,k(x) =
∑∞
j0=0(±i)j0(j0!2k)−1φj−j0,k(x),

eq. (44) follows. Note that this sum is finite, since φj−j0,k vanishes if j0 is too large.
Also, letting φj,k(λ) ∈ A(E,α)

c ([0,∞)λ×∂Xθ) be the coefficients in the polyhomogeneous expansion
of φ(λ, x) at [0,∞)λ × ∂X, and defining φγ by

φ(λ, x) = φγ(λ, x) +
∑

(j,k)∈F ,ℜj≤γ
ρ(x)j logk ρ(x)φj,k(λ, θ), (48)

we have φγ(λ, x) ∈ A(E,α)
c ([0,∞)λ;Aγ(Xx)). Proposition 2.3 then says that the error in truncating

the expansion in eq. (43) to order γ lies in A(E/2+1,α/2+1),γ+2,(0,0)(C1), where the γ + 2 is the order
at [0,∞]τ × ∂X. Since γ can be any real number ≤ β, we conclude that eq. (43) holds. □

2.1. Fourier transforms of polyhomogeneous functions on the half-line. Our convention
for the Fourier transform F : S ′(R)→ S ′(R) is

Fϕ(τ) =
∫ +∞

−∞
eiξτϕ(ξ) dξ. (49)

We will also write Fϕ(τ) as Fξ→τ (ϕ(ξ))(τ) when it is useful to name the dual variable, ‘ξ’ in this
case.

The main proposition of this subsection is:

Proposition 2.3. Suppose that X is a Fréchet space over C. Fix α ∈ (−1,∞) ∪ {∞} and an index
set E ⊂ {z ∈ C : ℜz > −1} × N, so that

A(E,α)
c ([0,∞);X ) ⊆ L1(R;X ). (50)

Then, if ϕ ∈ A(E,α)
c ([0,∞);X ), the Fourier transform Fϕ satisfies Fϕ(τ) ∈ A(E+1,α+1)(Rτ ;X ).

Moreover, if ϕj,k ∈ X are the coefficients in the polyhomogeneous expansion

ϕ(ξ) ∼
∑

(j,k)∈E,ℜj≤α
ϕj,kξ

j logk ξ (51)

of ϕ(ξ) as ξ → 0+, then

Fϕ(τ) ∼
∑

(j,k)∈E,ℜj≤α

[ ∑
K≥k s.t (j,K)∈E

ϕj,Kcj,K,k;±
]
|τ |−j−1 logk |τ | (52)

is the polyhomogeneous expansion of Fϕ as τ → ±∞, where the c•’s are given by eq. (61). ■

This proposition links the regularity results before and after Fourier transform, giving an explicit
way to ‘transform’ between an expansion into its dual (Fourier) expansion.

Recall that the ‘c’ subscript means that ϕ ∈ A(E,α)
c ([0,∞);X ) implies that there exists some

ξ0 > 0 such that ϕ(ξ) = 0 for all ξ ≥ ξ0.
For ϕ ∈ A(E,α)

c [0,∞), we let ϕ(−ξ) = 0 for ξ > 0, this being implicit in eq. (50).
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Proof. For simplicity, we prove the claim when X = C. The general case is completely analogous.
Let β ∈ (−1,∞) satisfy β ≤ α. (If α <∞, then there is no reason not to take β = α.) We can

write
ϕ(λ) = ϕ(β)(ξ) +

∑
(j,k)∈E,ℜj≤β

ϕj,kξ
j logk ξ (53)

for ϕj,k ∈ C which do not depend on β, where ϕ(β) ∈ Aβ([0,∞)). Because E is an index set, the
sum here is finite. (In the future, we will simply use that sums of this form are finite without stating
so explicitly.)

Let χ ∈ C∞
c (R) equal 1 identically on a neighborhood of {0} ∪ suppϕ. Then,

Fϕ(τ) =
∫ ∞

0
eiξτχ(ξ)ϕ(β)(ξ) dξ +

∑
(j,k)∈E,ℜj≤β

ϕj,k

∫ ∞

0
eiξτχ(ξ)ξj logk ξ dξ. (54)

Let Eβ(τ) =
∫∞

0 eiξτχ(ξ)ϕ(β)(ξ) dξ, and, for each (j, k) ∈ C× N, let

Ij,k[χ](τ) =
∫ ∞

0
eiξτχ(ξ)ξj logk ξ dξ, (55)

so that
Fϕ(τ) = Eβ(τ) +

∑
(j,k)∈E,ℜj≤β

ϕj,kIj,k[χ](τ). (56)

It follows immediately from [Hin22, Lemma 3.6] that Eβ ∈ Aβ+1(Rτ ). On the other hand, Ij,k[χ]
can be written as

Ij,k[χ] = Fχ(τ) ∗ Fξ→τ (Θ(ξ)ξj logk ξ). (57)
By Proposition 2.4,

Fξ→τ (Θ(ξ)ξj logk ξ) ∈ S ′(Rτ ) ∩ A(j+1,k)(Rτ\{0}) ⊆ S ′(Rτ ) ∩ AE+1(Rτ\{0}). (58)

So, by Lemma 2.6, Ij,k[χ](τ) ∈ AE+1(Rτ ).
So, Fϕ(τ) ∈ A(E+1,β+1)(Rτ ). Given the arbitrariness of β ≤ α, this implies the first clause of the

proposition. The argument shows that the polyhomogeneous expansion of Fϕ is given, at the level
of formal series, by

ϕ ∼
∑

(j,k)∈E
ϕj,kIj,k[χ](τ), (59)

where by Ij,k[χ](τ) we mean the polyhomogeneous expansion of each Ij,k[χ](τ) as τ → ±∞. By
Lemma 2.6, the polyhomogeneous expansion of Ij,k[χ](τ) in this limit is the same as that of
Fξ→τ (Θ(ξ)ξj logkξ)(τ), which we compute in Proposition 2.4. Substituting this into eq. (59) yields
eq. (52). □

Proposition 2.4. For any j ∈ {z ∈ C : ℜz > −1} and k ∈ N, Fξ→τ (Θ(ξ)ξj logk ξ) is smooth away
from the origin, and, for τ > 0,

Fξ→τ (Θ(ξ)ξj logk ξ)(τ) = τ−j−1
k∑

κ=0
cj,k,κ logκ τ (60)

for some cj,k,κ ∈ C. In fact, cj,k,k = ij+1(−1)kΓ(j + 1), where Γ : C\Z≤0 → C denotes Euler’s
gamma function and (±i)z = exp(±πiz/2) for z ∈ C. ■

Remark 2.5. The proof shows that cj,k,κ is given by

cj,k,κ = ij+1(−1)κ
(
k

κ

)
k−κ∑
κ=0

(
± πi

2
)k−κ−κ

(
k − κ
κ

)
dκΓ(j + 1)

djκ (61)

for all j ∈ {z ∈ C : ℜz > −1}, k ∈ N, and κ ∈ {0, . . . , k}.
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Proof. For τ ̸= 0, the Fourier transform Fξ→τ (Θ(ξ)ξj logk ξ) is given by

Fξ→τ (Θ(ξ)ξj logk ξ) = lim
ϵ→0+

∫ ∞

0
eiξτ−ϵξ|τ |ξj logk(ξ) dξ. (62)

Letting ξ = |τ |ξ, the integral on the right-hand side can be written∫ ∞

0
eiξτ−ϵξ|τ |ξj logk(ξ) dξ = |τ |−j−1

k∑
κ=0

(−1)κ
(
k

κ

)
logκ |τ |

∫ ∞

0
e±iξ−ϵξξj logk−κ(ξ) dξ, (63)

where the ± is the sign of τ . All we need to do is compute the ϵ→ 0+ limit of the integrals on the
right-hand side.

By Cauchy’s integral theorem,∫ ∞

0
e±iξ−ϵξξj logk(ξ) dξ =

∫ ±i∞

0
e±iz−ϵzzj logk(z) dz

= ±i
∫ ∞

0
e−ξ∓iϵξ(±iξ)j logk(±iξ) dξ,

(64)

where we are using the principal branch of the logarithm in order to fix the phase of (±iξ)j = e±jπiξj

and log(±iξ) = ±πi/2 + log ξ. So, taking ϵ→ 0+,

lim
ϵ→0+

∫ ∞

0
e±iξ−ϵξξj logk(ξ) dξ = ±i

∫ ∞

0
e−ξ(±iξ)j logk(±iξ) dξ. (65)

The integral on the right-hand side can be written, after justifying differentiating under the integral
sign, as

dk

djk
∫ ∞

0
e−ξ(±iξ)j dξ = dk

djk ((±i)jΓ(j + 1)) = (±i)j
k∑

κ=0

(
k

κ

)(
± πi

2
)k−κdκΓ(j + 1)

djκ . (66)

Chaining together these equalities yields the proposition. □

Lemma 2.6. Suppose that χ ∈ S(R) is identically 1 near the origin, and suppose that f ∈
S ′(R) ∩ AE

loc(Rτ\{0}) for some index set E. Then, Fχ ∗ f(τ) − (1 − ψ(τ))f(τ) ∈ S(Rτ ) for any
ψ ∈ C∞

c (Rτ ) identically 1 near the origin. ■

Proof. Write f(τ) = E(τ) +F (τ) for E ∈ E(R) a compactly supported distribution and F ∈ AE(Rt).
Then,
Fχ ∗ f(τ)− (1− ψ(τ))f(τ) = (Fχ ∗ F (τ)− F (τ)) + Fχ ∗ E(τ)− (1− ψ(τ))E + ψF (τ). (67)

The last two terms are Schwartz. Indeed, ψF ∈ C∞
c (R), and necessarily singsuppE ⊆ {0}, so

(1 − ψ)E ∈ C∞
c (R) as well. Now consider Fχ ∗ E(τ). We prove that this is Schwartz, which is

equivalent to proving that χF−1E is Schwartz. Since

E(τ) ∈
⋃
m∈R

⋂
s∈R
⟨τ⟩sHm(Rτ ), (68)

applying F−1 yields F−1E(ξ) ∈
⋃
m∈R

⋂
s∈R⟨D⟩s⟨ξ⟩−mL2(Rξ). So, χ(ξ)F−1E(ξ) ∈ S(Rξ).

In order to conclude that the left-hand side of eq. (67) is Schwartz, we prove that the remaining
term on the right-hand side, Fχ∗F −F , is as well. This is equivalent to (1−χ(ξ))F−1F (ξ) ∈ S(Rξ),
which follows if F−1F is Schwartz except at the origin, i.e. smooth except at the origin and Schwartz
outside of some compact subset.

We can write F (τ) = (1 + τ2)jF0(τ) for some F0 ∈ A1(R) and j ∈ N. Because

1 + ∆ξ = F−1
τ→ξ ◦M1+τ2 ◦ Fξ→τ (69)

preserves the space of tempered distributions on the real line that are Schwartz except at the origin,
it suffices to prove that the claim holds for F0. Equivalently, it suffices to consider the case F = F0.
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So, assume that F ∈ A1(R). Then, ∂k+ℓ
τ (τkF (τ)) ∈ A1(Rτ ) ⊆ L2(Rτ ) for all k, ℓ ∈ N. Taking

the inverse Fourier transform yields

ξk+ℓ∂kξF−1F (ξ) ∈ L2(Rξ) (70)

for all k, ℓ ∈ N, which implies that F−1F is Schwartz except at the origin, as desired. □

3. Radiation-field analogue and the high energy contribution

Fix an index set E ⊂ C × N and α ∈ R ∪ {∞}. Suppose that ϕ ∈ S(Rσ;A(E,α)
loc (X)) vanishes

identically in {σ < σ0} ⊂ Rσ × Ẋ for some σ0 > 0. We denote the set of such functions as

Ṡ([σ0,∞)σ;A(E,α)
loc (X)). (71)

In this section, we analyze

I±[ϕ](t, x) =
∫ ∞

0
eiσ

2t±iσr(x)ϕ(σ, x) dσ, (72)

where r(x) = ρ(x)−1. The argument is a straightforward application of the method of stationary
phase. The phase appearing in the oscillatory integral is θ±(t, x;σ) = σ2t± σr, which has derivative
∂σθ±(t, x;σ) = 2σt± r. Remembering that ρ > 0 and σ, t ≥ 0, ∂σθ+ is nonvanishing, while ∂σθ−
vanishes at the “critical” frequency σcrit = r/2t. Thus, following the oscillatory integral I±[ϕ] along
level sets of r/t ∈ C∞(dilF◦), an observer either sees rapid decay or else asymptotics in accordance
with the stationary phase expansion.

For I+[ϕ], the method of nonstationary phase also yields rapid decay at nf. The reason why I−[ϕ]
decays rapidly at nf is that, in this asymptotic regime, r → ∞ and t/r → 0, which means that
σcrit →∞. As ϕ(σ,−) decays rapidly as σ →∞, the data in the stationary phase approximation
decays rapidly as well. A less careful version of this reasoning (valid only in nf◦) is that, in nf◦,
only r is a large parameter, so the relevant portion of the phase is θ±,0 = ±r/2σ, whose gradient
∂σθ±,0 is nonvanishing, so the method of nonstationary phase applies, regardless of the sign.

3.1. Nonstationary case of sign. We first turn to the nonstationary case. Actually, in addition
to discussing I+[ϕ], we discuss the contribution 2I−,non[σϕ(σ,−), ψ] to I−[ϕ], where

I−,non[ϕ, ψ](t, x) =
∫ ∞

0
eiσ

2t−iσr(x)
[
1− ψ

(
σ − r

2t
)]
ϕ(σ, x) dσ ∈ C∞(R+

t ×X◦
x), (73)

where ψ ∈ C∞
c (R) is identically 1 in some neighborhood of the origin and, for convenience,

suppψ ⋐ (−σ0, σ0), where recall that σ0 is chosen such that ϕ(σ,−) = 0 whenever σ ≤ σ0.
In the next proposition, let A∞,∞,(0,0)(C) denote the set of smooth functions on C = [0,∞]t ×X

that are Schwartz at ∂C\{t = 0}. Such functions are smooth on M and Schwartz at all faces except
Σ = clM{t = 0}.

Proposition 3.1. If ϕ ∈ Ṡ([σ0,∞)σ;A(E,α)(X)), then I+[ϕ], I−,non[ϕ] ∈ A∞,∞,(0,0)(C). ■

Proof. For any R > 0, we have e±iE1/2r(x)ϕ(E1/2, x) ∈ Ṡ([σ2
0,∞);C∞({r(x) < R})). So, since the

Fourier transform has the mapping property

FE→t : S(RE ;C∞({r(x) < R}))→ S(Rt;C∞({r(x) < R})), (74)

we deduce, since I+[ϕ](t, x) = FE→t(eiE
1/2r(x)ϕ(E1/2, x))(t), that I+[ϕ](t, x) ∈ S(Rt;C∞(X◦

x)).
Similarly, if t is sufficiently large so that an R/2T -neighborhood of suppψ is still a subset of
(−σ0, σ0), then if r(x) < R,

I−,non[ϕ](t, x) = FE→t(e−iE1/2r(x)ϕ(E1/2, x))(t). (75)
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So, I−,non[ϕ](t, x) ∈ S(Rt;C∞(X◦
x)). So, in order to prove the proposition, it suffices to restrict

attention to any neighborhood in C of [0,∞]t × ∂X, at least one of which is identifiable with
[0,∞]t × Ẋ[R] for Ẋ[R] = (R,∞]r × ∂Xθ.

Let A∞,∞,(0,0)
loc (Ċ[R]) denote the set of smooth functions on Ċ[R] = [0,∞]t × Ẋ[R] Schwartz at

∂Ċ[R]\{t = 0}. It suffices to prove that

I+[ϕ] ∈ A∞,∞,(0,0)
loc (Ċ[R]). (76)

Let L ∈ Diffb(Ẋ), i.e. L is a differential operator in the C∞(Ẋ)-algebra generated by vector fields
tangent to ∂X. For any j ∈ N, we can write ∂jtLI+[ϕ] = I+[ϕj,L] for some

ϕj,L ∈ S(RE ;A(E,α)
loc (Ẋ)) (77)

vanishing identically in {E < E0}. In order to prove that I+[ϕ] ∈ Ṡ, it suffices to prove that
I+[ϕj,L] ∈ ⟨t+ r⟩−KL∞

loc([0,∞]t × Ẋ) (78)
for every K ∈ Z. Here, L∞

loc([0,∞]t × Ẋ) is the set of functions f(t, r, θ) on R+
t × Ẋr,θ, such that,

for each r0 > 0, there exists some C[r0] > 0 such that |f(t, r, θ)| ≤ C[r0] whenever r ≥ r0.
More generally, we show that the bound eq. (78) holds for I+[ψ] whenever ψ(t, E, r, θ) ∈ C∞(R+

t ×
RE × Ẋr,θ) is vanishing identically on {E < E0} and satisfies the following bounds: there exists
some J ∈ R such that, for all k,K ′ ∈ N, and for all Q ∈ Diffsc(Ẋ),

∂k

∂Ek
Qψ(t, E, r, θ) ∈ ⟨E⟩−K′⟨t+ r⟩JL∞(R+

t × RE × (Ẋr,θ ∩ {r ≥ r0})) (79)

for all r0 > 0. For the ϕj,L above, this holds with J > 0 sufficiently large such that A(E,α)
loc (Ẋ) ⊂

⟨r⟩JL∞
loc(Ẋ), but it will be useful to consider other values of J .

Applying eq. (79) with k = 0 and K ′ = 2 yields

|I+[ψ](t, r, θ)| ≤
∫ ∞

E0
|ψ(t, E, r, θ)|dE ∈ ⟨t+ r⟩JL∞

loc([0,∞]t × Ẋ), (80)

so eq. (78) holds with K = −J . This is the base case of the inductive argument.
Let K̂ ∈ N. Suppose we have shown that eq. (78) holds for K = −J + K̃ for all K̃ ∈ {0, . . . , K̂},

whenever ψ satisfies eq. (79). The inductive step, which once handled completes the argument, is to
show that the bound holds also for

K = −J + K̂ + 1, (81)
i.e. that I+[ψ] ∈ ⟨t+ r⟩J−K̂−1L∞

loc([0,∞]t × Ẋ). Writing

I+[ψ] =
∫ ∞

E0

(∂θ+
∂E

)−1( ∂

∂E
eiEt+iσ(E)r

)
ψ(t, E,−) dE (82)

and integrating by parts, the result is I+[ψ] = I+[ψ1] + I+[ψ2] for

ψ1 = −
(∂θ+
∂E

)−1 ∂ψ

∂E
, ψ2 =

(∂θ+
∂E

)−2∂2θ+
∂E2 ψ. (83)

Note that ∂2
Eθ+ = −1/4E3/2. Thus, Lemma 3.2 implies that for each ν ∈ {1, 2}, all k,K ′ ∈ N, and

for all Q ∈ Diffsc(Ẋ),
∂k

∂Ek
Qψν(t, E, r, θ) ∈ ⟨E⟩−K

′⟨t+ r⟩J−νL∞(R+
t × RE × (Ẋr,θ ∩ {r ≥ r0})) (84)

for all r0 > 0. In other words, each of ψ1, ψ2 also satisfies eq. (79), except with a lower value of J .
Thus, by the phrasing of the inductive hypothesis,

I[ψν ] ∈ ⟨t+ r⟩J−K̂−νL∞
loc([0,∞]t × Ẋ) ⊆ ⟨t+ r⟩J−K̂−1L∞

loc([0,∞]t × Ẋ), (85)
as desired. □
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Lemma 3.2. For any j, k ∈ N, and for any r0, σ0 > 0, there exists a constant C = C(j, k, σ0, r0) > 0
such that ∣∣∣ ∂j∂k

∂σj∂rk
σ

2σt+ r

∣∣∣ ≤ C⟨σ⟩
⟨t+ r⟩k+1 (86)

holds for all t > 0, r ≥ r0, and σ ≥ σ0. ■

Proof. We have ∂jσ∂kr (σ/(2σt+ r)) = (−1)kk!∂jσ(σ/(2σt+ r)k+1), and

∂j

∂σj
σ

(2σt+ r)k+1 = (k + j − 1)!
k!

j(−2t)j−1

(2σt+ r)k+j + (k + j)!
k!

(−2t)jσ
(2σt+ r)k+j+1 . (87)

The first term on the right-hand side, which is only nonzero if j ̸= 0, satisfies the required estimate,
as, for j ≥ 1,

0 ≤ tj−1(2σt+ r)−k−j ≤ (2σ0)−j+1(2σ0t+ r)−k−1 ≤ Cj,k⟨t+ r⟩−k−1 (88)

for some Cj,k > 0. The second term in eq. (87) is under control as well, as 0 ≤ tj(2σt+ r)−k−j−1 ≤
(2σ0)−j(2σ0t + r)−k−1 ≤ Cj,k⟨t + r⟩−k−1, for a possibly different Cj,k. So, the bound eq. (86)
follows. □

3.2. Stationary remainder. We now turn to the remaining contribution 2I−,stat[σϕ(σ,−), ψ] to
I−[ϕ], where

I−,stat[ϕ, ψ](t, x) =
∫ ∞

0
eiσ

2t−iσr(x)ψ
(
σ − r

2t
)
ϕ(σ, x) dσ ∈ C∞(R+

t ×X◦
x). (89)

The main proposition of this section says:

Proposition 3.3. Given ϕ ∈ Sc(R+
σ ;A(E,α)(X)), ψ ∈ C∞

c (R) satisfying suppψ ⋐ (−σ0, σ0), and
χ ∈ C∞

c (R) identically 1 near the origin,

I−,stat[ϕ, ψ] ∈ e−i(1−χ(t))r2/4tA∞,∞,(E+1/2,α+1/2),∞,∞(M), (90)

with I−,stat[ϕ, ψ] vanishing identically clM{r/2t ≤ ϵ}. The expansion at dilF is given by eq. (103).
■

Proof. Since ϕ(σ, x) = 0 for σ ≤ σ0, and since we chose ψ such that suppψ ⋐ (−σ0, σ0), and
therefore suppψ ⊂ (−σ0 + ϵ, σ0 − ϵ) for some ϵ > 0, the integral I−,stat[ϕ, ψ](t, x) is vanishing in
{r/2t ≤ ϵ}. Thus, we work on the sub-mwc

Mϵ,R = M ∩ clM{r/2t ≥ ϵ, r(x) > R} (91)

for R > 0 sufficiently large such that we can identify X∩clX{r(x) > R} with Ẋ[R] = [0, R−1)ρ×∂Xθ

via a choice of boundary collar Ẋ[R] ↪→ X.
We can write Mϵ,R = M◦

ϵ,R ∪ U0 ∪ U , where, for any T > 0 satisfying Tϵ > R and R0 > R

satisfying R0/2T > ϵ,

U0 ∼= [0, 2T )t × Ẋ[R0], U ∼= (T,∞]t × (ϵ,∞]r/t × ∂Xθ. (92)

That is:
• the map [0, 2T )t × Ẋ[R0] ↪→ Mϵ,R, applying the boundary collar to the right factor, is a

diffeomorphism onto U0, and
• the composition

(T,∞)t × (ϵ,∞)r/t × ∂Xθ ↪→ (T,∞)t ↪→ Ẋ[R]r,θ ↪→M◦
ϵ,R, (93)

where the first map sends (t, r̂, θ) 7→ (t, (tr̂, θ)) and the second map applies the boundary
collar, extends to a diffeomorphism (T,∞]t × (ϵ,∞]r/t × ∂Xθ → U .



18 SHI-ZHUO LOOI AND ETHAN SUSSMAN

So, in order to conclude the proposition, it suffices to prove that I−,stat[ϕ, ψ](t, r, θ) ∈ Sloc([0,∞)t×Ẋ)
and

I−,stat[ϕ, ψ](t, r̂t, θ) ∈ e−ir2/rtA(E+1/2,α+1/2),∞
loc ((T,∞]t × (ϵ,∞]r̂ × ∂Xθ), (94)

where E + 1/2 is the index set at t =∞ and the ∞ denotes Schwartz behavior at r̂ =∞. These
claims are proven below. The first is in Proposition 3.4, and the second is in Proposition 3.5. □

A modification of Equation (89),

I−,stat[ϕ, ψ](t, r, θ) =
∫ ∞

0
eiσ

2t−iσrψ
(
σ − r

2t
)
ϕ(σ, r, θ) dσ ∈ C∞(R+

t × Ẋ◦[R]r,θ) (95)

defines a function I−,stat[ϕ, ψ] : Rt × Ẋ[R]→ C for any ϕ ∈ S(Rσ;A(E,α)
loc (Ẋ)), for any index set E

and any α ∈ R ∪ {∞}, and for any ψ ∈ C∞
c (R).

Proposition 3.4. For any ϕ ∈ S(Rσ;A(E,α)
loc (Ẋ)) and ψ ∈ C∞

c (R), the function I−,stat[ϕ, ψ] satisfies

I−,stat[ϕ, ψ] ∈ Sloc([0,∞)t × Ẋ), (96)

i.e. is Schwartz at both boundary hypersurfaces {t = 0} and [0,∞)t × ∂Ẋ. ■

Proof. First, we prove that I−,stat[ϕ, ψ] ∈ L∞
loc([0,∞)t × Ẋ). Indeed, usying the rapid decay of

ϕ(σ,−) as σ →∞ in some weighted L∞-space ⟨r⟩JL∞
loc(Ẋ), we have, for all r0 > 0 and r ≥ r0,

|I−,stat[ϕ, ψ](t, r, θ)| ≤ ∥ψ∥L1 sup
σ≥r/2t−σ0

|ϕ(σ, r, θ)| ⪯
〈 r

2t − σ0
〉−K
⟨r⟩J , (97)

which holds for some J ≥ 0 and all K ≥ 0, where the constant involved depends on r0. Since
⟨r/2t− σ0⟩ ⪯ ⟨r⟩⟨t−1⟩, we conclude that I−,stat[ϕ, ψ] ∈ ⟨r⟩−∞⟨t⟩−∞L∞

loc([0,∞)t × Ẋ).
In order to control derivatives, we use the identities

∂tI−,stat[ϕ, ψ] = iI−,stat[σ2ϕ, ψ] + (r/2t2)I−,stat[ϕ, ψ′] (98)
∂rI−,stat[ϕ, ψ] = −iI−,stat[σϕ, ψ]− (1/2t)I−,stat[ϕ, ψ′] + I−,stat[∂rϕ, ψ]. (99)

Applying these inductively, and applying the L∞-bounds derived in the previous paragraph, it can
be concluded that

∂jt ∂
k
r I−,stat[ϕ, ψ] ∈ ⟨r⟩−∞⟨t⟩−∞L∞

loc([0,∞)t × Ẋ) (100)
for all j, k ∈ N. So, I−,stat[ϕ, ψ] ∈ Sloc([0,∞)t × Ẋ). □

Proposition 3.5. For ϕ ∈ S(Rσ;A(E,α)
loc (Ẋ)),

I−,stat[ϕ, ψ](t, tr̂, θ) ∈ e−ir2/4tA(E+1/2,α+1/2),∞
loc ((0,∞]t × (0,∞]r̂ × ∂Xθ). (101)

The t→∞ expansion is given by

I−,stat[ϕ, ψ](t, tr̂, θ) ∼ e−ir2/4t
∞∑
j=0

Γ(j + 1/2)
(2j)!(−it)j+1/2ϕ

(2j)(r̂/2, tr̂, θ), (102)

∼ e−ir2/4t
√
−it

∑
(j,k)∈E

[ ∞∑
j0=0

r̂−j0 Γ(j − j0 + 1/2)
(2(j − j0))!(−i)j−j0

×
k∑

k0=0
logk0(r̂)

(
k + k0
k0

)
ϕ

2(j−j0)
j0,k+k0

]
t−j logk(t),

(103)

where ϕ(k)(σ, r, θ) = ∂kσϕ(σ, r, θ) for k ∈ N, and ϕ(k) = 0 if k < 0, and where

ϕ(k)(σ, r, θ) ∼
∑

(j,k)∈E
ϕ

(k)
j,k (σ, θ)r−j logk(r) (104)
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is the polyhomogeneous expansion of ϕ(k) at r = ∞, i.e. at bf. Here, each ϕ
(k)
j,k (σ, θ) is in

Ṡ([σ0,∞);C∞(∂Xθ)). ■

Proof. Let Ĩ−,stat[ϕ, ψ](t, r, θ) = eir
2/4tI−,stat[ϕ, ψ](t, r, θ). In terms of r̂ = r/t, this can be written

Ĩ−,stat[ϕ, ψ](t, r̂t, θ) =
∫ ∞

0
eit(σ−r̂/2)2

ψ(σ − r̂/2)ϕ(σ, tr̂, θ) dσ, (105)

Our goal is to prove that this lies in A(E+1/2,α+1/2),∞
loc ((0,∞]t × (0,∞]r̂ × ∂Xθ).

For each K ∈ N, Taylor’s theorem says that

ϕ(σ, r, θ) =
K∑
k=0

1
k!
(
σ − r̂

2
)k
ϕ(k)

( r̂
2 , r, θ

)
+ 1
K!

∫ σ−r̂/2

0

(
σ − r̂

2 − δ
)K
ϕ(K+1)

( r̂
2 + δ, r, θ

)
dδ, (106)

where the superscript on ϕ refers to differentiation in the first slot.
Thus, Ĩ−,stat[ϕ, ψ] =

∑K
k=0 ϕ

(k)(r̂/2, r, θ)I−,stat,k[ψ] + I−,stat,K,rem[ϕ, ψ] for

I−,stat,k[ψ] = 1
k!

∫ ∞

−∞
eit(σ−r̂/2)2(

σ − r̂

2
)k
ψ
(
σ − r̂

2
)

dσ

= 1
k!

∫ ∞

−∞
eitδ

2
δkψ(δ) dδ

(107)

I−,stat,K,rem[ϕ, ψ] = 1
K!

∫ ∞

−∞
eit∆

2
ψ(∆)

[ ∫ ∆

0
(∆− δ)Kϕ(K+1)

( r̂
2 + δ, r, θ

)
dδ
]

d∆. (108)

The stationary phase approximation suffices to show that I−,stat,k[ψ] ∈ t−(k+1)/2C∞((0,∞]t). In
fact, since ψ = 1 identically near the origin, the difference

k!I−,stat,k[ψ](t)−
{

0 (k odd),
(−it)−(k+1)/2Γ((k + 1)/2) (otherwise).

(109)

is, for large t, Schwartz.
Since ϕ(k)(r̂/2, r, θ) = ϕ(k)(r̂/2, r̂t, θ) lies in S(Rr̂;A(E,α)

loc ((0,∞]t)), it follows that

ϕ(k)(r̂/2, r, θ)I−,stat,k[ψ] ∈ S(Rr̂; t−1/2A(E,α)
loc ((0,∞]t)). (110)

On the other hand, Lemma 3.6 shows that
|I−,stat,K,rem[ϕ, ψ](t, r̂t, θ)| ∈ t−⌊(K+1)/2⌋r̂−∞A0,0

loc((0,∞]t × (0,∞]r̂ × ∂Xθ). (111)

Combining everything, I−,stat[ϕ, ψ] ∈ S(Rr̂;A(E+1/2,min{α+1/2,⌊(K+1)/2⌋})
loc (0,∞]t)). Since K can be

taken arbitrarily large, the result follows. □

Lemma 3.6. For each J,K ∈ N, ϕ ∈ S(Rσ;A0
loc(Ẋ)), and ψ ∈ C∞

c (R), consider the function
IJ,K [ϕ, ψ] : R+

t × Ẋ◦
r,θ → C given by

IJ,K [ϕ, ψ] =
∫ ∞

−∞
eit∆

2∆Jψ(∆)
[ ∫ ∆

0
(∆− δ)Kϕ

( r
2t + δ, r, θ

)
dδ
]

d∆. (112)

Then, IJ,K [ϕ, ψ] ∈ t−⌊(J+K+1)/2⌋(t/r)∞L∞
loc((0,∞]t × Ẋr,θ).

In fact, ĨJ,K [ϕ, ψ](t, r̂t, θ) ∈ t−⌊(J+K+1)/2⌋r̂−∞A0,0
loc((0,∞]t × [0,∞)r̂ × ∂Xθ). ■

Proof. We first prove the L∞-bounds. For J +K = 0, we have

|IJ,K [ϕ, ψ]| ≤ | suppψ|∥ψ∥L1 supδ∈suppψ

∣∣∣ϕ( r2t + δ, r, θ
)∣∣∣ ∈ (t/r)∞L∞

loc((0,∞]t × Ẋr,θ). (113)

To handle the J +K ≥ 1 case, we integrate-by-parts, starting from

2itIJ,K [ϕ, ψ] =
∫ ∞

−∞

( ∂

∂∆eit∆
2)∆J−1ψ(∆)

[ ∫ ∆

0
(∆− δ)Kϕ

( r̂
2 + δ, r, θ

)
dδ
]

d∆. (114)
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Integrating-by-parts yields −2itIJ,K [ϕ, ψ] + (J − 1)IJ−2,K [ϕ, ψ] + IJ−1,K [ϕ, ψ′] +KIJ,K−1 if K ≠ 0
and

−2itIJ,0[ϕ, ψ] + (J − 1)IJ−2,0[ϕ, ψ] + IJ−1,0[ϕ, ψ′] + ĨJ−1[ϕ, ψ] (115)
otherwise, where the last of these functions is defined by eq. (118).

So, IJ,K [ϕ, ψ] ∈ t−⌊(J+K+1)/2⌋(t/r)∞L∞
loc((0,∞]t × Ẋr,θ) follows inductively.

In order to control derivatives, we use LIJ,K [ϕ, ψ] = IJ,K [Lϕ, ψ], which holds for all L ∈ Diff(∂Xθ),
and the identities

∂r̂IJ,K [ϕ, ψ](t, r̂t, θ) = 2−1IJ,K [∂σϕ(σ, r, θ), ψ](t, r̂t, θ) + r̂−1IJ,K [r∂rϕ(σ, r, θ), ψ](t, r̂t, θ) (116)
∂tIJ,K [ϕ, ψ](t, r̂t, θ) = iIJ+2,K [ϕ, ψ](t, r̂t, θ) + t−1IJ,K [r∂rϕ(σ, r, θ), ψ](t, r̂t, θ). (117)

Using these inductively, and using the L∞-bounds already proven, the final clause of the lemma
follows. □

Lemma 3.7. For each J ∈ N, ϕ ∈ S(Rσ;A0
loc(Ẋ)), and ψ ∈ C∞

c (R), consider the function
IJ [ϕ, ψ] : R+

t × Ẋ◦
r,θ → C given by

ĨJ [ϕ, ψ] =
∫ ∞

−∞
eit∆

2∆Jψ(∆)ϕ
( r

2t + ∆, r, θ
)

d∆. (118)

Then, for each K ∈ N, we have ĨJ [ϕ, ψ](t, r̂t, θ) ∈ t−⌊J/2⌋r̂−∞A0,0
loc((0,∞]t × (0,∞]r̂ × ∂Xθ). ■

Proof. We first prove the L∞-bounds. If J = 0, then
|ĨJ [ϕ, ψ]| ≤ ∥ψ∥L2 sup∆∈suppψ |ϕ((r/2t) + ∆, r, θ)| ∈ (t/r)∞L∞

loc((0,∞]t × Ẋr,θ). (119)
If J ≥ 1, then integration-by-parts yields

−2itĨJ [ϕ, ψ] = (J − 1)ĨJ−2[ϕ, ψ] + ĨJ−1[ϕ, ψ′] + ĨJ−1[ϕ′, ψ], (120)
where ϕ′(σ, r, θ) = ∂σϕ(σ, r, θ). Applying this inductively allows the deduction of ĨJ [ϕ, ψ] ∈
t−⌊J/2⌋(t/r)KL∞

loc((0,∞]t × Ẋr,θ) from the J = 0 case.
To deduce the final clause of the lemma, we want to prove that the same L∞-bounds apply to

(t∂t)j∂kr̂LĨJ [ϕ, ψ](t, r̂t, θ) for every j, k ∈ N and L ∈ Diff(∂Xθ). Using the identities LĨJ [ϕ, ψ] =
ĨJ [Lϕ, ψ],

∂r̂ĨJ [ϕ′, ψ](t, r̂t, θ) = 2−1ĨJ [∂σϕ(σ, r, θ), ψ](t, r̂t, θ) + r̂−1ĨJ [r∂rϕ(σ, r, θ), ψ](t, r̂t, θ)], (121)
∂tĨJ [ϕ′, ψ](t, r̂t, θ) = iĨJ+1[ϕ, ψ](t, r̂t, θ) + t−1ĨJ [r∂rϕ(σ, r, θ), ψ](t, r̂t, θ), (122)

these bounds follow from those already proven. □

4. Remaining contribution

Finally, we examine I±[ϕ](t, x) = 2
∫∞

0 eiσ
2t±iσr(x)ϕ(σ, r, θ)σ dσ for ϕ polyhomogeneous on Ẋsp

res
and supported near tf ∩ bf. Specifically, we consider the case ϕ(σ, r, θ) = φ(σ, σr, θ) for

φ(σ, λ, θ) ∈ A(E,α),(F ,β)
c ([0,Σ)σ × (Λ,∞]λ × ∂Xθ) (123)

for some Σ,Λ > 0, index sets E ,F , and α, β ∈ R. Here, E is the index set at σ = 0, i.e. at tf, and F
is the index set at λ = ∞, i.e. at bf. In order to formulate the asymptotics of I±, it is useful to
work with the manifold Ṁ/nf, which is defined analogously to M/nf with Ẋ in place of X, and
whose faces we label correspondingly. Recall that Ċ1 = [0,∞]τ × Ẋ. We summarize the results of
this section in the following proposition:

Proposition 4.1. Given the setup above, I+[ϕ] ∈ A∞,(E+2,α+2),(0,0)
loc (Ċ1), where the index sets are

specified at kf, parF, and dilF respectively, and I−[ϕ] = exp(−ir2/4t)Ĩ−[ϕ] + I−,phg[ϕ] for some

Ĩ−[ϕ] ∈ A∞,(E+2,α+2),(F+1/2,β+1/2)
loc (Ṁ/nf) (124)
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and I−,phg[ϕ] ∈ A∞,(E+2,α+2),(0,0)
loc (Ċ1). Moreover, if χ ∈ C∞

c (R) satisfies suppχ ⋐ (−1, 1), then
χ(2tρ(x)Σ)Ĩ−[ϕ] is Schwartz. ■

Proof. The statment for I+[ϕ] comes immediately from Proposition 4.2 and Proposition 4.4.
The partial compactifications R+

t ×Ẋ ↪→ (Ṁ/nf)\(dilF∪Σ) and R+
t ×Ẋ ↪→ Ċ1\Σ are equivalent, in

the sense that the identity map on the interior extends to a diffeomorphism (Ṁ/nf)\(dilF∪Σ) ∼= Ċ1\Σ.
So, Proposition 4.2 tells us that

I−[ϕ] ∈ A∞,(E+2,α+2)
loc ((Ṁ/nf)\dilF), (125)

where the index sets are specified at kf,parF, respectively On the other hand, the partial compactifi-
cations R+

t ×Ẋ ↪→ (Ṁ/nf)\kf and R+
t ×Ẋ ↪→ [0,∞)τ×(0,∞]s×∂Xθ given by (t, r, θ) 7→ (t/r2, t/r, θ)

are equivalent. So Proposition 4.7 tells us that

Ĩ−[ϕ] ∈ A(E+2,α+2),(F+1/2,β+1/2)
loc ((Ṁ/nf)\kf). (126)

The last clause of this proposition follows from the last clause of Proposition 4.7. □

4.1. Control for very large time. The following establishes control of near kf:

Proposition 4.2. For φ(σ, λ, θ) ∈ A(E,α),(F ,β)
c ([0,Σ)σ × (Λ,∞]λ × ∂Xθ) and ϕ(σ, r, θ) = φ(σ, σr, θ),

we have I±[ϕ](t, x) = ρ2Ī±[φ](tρ2, x) for some

Ī±[φ](τ, x) ∈ A∞,(E,α)
loc (Ċ1\Σ), (127)

where Ċ1\Σ = (0,∞]τ × Ẋ, where E is the index set at (0,∞]τ × ∂Xθ, i.e. as r →∞, and the ∞
denotes Schwartz behavior as τ →∞. Moreover, the expansion at (0,∞]τ × ∂Xθ is given by

Ī±[φ](τ, x) ∼
∑

(j,k)∈E,ℜj≤γ

2
rj

k∑
κ=0

(−1)κ
(
k

κ

)
logκ(r)

∫ ∞

Λ
eiλ

2τ±iλφj,k(λ, θ)λ1+j logk(λ) dλ (128)

where φ(σ, λ, θ) ∼
∑

(j,k)∈E,ℜj≤α φj,k(λ, θ)σj log σk is the polyhomogeneous expansion of φ as σ → 0+,
so that

φj,k(λ, θ) ∈ A(F ,β)
c ((Λ,∞]λ × ∂Xθ). (129)

The integrals on the right-hand side of eq. (128) are well-defined oscillatory integrals (though not
necessarily absolutely convergent), e.g. via formal integration-by-parts. ■

Proof. We have I±[ϕ](t, x) = ρ2Ī±[φ](tρ2, x) for Ī±[φ](τ, x) defined by

Ī±[φ](τ, x) = 2
∫ ∞

Λ
eiλ

2τ±iλφ(λ/r, λ, θ)λ dλ. (130)

Defining φγ(σ, λ, θ) = σ−γ(φ(σ, λ, θ) −
∑

(j,k)∈E,ℜj≤γ φj,k(λ, θ)σj log σk) for γ ∈ R with γ ≤ α, we
have

φγ ∈ A0,(F ,β)
c ([0,Σ)σ × (Λ,∞]λ × ∂Xθ). (131)

Let χ ∈ C∞
c (R) be identically 1 on [−1, 1]. Then, we can write φ(σ, λ, θ) = χ(σΣ−1)φ(σ, λ, θ) for

all σ, λ > 0 and θ ∈ ∂X, so

Ī±[φ](τ, x) =
∑

(j,k)∈E,ℜj≤γ

2
rj

k∑
κ=0

(−1)κ
(
k

κ

)
logκ(r)Ī±,j,k−κ[φ](τ, x) + r−γ Ī±,γ [φ](τ, x) (132)

for

Ī±,j,k[φ](τ, x) =
∫ ∞

Λ
eiλ

2τ±iλχ
( λ
rΣ
)
φj,k(λ, θ)λ1+j logk(λ) dλ,

Ī±,γ [φ](τ, x) =
∫ ∞

Λ
eiλ

2τ±iλχ
( λ
rΣ
)
φγ
(λ
r
, λ, θ

)
λ1+γ dλ. (133)
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By Lemma 4.3, Ī±,j,k(τ, x) ∈ A∞,(0,0)
loc ((0,∞]τ × Ẋx) and Ī±,γ(τ, x) ∈ A∞,0

loc ((0,∞]τ × Ẋx), where
the (0, 0) denotes the index set at (0,∞]τ × Ẋx and ∞ denotes Schwartz behavior as τ →∞.

So, Ī±[φ](τ, x) ∈ A∞,(E,γ)
loc (Ċ1\Σ), and since γ ≤ α was arbitrary we conclude eq. (127). The

explicit expansion follows from the argument above and the second half of Lemma 4.3. □

Lemma 4.3. For φ ∈
⋃
K∈NA0,−K

c ([0,Σ)σ × (Λ,∞]λ × ∂Xθ), for j ∈ C and k ∈ N, and for
χ ∈ C∞

c (R), consider

I±,j,k[φ, χ](τ, r, θ) =
∫ ∞

Λ
eiλ

2τ±iλχ
( λ
rΣ
)
φ
(λ
r
, λ, θ

)
λj logk(λ) dλ. (134)

Then, I±,j,k[φ, χ](τ, x) ∈ A∞,0
loc ((0,∞]τ × Ẋx), where 0 is the order at (0,∞]τ × ∂X, i.e. as r →∞,

and the ∞ denotes Schwartz behavior as τ →∞. If φ(σ, λ, θ) = φ(λ, θ) does not depend on σ, then

I±,j,k[φ, χ](τ, x) ∈ A∞,(0,0)
loc ((0,∞]τ × Ẋx), (135)

and moreover

I±,j,k[φ, χ](τ, x)−
∫ ∞

Λ
eiλ

2τ±iλφ(λ, θ)λj logk(λ) dλ ∈ A∞,∞
loc ((0,∞]τ × Ẋx). (136)

The second term on the right-hand side is a well-defined oscillatory integral, even though it may not
be absolutely convergent. ■

Proof. It suffices to consider the case φ ∈ A0,0
c ([0,Σ)σ×(Λ,∞]λ×∂Xθ), as we can write I±,j,k[φ, χ] =

I±,j+K,k[λ−Kφ, χ].
We first prove that I±,j,k[φ, χ](τ, x) ∈ τ−∞L∞

loc((0,∞]τ × Ẋx). First of all, if ℜj < −1, then
I±,j,k[φ, χ](τ, r, θ) ∈ L∞

loc((0,∞]τ × Ẋx), as follows immediately from an ML-bound. Using

2iτI±,j,k[φ, χ](τ, r, θ) =
∫ ∞

Λ

[ ∂
∂λ
eiλ

2τ
]
e±iλχ

( λ
rΣ
)
φ
(λ
r
, λ, θ

)
λj−1 logk(λ) dλ, (137)

integrating-by-parts yields

− 2iτI±,j,k[φ, χ] = ±iI±,j−1,k[φ, χ] + r−1Σ−1I±,j−1,k[φ, χ′] + I±,j−2,k[σ∂σφ(σ, λ, θ), χ]
+ I±,j−2,k[λ∂λφ(σ, λ, θ), χ] + (j − 1)I±,j−2,k[φ, χ] + kI±,j−2,k[φ, χ]. (138)

Each term on the right-hand side has the same form as the original integral (possibly times an extra
L∞

loc factor), but with j with smaller real part. Since the left-hand side of eq. (138) has one extra
factor of τ , this sets up an inductive argument to conclude O(τ−∞) decay from the L∞

loc estimate
already proven in the ℜj < −1 case.

Now suppose that 0 /∈ suppχ. Then, an ML-bound yields immediately that, if ℜj < −1, then
I±,j,k[φ, χ](τ, x) ∈ rj+1+ϵL∞

loc((0,∞]τ × Ẋx) (139)
for any ϵ > 0. So, in this case the inductive argument above yields additionally rapid decay as
r →∞, i.e. that I±,j,k[φ, χ](τ, r, θ) ∈ τ−∞r−∞L∞

loc((0,∞]τ × Ẋx).
We now prove two sets of estimates on derivatives of I±,j,k[φ, χ]. First of all, if n,m ∈ N and

L ∈ Diff(∂Xθ), then
∂nτ (r∂r)mLI±,j,k[φ, χ](τ, r, θ) ∈ τ−∞L∞

loc((0,∞]τ × Ẋx). (140)
Secondly, if 0 /∈ supp(1 − χ) and if φ(σ, λ, θ) = φ(λ, θ) does not depend on σ, then, for m ∈ N+,
∂nτ ∂

m
r LI±,j,k[φ, χ](τ, r, θ) ∈ τ−∞r−∞L∞

loc((0,∞]τ × Ẋx). These follow from applying repeatedly the
identities

LI±,j,k[φ, χ] = I±,j,k[Lφ, χ], ∂τI±,j,k[φ, χ] = iI±,j+2,k[φ, χ] (141)
r∂rI±,j,k[φ, χ] = −I±,j+1,k[σ∂σφ(σ, λ, θ), χ]− Σ−1r−1I±,j+1,k[φ, χ′]. (142)

For example, if φ(σ, λ, θ) = φ(λ, θ) does not depend on σ, then the first term on the right-hand
side of eq. (142) is zero, so ∂rI±,j,k[φ, χ] = −Σ−1r−2I±,j+1,k[φ, χ′], and if χ = 1 identically near the
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origin, then 0 /∈ suppχ, so we can apply the improved L∞-estimates that apply to I±,j+1,k[φ, χ′] in
this case.

□

4.2. Asymptotics elsewhere, I+. To complete our discussion of I+, we prove:

Proposition 4.4. For φ(σ, λ, θ) ∈ A(E,α),(F ,β)
c ([0,Σ)σ × (Λ,∞]λ × ∂Xθ) and ϕ(σ, r, θ) = φ(σ, σr, θ),

we have I+[ϕ](t, r, θ) = 2ρ2Ī+[φ](t/r2, r, θ) for some

Ī+[φ](τ, r, θ) ∈ A(E,α),(0,0)
loc (Ċ1\kf). (143)

■

Proof. We have I+[ϕ](t, r, θ) = 2ρ2Ī+[φ](t/r2, r, θ) for Ī+[φ](τ, r, θ) defined by

Ī+[φ](τ, r, θ) =
∫ ∞

Λ
eiλ

2τ+iλφ
(λ
r
, λ, θ

)
λ dλ. (144)

Now let φ(σ, λ, θ) ∼
∑

(j,k)∈E,ℜj≤α φj,k(λ, θ)σj logk σ denote the polyhomogeneous expansion of
φ(σ, λ, θ) at σ = 0, so

φj,k ∈ A(F ,β)
c ((Λ,∞]λ × ∂Xθ) (145)

and, letting φγ = σ−γ(φ−
∑

(j,k)∈E,ℜj≤γ φj,k(λ, θ)σj logk σ), we have φ ∈ A0,(F ,β)
c ([0,Σ)σ×(Λ,∞]λ×

∂Xθ). Let χ ∈ C∞
c (R) be identically 1 on [−1,+1]. Then, φ(σ, λ, θ) = χ(σΣ−1)φ(σ, λ, θ), so we can

write

Ī+[φ](τ, r, θ) =
∑

(j,k)∈E,ℜj≤γ

(1
r

)j k∑
κ=0

(
k

κ

)
logκ

(1
r

)
Ī+,j,k−κ(τ, s, θ) +

(1
r

)γ
Ī+,γ(τ, x) (146)

for

Ī+,j,k[φ](τ, r, θ) =
∫ ∞

Λ
eiλ

2τ+iλχ
( λ
rΣ
)
φj,k(λ, θ)λ1+j logk(λ) dλ,

Ī+,γ [φ](τ, r, θ) =
∫ ∞

Λ
eiλ

2τ+iλχ
( λ
rΣ
)
φγ
(λ
r
, λ, θ

)
λ1+γ dλ. (147)

We now appeal to Lemma 4.6 to conclude that Ī+[φ](τ, r, θ) ∈ A(E,γ),(0,0)
loc (Ċ1\kf). Since γ ≤ α was

arbitrary, we can conclude eq. (143). □

Remark 4.5. Using the explicit expansions in Lemma 4.6, the proof of Proposition 4.4 shows that
the expansion of Ī+[φ](τ, r, θ) as r →∞ is given by

Ī+[φ] ∼
∑

(j,k)∈E,ℜj≤α

(1
r

)j
logk

(1
r

) ∑
K≥k,(j,K)∈E

(
K

k

)∫ ∞

Λ
eiλ

2τ+iλφj,K(λ, θ)λ1+j logK−k(λ) dλ.

(148)

Lemma 4.6. Let Σ > 0 and χ ∈ C∞
c ([0,∞)). Suppose that γ ∈ C, k ∈ N, and that ϕ ∈

A0,0,0,0
c ([0,Σ)σ × (Λ,∞]λ × (0,∞]r × [0,∞)τ × ∂Xθ). Consider the integral

I+,γ,k[ϕ, χ](τ, r, θ) =
∫ ∞

Λ
eiλ

2τ+iλϕ
(λ
r
, λ, r, τ, θ

)
χ
( λ
rΣ
)
λγ logk(λ) dλ. (149)

Then, I+,γ,k[ϕ, χ](τ, r, θ) ∈ A0,0
loc(Ċ1\kf). If ϕ(σ, λ, r, τ, θ) = ϕ(λ, θ) does not depend on any of σ, τ, r,

then
I+,γ,k[ϕ, χ](τ, r, θ)−

∫ ∞

Λ
eiλ

2τ+iλϕ(λ, θ)λγ logk(λ) dλ ∈ A∞,(0,0)
loc (Ċ1\kf), (150)

the integral on the left-hand side being a well-defined oscillatory integral. Here, the ∞ denotes
Schwartz behavior as r →∞. ■
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Proof. We first prove that

I+,γ,k[ϕ, χ](τ, r, θ) ∈ L∞
loc([0,∞)τ × (0,∞]r × ∂Xθ). (151)

If ℜγ < −1, then ∥I+,γ,k[ϕ, χ]∥L∞ ≤ ∥ϕ∥L∞∥χ∥L∞
∫∞

Λ λγ dλ < ∞. In order to prove the claim
for ℜγ ≥ −1, we use an inductive argument. The key is the identity exp(iλ2τ + iλ) = −i(2λ +
1)−1∂λ exp(iλ2τ + iλ), hence

I+,γ,k[ϕ, χ](τ, r, θ) =
∫ ∞

Λ

[ −i
2λτ + 1

∂

∂λ
eiλ

2τ+iλ
]
ϕ
(λ
r
, λ, r, τ, θ

)
χ
( λ
rΣ
)
λγ logk(λ) dλ. (152)

Integrate-by-parts, noting that no boundary terms arise:

I+,γ,k[ϕ, χ] = I+,γ−1,k[φ, χ] + I+,γ−1,k[ϕ0, χ] + I+,γ−1,k[ψ, σχ′(σ)]
+ γI+,γ−1,k[ψ, χ] + kI+,γ−1,k−1[ψ, χ], (153)

where

φ(σ, λ, r, τ, θ) = i

2λτ + 1
(
σ
∂

∂σ
ϕ(σ, r, τ, λ, θ) + λ

∂

∂λ
ϕ(σ, r, τ, λ, θ)

)
∈ A0,0,0,0

c ([0,Σ)σ × (Λ,∞]λ × (0,∞]r × [0,∞)τ × ∂Xθ)
(154)

ϕ0(σ, λ, r, τ, θ) = −2iλτϕ(σ, λ, r, τ, θ)
(2λτ + 1)2 ∈ A0,0,0,0

c ([0,Σ)σ × (Λ,∞]λ × (0,∞]r × [0,∞)τ × ∂Xθ),

(155)

and ψ = i(2λτ + 1)−1ϕ ∈ A0,0,0,0
c ([0,Σ)σ × (Λ,∞]λ× (0,∞]r × [0,∞)τ × ∂Xθ). Since the right-hand

side of eq. (153) involves only γ − 1 in place of γ, this identity can be used repeatedly to reduce the
to-be-proven claim eq. (151) to the ℜγ < −1 case.

A modification of this argument shows that if 0 /∈ suppχ, then

I+,γ,k[ϕ, χ](τ, r, θ) ∈ (1/r)∞L∞
loc([0,∞)τ × (0,∞]r × ∂Xθ). (156)

Indeed, in this case, the integrand in eq. (152) is supported for λ ∼ r. Thus, the initial ML-bound
yields I+,γ,k[ϕ, χ](τ, r, θ) ∈ rℜγ+1L∞

loc([0,∞)τ × (0,∞]r × ∂Xθ). The inductive argument then shows
that the same bound holds with γ +K in place of γ, for all K ∈ N, which then implies eq. (156).

In order to deduce that I+,γ,k[ϕ, χ] ∈ A0,0
loc([0,∞)τ × (0,∞]r × ∂Xθ), we want to show that

(r∂r)j(τ∂τ )κLI+,γ,k[ϕ, χ](τ, r, θ) ∈ L∞
loc([0,∞)τ × (0,∞]r × ∂Xθ) (157)

for all j, κ ∈ N and L ∈ Diff(∂X). As elsewhere, we use LI+,γ,k[ϕ, χ] = I+,γ,k[Lϕ, χ], and now
we have τ∂τI+,γ,k[ϕ, χ] = iτI+,γ+2,k[ϕ, χ] + I+,γ,k[ϑ, χ] for ϑ(σ, λ, r, τ, θ) = τ∂τϕ(σ, λ, r, τ, θ) and
r∂rI+,γ,k[ϕ, χ] = I+,γ,k[ψ, χ]− I+,γ,k[ϕ, σχ′(σ)] for ψ(σ, λ, r, τ, θ) = (−σ∂σ + r∂r)ϕ(σ, λ, r, τ, θ). So,
the desired bounds in eq. (157) follow from the L∞-bounds proven above via the usual inductive
argument.

Suppose now that ϕ(σ, λ, r, τ, θ) = ϕ(λ, θ) does not depend on any of σ, τ, r. Then, ∂τI+,γ,k[ϕ, χ] =
iI+,γ+2,k[ϕ, χ] + r−1Σ−1I+,γ+1,k[φ, χ′] and ∂rI+,γ,k[ϕ, χ] = −r−1I+,γ,k[ϕ, σχ′(σ)]. So, a similar
inductive argument to the above shows that

∂κτLI+,γ,k[ϕ, χ] ∈ L∞
loc([0,∞)τ × (0,∞]s × ∂Xθ) (158)

∂κτ ∂
j+1
r LI+,γ,k[ϕ, χ] ∈ r−∞L∞

loc([0,∞)τ × (0,∞]r × ∂Xθ) (159)

for all j, κ ∈ N and L ∈ Diff(∂Xθ). These estimates suffice to show that

I+,γ,k[ϕ, χ](τ, r, θ) ∈ A(0,0),(0,0)
loc ([0,∞)τ × (0,∞]r × ∂Xθ) (160)

and that only the O(1) term in the r →∞ expansion is nontrivial. It can be checked, e.g. via the
integration-by-parts argument above, that this leading term is that specified by eq. (150). □
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4.3. Asymptotics elsewhere, remaining case. Finally, to complete our discussion of I−:

Proposition 4.7. For φ(σ, λ, θ) ∈ A(E,α),(F ,β)
c ([0,Σ)σ × (Λ,∞]λ × ∂Xθ) and ϕ(σ, r, θ) = φ(σ, σr, θ),

we have
I−[ϕ](t, x) = I−,phg[φ](t/r2, r, θ) + I−,osc[φ](t/r2, t/r, θ) (161)

for
I−,phg[φ](τ, r, θ) ∈ r−2A(E,α),(0,0)

loc (Ċ1\kf) (162)
and I−,osc[φ](τ, s, θ) ∈ e−i/4ττ1/2s−2A(E,α),(F ,β)

loc ([0,∞)τ × (0,∞]s × ∂Xθ), where E is the index set
as s → ∞ and F is the index set as τ → 0. Moreover, if χ ∈ C∞

c (R) satisfies suppχ ⋐ (−1, 1),
then χ(2sΣ)I−,osc[φ](τ, s, θ) ∈ A∞,∞

loc ([0,∞)τ × (0,∞]s × ∂Xθ). ■

Proof. Let ψ ∈ C∞
c (R) satisfy suppψ ⋐ (−1/2, 1/2) and 0 /∈ supp(1− ψ). Now define

I−,osc[φ,ψ](τ, s, θ) = 2
r2

∫ ∞

Λ
eiλ

2τ−iλψ(2λτ − 1)φ
(λτ
s
, λ, θ

)
λdλ, (163)

I−,phg[φ,ψ](τ, r, θ) = 2
r2

∫ ∞

Λ
eiλ

2τ−iλ(1− ψ(2λτ − 1))φ
(λ
r
, λ, θ

)
λdλ. (164)

Then eq. (161) holds. We just need to check that each of these integrals lies in the expected function
spaces. We begin with I−,phg. Let

φ(σ, λ, θ) ∼
∑

(j,k)∈E,ℜj≤α
φj,k(λ, θ)σj logk σ (165)

denote the σ → 0+ expansion of φ, so φj,k(λ, θ) ∈ A
(F ,β)
c ((Λ,∞]λ × ∂Xθ). Consider the function

φγ defined by

φγ(σ, λ, θ) = σ−γ
[
φ(σ, λ, θ)−

∑
(j,k)∈E,ℜj≤γ

φj,k(λ, θ)σj logk σ
]
∈ A0,(F ,β)

c ([0,Σ)σ × (Λ,∞]λ × ∂Xθ).

(166)
Then, we have

r2

2 I−,phg[φ,ψ] =
∑

(j,k)∈E,ℜj≤γ

k∑
κ=0

(
k

κ

)(1
r

)j
logk−κ

(1
r

)
I−,phg,1+j,κ[φj,k, ψ] +

(1
r

)γ
I−,phg,1+γ,0[φγ , ψ],

(167)
where the quantity I−,phg,γ,κ is defined by Lemma 4.9. That lemma then gives that each term on
the right-hand side of eq. (167), and therefore I−,phg[φ,ψ] itself, has the required form, except with
a conormal error of order γ. But since γ ≤ α was arbitrary, eq. (162) follows.

Moving on to the other oscillatory integral, we introduce the coordinate δ = λτ − 1/2. In terms
of this coordinate,

s2I−,osc[φ,ψ](τ, s, θ) = e−i/4τ Ĩ−,osc[φ, (δ + 1)ψ(δ)](τ, s, θ) (168)
and

Ĩ−,osc[φ,ψ](τ, s, θ) =
∫ ∞

−∞
eiδ

2/τψ(2δ)φ
(1
s

(
δ + 1

2
)
,

1
τ

(
δ + 1

2
)
, θ
)

dδ. (169)

We can split this, for each γ ∈ R, as

Ĩ−,osc[φ,ψ] =
∑

(j,k)∈E,ℜj≤γ

k∑
κ=0

(
k

κ

)
(−1)k−κs−j logk−κ(s)Ĩ−,osc[φj,k, ψj,κ] + s−γ Ĩ−,osc[φγ , ψγ ], (170)

where ψj,κ(2δ) = (δ + 1/2)j logκ(δ + 1/2)ψ(2δ) and ψγ(2δ) = (δ + 1/2)γψ(2δ). Now let

φj,k(λ, θ) ∼
∑

(j′,k′)∈F ,ℜj′≤β
λ−j′ logk′(λ)φj

′,k′

j,k (θ) (171)
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denote the expansion of φj,k(λ, θ) as λ→∞, and let λ−γφγj,k(λ, θ) denote the error from truncating
the expansion to ℜj′ ≤ γ. We use similar notation for φγ . Then, for each γ, γ′ ∈ R,

Ĩ−,osc[φj,k, ψj,k] =
∑

(j′,k′)∈F ,ℜj′≤γ

k′∑
κ=0

(
k′

κ

)
(−1)k′−κτ j

′ logk′−κ(τ)Ĩ−,osc[φj
′,k′

j,k , ψj
′,k′

j,k ]

+ τγ Ĩ−,osc[φγj,k, ψ
γ
j,k], (172)

Ĩ−,osc[φγ , ψγ ] =
∑

(j′,k′)∈F ,ℜj′≤γ′

k′∑
κ=0

(
k′

κ

)
(−1)k′−κτ j

′ logk′−κ(τ)Ĩ−,osc[φj
′,k′
γ , ψj

′,k′

j,k ]

+ τγ
′
Ĩ−,osc[φγ

′
γ , ψ

γ′
γ ], (173)

where ψj
′,κ
j,k (2δ) = (δ + 1/2)j logκ(δ + 1/2)ψj,k(2δ), and similarly for the other undefined terms.

The result then follows from Proposition 4.10. Indeed, we have that Ĩ−,osc is a sum of four types
of terms:

• First, consider the “main” terms proportional to s−j logk(s)τ j′ logk′(τ)Ĩ−,osc[φj
′,κ
j,κ , ψ

j′,κ
j,κ ].

Noting that Ĩ−,osc[φj
′,κ
j,κ , ψ

j′,κ
j,κ ] is completely independent of σ, the last clause of Proposi-

tion 4.10 yields

Ĩ−,osc[φj
′,κ
j,κ , ψ

j′,κ
j,κ ] ∈ τ1/2C∞([0,∞)τ ;C∞(∂Xθ)). (174)

• Now consider the terms s−j logk(s)τγ Ĩ−,osc[φγj,k, ψ
γ
j,k]. Noting that Ĩ−,osc[φγj,k, ψ

γ
j,k] does not

depend on s, we have

Ĩ−,osc[φγj,k, ψ
γ
j,k] ∈ τ

1/2A0
loc([0,∞)τ × ∂Xθ). (175)

• Now consider the terms s−γτ j logk(τ)Ĩ−,osc[φj,kγ , ψj,kγ ].
By the last clause of Proposition 4.10, Ĩ−,osc[φj,kγ , ψj,kγ ] ∈ τ1/2A0,(0,0)

loc ([0,∞)τ × (0,∞]s ×
∂Xθ).
• Finally, in τγs−γ′

Ĩ−,osc[φγ
′
γ , ψ

γ′
γ ], Ĩ−,osc[φγ

′
γ , ψ

γ′
γ ] ∈ τ1/2A0,0

loc([0,∞)τ × (0,∞]s × ∂Xθ) by
Proposition 4.10.

Putting this all together, Ĩ−,osc[φ](τ, s, θ) ∈ τ1/2A(E,γ),(F ,γ′)
loc ([0,∞)τ × (0,∞]s × ∂Xθ). Taking

γ → α and γ′ → β completes the proof that Ĩ−,osc lies in the desired function spaces.
If χ ∈ C∞

c (R) satisfies suppχ ⋐ (−1, 1), then χ(2sΣ)I−,osc[φ](τ, s, θ) ∈ A∞,∞
loc ([0,∞)τ × (0,∞]s×

∂Xθ), as the corresponding clause of Proposition 4.10 shows that each of the terms Ĩ−,osc appearing
above is Schwartz when multiplied by χ(2sΣ). □

Remark 4.8. The proof shows that the r →∞ expansion of I−,phg[φ,ψ] is given by

I−,phg[φ,ψ] ∼ 2
r2

∑
(j,k)∈E,ℜj≤α

(1
r

)j
logk

(1
r

) ∑
K≥k,(j,K)∈E

(
K

k

)∫ ∞

Λ
eiλ

2τ−iλ

φj,K(λ, θ)λ1+j logK−k(λ) dλ, (176)

analogously to eq. (148). The s→∞ expansion of I−,osc[φ,ψ] is given by

I−,osc[φ,ψ] ∼ e−i/4τ

r2

∑
(j,k)∈E,ℜj≤α

s−j logk(s)(−1)k
∑

K≥k,(j,K)∈E

(
K

k

)
Ĩ−,osc[φj,K , (δ + 1)ψj,K−k(δ)],

(177)
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where

Ĩ−,osc[φj,K , ψj,K−k] =
∫ ∞

−∞
eiδ

2/τ (δ + 1/2)1+j logK−k(δ + 1/2)ψ(2δ)φj,K
(1
τ

(
δ + 1

2
)
, θ
)

dδ. (178)

We do not write the τ → 0 expansion.

Lemma 4.9. Let ψ ∈ C∞
c (R) satisfy suppψ ⋐ (−1/2, 1/2) and 0 /∈ supp(1− ψ). Fix Σ,Λ > 0. Let

ϕ ∈ A0,0,0,0
c ([0,Σ)σ × (Λ,∞]λ × (0,∞]r × [0,∞)τ × ∂Xθ), and consider, for γ ∈ C and κ ∈ N,

I−,phg,γ,κ[ϕ, ψ](τ, r, θ) =
∫ ∞

Λ
eiλ

2τ−iλ(1− ψ(2λτ − 1))ϕ
(λ
r
, λ, r, τ, θ

)
λγ logκ(λ) dλ. (179)

Then, we have I−,phg,γ,κ[φ,ψ](τ, r, θ) ∈ A0,0
loc([0,∞)τ × (0,∞]r × ∂Xθ). If ϕ(σ, λ, r, τ, θ) = ϕ(λ, θ)

depends only on λ, θ, then this can be improved to

I−,phg,γ,κ[ϕ, ψ](τ, r, θ) ∈ A(0,0),(0,0)
loc ([0,∞)τ × (0,∞]r × ∂Xθ), (180)

and I−,phg,γ,κ[ϕ, ψ](τ, s, θ) does not depend on r in this case. ■

Proof. We first prove that I−,phg,γ,κ[φ](τ, r, θ) ∈ L∞
loc([0,∞)τ × (0,∞]r × ∂Xθ). If ℜγ < −1, this

follows immediately from an ML-bound. Otherwise, we use an integration-by-parts argument as
usual:exp(iλ2τ − iλ) = −i(2λτ − 1)−1∂λ exp(iλ2τ − iλ), so

I−,phg,γ,κ[ϕ, ψ] =
∫ ∞

Λ

[ −i
2λτ − 1

∂

∂λ
eiλ

2τ−iλ
]
(1− ψ(2λτ − 1))ϕ

(λ
r
, λ, r, τ, θ

)
λγ log(λ)κ dλ. (181)

Note that the integrand is well-defined, since the factor 1− ψ(2λτ − 1) vanishes when 2λτ − 1 is
sufficiently small. Integrating-by-parts, noting that no boundary terms arise,

I−,phg,γ,κ[ϕ, ψ] = I−,phg,γ−1,κ[ϕ0, ψ0]− γI−,phg,γ−1,κ[ϕ1, ψ0]− κI−,phg,γ−1,κ−1[ϕ1, ψ0], (182)

where ψ0 ∈ C∞
c ((−1/2,+1/2)) is identically 1 near the origin and satisfies suppψ0 ⋐ ψ−1({1}), and

where

ϕ0(σ, λ, r, τ, θ) = (1− ψ(2λτ − 1))
[
− 2iλτ

(2λτ − 1)2 + i

2λτ − 1(σ∂σ + λ∂λ)
]
ϕ(σ, λ, r, τ, θ)

− 2iλτ
2λτ − 1ψ

′(2λτ − 1)ϕ(σ, λ, r, τ, θ), (183)

ϕ1(σ, λ, r, τ, θ) = (1− ψ(2λτ − 1))−iϕ(σ, λ, r, τ, θ)
2λτ − 1 . (184)

Since the three functions (1 − ψ(2λτ − 1))/(2λτ − 1), (1 − ψ(2λτ − 1))λτ/(2λτ − 1)2, ψ′(2λτ −
1)λτ/(2λτ − 1) all lie in A0,0,0,0

c ([0,Σ)σ × (Λ,∞]λ × (0,∞]r × [0,∞)τ × ∂Xθ), we have

ϕ0(σ, λ, r, τ, θ), ϕ1(σ, λ, r, τ, θ) ∈ A0,0,0,0
c ([0,Σ)σ × (Λ,∞]λ × (0,∞]r × [0,∞)τ × ∂Xθ). (185)

Thus, each term on the right-hand side of eq. (182) has the same form as the original oscillatory
integral, except with γ − 1 in place of γ and possibly κ− 1 in place of κ, if κ > 0. So, eq. (182) can
be used inductively to conclude the desired L∞-bound from the ℜγ < −1 case.

In order to prove conormality, we want to prove that
(τ∂τ )j(r∂r)kLI−,phg,γ,κ[φ](τ, s, θ) ∈ L∞

loc([0,∞)τ × (0,∞]r × ∂Xθ) (186)
for all j, k ∈ N and L ∈ Diff(∂X). The angular derivatives L are handled via differentiation under
the integral sign as elsewhere, and for the other directions we use the following identities:

τ∂τI−,phg,γ,κ[ϕ, ψ] = iτI−,phg,γ+2,κ[ϕ, ψ] + I−,phg,γ,κ[φ,ψ]− I−,phg,γ,κ[ϖ,ψ0] (187)
for φ(σ, λ, r, τ, θ) = τ∂τϕ(σ, λ, r, τ, θ) and ϖ(σ, λ, r, τ, θ) = 2λτψ′(λτ − 1)ϕ(σ, λ, r, τ, θ), and

r∂rI−,phg,γ,κ[ϕ, ψ](τ, r, θ) = I−,phg,γ,κ[ς, ψ] (188)
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for ς(σ, λ, r, τ, θ) = (−σ∂σ + r∂r)ϕ(σ, λ, r, τ, θ). Each of these has the same form as the original
integral, so, a similar inductive argument to the above shows that the bounds eq. (186) follow from
those already proven.

Finally, suppose that ϕ(σ, λ, r, τ, θ) = ϕ(λ, θ) depends only on λ, θ. Then, eq. (187) can be
improved to

∂τI−,phg,γ,κ[ϕ, ψ](τ, r, θ) = iI−,phg,γ+2,κ[ϕ, ψ](τ, r, θ)− I−,phg,γ+1,κ[Π,ψ0](τ, r, θ) (189)

for Π = (λτ)−1ϖ, and now we simply have ∂sI−,phg,γ,κ[ϕ, ψ] = 0. Noting that each term on the
right-hand side of eq. (189) has the same form as the original integral, the usual inductive argument
yields polyhomogeneity. □

Proposition 4.10. Let ψ ∈ C∞
c (R) satisfy suppψ ⋐ (−1/2, 1/2). Fix Σ,Λ > 0. Let ϕ ∈

A0,0,0,0
c ([0,Σ)σ × (Λ,∞]λ × (0,∞]s × [0,∞)τ × ∂Xθ), and consider, for γ ∈ C. Consider

Jk[ϕ, ψ](s, τ, θ) =
∫ +∞

−∞
eiδ

2/τδkψ(2δ)ϕ
(1
s

(
δ + 1

2
)
,

1
τ

(
δ + 1

2
)
, s, τ, θ

)
dδ. (190)

Then, Jk[ϕ, ψ](τ, s, θ) ∈ τ1/2+kA0,0
loc([0,∞)τ × (0,∞]s × ∂Xθ). If χ ∈ C∞

c (R) satisfies suppχ ⋐
(−1, 1), then χ(2sΣ)Jk[ϕ, ψ] is Schwartz.

If ϕ(σ, λ, s, τ, θ) = ϕ(σ, s, θ) does not depend on λ, τ , then Jk[ϕ, ψ](τ, θ) ∈ τ1/2+kA0,(0,0)
loc ([0,∞)τ ×

(0,∞]s × ∂Xθ), where the (0, 0) is the index set as τ → 0. ■

Proof. (I) We begin by proving the weaker claim that

J2k[ϕ, ψ] ∈ τkL∞
loc([0,∞)τ × (0,∞]s × ∂Xθ). (191)

As with the other integrals analyzed elsewhere in this paper, this is proven using integration-
by-parts: if k = 0, then this bound is immediate, and otherwise, if k ≥ 1, use

J2k[ϕ, ψ] = − iτ2

∫ +∞

−∞

[ ∂
∂δ
eiδ

2/τ
]
δ2k−1ψ(2δ)ϕ

(1
s

(
δ + 1

2
)
,

1
τ

(
δ + 1

2
)
, s, τ, θ

)
dδ. (192)

So,

− 2i
τ
J2k[ϕ, ψ] = (2k − 1)J2k−2[ϕ, ψ] + 2J2k−2[ϕ,∆ψ′(∆)]

+ J2k−2[σ∂σϕ, (∆ + 1/2)−1∆ψ(∆)] + J2k−2[λ∂λϕ, (∆ + 1/2)−1∆ψ(∆)]. (193)

Using this identity inductively, J2k[ϕ, ψ] ∈ τkL∞
loc([0,∞)τ × (0,∞]s × ∂Xθ) follows from the

k = 0 case.
(II) The next goal is to improve this to the optimal

Jk[ϕ, ψ] ∈ τ1/2+kL∞
loc([0,∞)τ × (0,∞]s × ∂Xθ) (194)

In order to improve upon these bounds when k ≥ 1, we expand ϕ in Taylor series around
δ = 0:

ϕ
(1
s

(
δ + 1

2
)
,

1
τ

(
δ + 1

2
)
, s, τ, θ

)
=

∑
j1+j2≤J

δj1+j2

j1!j2!sj1τ j2 ϕ
(j1,j2)

( 1
2s,

1
2τ , s, τ, θ

)

+
∫ δ

0
(δ −∆)J

∑
j1+j2=J+1

1
j1!j2!sj1τ j2 ϕ

(j1,j2)
(1
s

(
∆ + 1

2
)
,

1
τ

(
∆ + 1

2
)
, s, τ, θ

)
d∆, (195)

where ϕ(j1,j2)(σ, λ, s, τ, θ) = ∂j1σ ∂
j2
λ ϕ(σ, λ, s, τ, θ). So, for any J ∈ N,

Jk[ϕ, ψ] = Jk,J+1[ϕ, ψ] +
∑

j1+j2≤J
Jk,j1,j2 [ϕ, ψ] (196)
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where

Jj1,j2 [ϕ, ψ] = 1
j1!j2!sj1τ j2 ϕ

(j1,j2)
( 1

2s,
1
2τ , s, τ, θ

) ∫ +∞

−∞
eiδ

2/τδk+j1+j2ψ(2δ) dδ (197)

and

Jk,J+1[ϕ, ψ] =
∫ +∞

−∞
eiδ

2/τδkψ(2δ)
[ ∫ δ

0
(δ −∆)J

×
∑

j1+j2=J+1

1
j1!j2!sj1τ j2 ϕ

(j1,j2)
(1
s

(
∆ + 1

2
)
,

1
τ

(
∆ + 1

2
)
, s, τ, θ

)
d∆
]

dδ. (198)

The method of stationary phase (which in this case amounts to Parseval–Plancherel),
applied to the integral

Ĵj [ψ] =
∫ +∞

−∞
eiδ

2/τδjψ(2δ) dδ, (199)

yields that Ĵj [ψ] ∈ τ1/2+jC∞[0,∞)τ . So,

Jj1,j2 [ϕ, ψ] ∈ τ1/2+k+j1+j2A0,0
loc([0,∞)τ × (0,∞]s × ∂Xθ). (200)

In order to estimate Jk,J+1[ϕ, ψ], we use a similar integration-by-parts argument as before.
We prove, via induction on k, that

Jk,J+1[ϕ, ψ] ∈ τ ⌊(k+J+1)/2⌋L∞
loc([0,∞)τ × (0,∞]s × ∂Xθ), (201)

which is trivial in the k = 0 case. Integrating-by-parts, we can write −2iτ−1Jk,J+1[ϕ, ψ] =
(k − 1)Jk−2,J+1[ϕ, ψ] + 2Jk−1,J+1[ϕ, ψ′] + JJk−1,J [ϕ, ψ] if J ≥ 1 and, otherwise,

−2i
τ
Jk,1[ϕ, ψ] = (k − 1)Jk−2,1[ϕ, ψ] + 2Jk−1,1[ϕ, ψ′] + Jk−1[φ, ψ̃] (202)

for ψ̃(2δ) = (δ + 1/2)−J−1ψ(2δ) and

φ(σ, λ, s, τ, θ) =
∑

j1+j2≤J+1

σj1λj2

j1!j2!
∂j1

∂σj1
∂j2

∂λj2
ϕ(σ, λ, s, τ, θ), (203)

where Jk−1[φ,ψ] is defined by eq. (190). The method of nonstationary phase shows that

Jk−1,J+1[ϕ, ψ] ∈ τ∞L∞
loc([0,∞)τ × (0,∞]s × ∂Xθ). (204)

Moreover, by eq. (191), we have Jk+J−1[φ, ψ̃] ∈ τ ⌊(k+J−1)/2⌋L∞
loc([0,∞)τ × (0,∞]s × ∂Xθ).

So, if we know that

Jk−2,J+1[ϕ, ψ],Jk−1,J [ϕ, ψ] ∈ τ ⌊(k+J−1)/2⌋L∞
loc([0,∞)τ × (0,∞]s × ∂Xθ), (205)

then we can conclude that eq. (201) holds. As the sum of the subscripts of these integrals
are 2 smaller than J +K, this sets up an inductive algorithm to deduce the claim from the
k + J = 0 base case which is already known.

Returning now to eq. (194), this follows from eq. (196) combined with eq. (200) and
eq. (201), as long as J is sufficiently large.

(III) Having now proven the optimal L∞-bounds eq. (201), we upgrade this to conormality by
estimating derivatives. We just need to do this for Jk,J+1[ϕ, ψ]. We can do this using the
usual argument: LJk,J+1[ϕ, ψ] = Jk,J+1[Lϕ, ψ] for L ∈ Diff(∂Xθ), s∂sJk,J+1[ϕ, ψ](τ, s, θ) =
Jk,J+1[(σ∂σ + s∂s)φ(σ, λ, s, τ, θ), ψ̃], where φ, ψ̃ are as above, and

τ∂τJk,J+1[ϕ, ψ](τ, s, θ) = −τ−1Jk+2,J+1[ϕ, ψ](τ, s, θ) + Jk,J+1[(λ∂λ + τ∂τ )φ(σ, λ, s, τ, θ), ψ̃]. (206)
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So, via the usual inductive argument, (s∂s)m(τ∂τ )nLJk,J+1[ϕ, ψ] ∈ τ ⌊(k+J+1)/2⌋L∞
loc([0,∞)τ×

(0,∞]s × ∂Xθ) for all m,n ∈ N, which means that
Jk,J+1[ϕ, ψ] ∈ τ ⌊(k+J+1)/2⌋A0,0

loc([0,∞)τ × (0,∞]s × ∂Xθ). (207)
(IV) Consider now χ(2sΣ)Jk[ϕ, ψ], where χ is as in the statement of the proposition. Then,

χ(2sΣ)Jk,j1,j2 [ϕ, ψ] = 0 identically, for all j1, j2 ∈ N. So, the estimates above give Schwartz
behavior as τ →∞.

(V) Suppose now that ϕ(σ, λ, s, τ, θ) = ϕ(σ, s, θ) does not depend on λ, τ . Then, Jk[ϕ, ψ] =∑J
j=0 Jk,j,0[ϕ, ψ] + Jk,J+1[ϕ, ψ], where

Jj,0[ϕ, ψ] = 1
j!sj ϕ

(j)
( 1

2s, s, θ
) ∫ +∞

−∞
eiδ

2/τδk+jψ(2δ) dδ = 1
j!sj ϕ

(j)
( 1

2s, s, θ
)
Ĵj [ψ], (208)

Jk,J+1[ϕ, ψ] =
∫ +∞

−∞
eiδ

2/τδkψ(2δ)
[ ∫ δ

0

(δ −∆)J

(J + 1)!sJ+1ϕ
(J+1)

(1
s

(
∆ + 1

2
)
, s, θ

)
d∆
]

dδ. (209)

where ϕ(j)(σ, s, θ) = ∂jσϕ(σ, s, θ). Instead of eq. (200), we now have

Jj,0[ϕ, ψ] ∈ τ1/2+k+jA0,(0,0)
loc ([0,∞)τ × (0,∞]s × ∂Xθ), (210)

since Ĵj [ψ](τ) ∈ τ1/2+kC∞([0,∞)τ ). On the other hand, we can improve eq. (206) to
∂τJk,J+1[ϕ, ψ] = τ−2Jk+2,J+1[ϕ, ψ](τ, s, θ). (211)

Note that the the growth of the τ−2 factor is cancelled out by the extra τ2 decay of Jk+2,J+1
versus Jk,J+1. So, the usual inductive argument yields

Jk,J+1[ϕ, ψ] ∈ τ ⌊(k+J+1)/2⌋A0,(0,0)
loc ([0,∞)τ × (0,∞]s × ∂Xθ). (212)

Combining the estimates above, we conclude the final clause of the proposition.
□

5. Proof of main lemma

We now turn to the proof of Theorem C, our “main lemma.” Let E ,F ,G, α, β, γ, ϕ be as in the
statement of that theorem. Let χlow, χtf∩bf , χhigh ∈ C∞(Xsp

res) be a partition of unity as in the
introduction, so χlow + χtf∩bf + χhigh = 1 and

suppχlow ∩ (bf ∪∞f) = ∅, suppχtf∩bf ∩ (zf ∪∞f) = ∅, suppχhigh ∩ (zf ∪ tf) = ∅, (213)
and we can choose that suppϕlow ∩ (suppχtf∩bf ∪ suppχhigh) = ∅. Moreover, χtf∩bf can be chosen
to be supported over Ẋ[R] for some R, that is over a collar neighborhood of the boundary of X.

We split I±[ϕ] as in eq. (36). We analyze each piece separately. First of all, according to
Proposition 2.1,

I±[χlowϕ] ∈ A(E/2+1,α/2+1),(F+2,β+2),(0,0)(C1). (214)
On the other hand, Proposition 3.1 says that I+[χhighϕ] ∈ A∞,∞,(0,0), and, together, Proposition 3.1
and Proposition 3.3 say that

I−[χhighϕ] ∈ A∞,∞,(0,0)(C) + e−i(1−χ(t))r2/4tA∞,∞,(G+1/2,γ+1/2),∞,∞(M)

= e−i(1−χ(t))r2/4tA∞,∞,(G+1/2,γ+1/2),∞,(0,0)(M). (215)

Regarding I+[χtf∩bfϕ], says Proposition 4.1 that I+[χtf∩bfϕ] ∈ A∞,(F+2,β+2),(0,0)(C1). Regarding
I−[χtf∩bfϕ], the same proposition says that I−[χtf∩bfϕ] = exp(−ir2/4t)Ĩ−[χtf∩bfϕ] + I−,phg[χtf∩bfϕ]
for some

Ĩ−[χtf∩bfϕ] ∈ A∞,(F+2,β+2),(G+1/2,γ+1/2),∞,∞(M). (216)
and I−,phg[χtf∩bfϕ] ∈ A∞,(F+2,β+2),(0,0)(C1). So, summing up I±[ϕ] = I±[χlowϕ] + I±[χtf∩bfϕ] +
I±[χhighϕ], we conclude Theorem C.
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Appendix A. Microlocal supplement

The goal of this appendix is to sketch a microlocal proof of the following proposition:

Proposition A.1. Suppose that f ∈ S(X), and let φ±(σ, x) = e∓iσrR(σ2 ± i0)f(x). Then, letting
I−[φ−] = exp(−i(1− χ(t))r2/4t)Iosc[φ] + I−,phg[φ] denote the decomposition of I−[φ−] provided in
Theorem C, it must be the case that the linear combination

Iphg = I+[φ+]− I−,phg[φ−] (217)
is Schwartz at dilF. ■

Proof. First of all, note that because Iphg is already polyhomogeneous on C1, it suffices to prove
that Iphg is Schwartz in dilF◦. Let M0 denote the manifold-with-boundary resulting from taking
[Rt ×X; {±∞} × ∂X] subtracting the boundary hypersurfaces corresponding to {±∞} ×X and
blowing down the boundary hypersurfaces corresponding to Rt × X. Concretely, this mwc is
identifiable with Rt/r × [0,∞)ρ × ∂Xθ near the boundary. We utilize Melrose’s sc-calculus on M0.
See [Vas18] for an introduction.

To show that Iphg is Schwartz at dilF◦ means to show that WFsc(Iphg) = ∅, where WFsc is
Melrose’s notion of sc-wavefront set. Let sco∗M0 denote the zero section of the sc-cotangent bundle
over dilF◦. Because Iphg is conormal,

WFsc(Iphg) ⊆ sco∗M0, (218)
as follows e.g. via repeated applications of ellipticity. In order to study WFsc(Iphg) further, we use
the relation of I[φ] = I+[φ+]− I−[φ−] to u(t, x) = (U(t)f)(x) given by eq. (16). Indeed,

WFsc(eiEtφ(x)) = ∅ (219)
for any E ∈ R and φ ∈ S(X). (If this looks strange, recall that ∂M0 does not contain any points
where r ̸=∞.) So, WFsc(u) = WFsc(I[φ]). Because I[φ] = exp(−i(1− χ(t))r2/4t)Iosc[φ−] + Iphg,
we have

WFsc(Iphg) ⊆WFsc(exp(−i(1− χ(t))/4tρ2)Iosc[φ−]) ∪WFsc(I[φ])
= WFsc(exp(−i(1− χ(t))/4tρ2)Iosc[φ−]) ∪WFsc(u). (220)

By the conormality of Iosc, we have WFsc(exp(−i(1 − χ(t))/4tρ2)Iosc) ⊆ graph∂M0(2(r/t) dr +
(r/t)2 dt) the right-hand side being the graph over ∂M0 of the 1-form −d(r2/t) = −2(r/t) dr +
(r/t)2 dt, which is a smooth, nonvanishing section of scT ∗M0. Because it is nonvanishing,

WFsc(exp(−i(1− χ(t))/4tρ2)Iosc) ∩ sco∗M0 = ∅. (221)
Combining this with eq. (218) and eq. (220), we have WFsc(Iphg) ⊆WFsc(u)∩sco∗M0. To summarize,
to prove that WFsc(Iphg) = ∅, it suffices to prove that WFsc(u) ∩ sco∗M0 = ∅.

In order to accomplish this, one can use a standard argument based on the splitting u =
u+ + u−, where u±(t, x) = 1±t>0u(t, x). As WFsc(u) ⊆ (WFsc(u−)∪WFsc(u+)), it suffices to prove
WFsc(u±) ∩ sco∗M0 = ∅ for each choice of sign. To this end, note that u± satisfy the PDE

−i∂tu± = Pu± ∓ iδ(t)f(x) (222)
in the sense of distributions. As WFsc(δ(t)f(x)) is contained at fiber infinity (as can be seen using
the Fourier transform in a local coordinate patch), it is irrelevant as far as sc-wavefront set in the
interior of the fibers is concerned. We have P = ∆g mod Diff1,−2

sc (M0), where the ‘−2’ indicates two
orders of decay. So, the principal symbol of P is

p(τ, ξ) = τ + g−1(ξ, ξ) ∈ C∞(scT ∗M0). (223)
Associated to this function is the Hamiltonian vector field Hp = (∂τp)∂t+(∂ξp) ·∂x = ∂t+2g−1(ξ,−).
Let Hp = ρHp, which restricts to a vector field on scT ∗

∂M0
M0. The Duistermaat-Hörmander theorem
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— see [Vas18] for a precise statement in the context of the sc-calculus — then says that the portion
of WFsc(u±) in scT ∗

∂M0
M0 consists of maximally extended integral curves of Hp. Those in the zero

section sco∗M0 are of the form
γθ0 = (sco∗M0) ∩ {θ = θ0}, (224)

as follows from the explicit formula for Hp. Because u± vanishes when ±t < 0, it has no sc-wavefront
set over the corresponding copy of dilF◦. So, γθ0 ̸⊆WFsc(u±), which, by Duistermaat–Hörmander,
implies WFsc(u±) ∩ sco∗M0 = ∅. □

Appendix B. Necessity of nf and dilF

In this appendix, we summarize the role of nf, dilF and why it is not possible to blow down either
while maintaining the exponential-polyhomogeneous form of solutions of the Schrödinger equation.
We only sketch the argument, and, for simplicity, we work in the dimX = 1 case.

Lemma B.1. If θ1, θ2, a0, a1, a2 are polyhomogeneous functions on a mwc M and p ∈ ∂M are such
that θ1, θ2 are real-valued, a0 ∈ C∞(M ;C×), a1 extends continuously to a neighborhood of p, and
this extension vanishes at p, and eiθ1(a0 + a1) = eiθ2a2, then, near p, the difference θ1 − θ2 is, in a
neighborhood of p, conormal at each adjacent boundary hypersurface to every negative order. ■

Proof. The function a0 + a1 is nonvanishing near p, so b = (a0 + a1)−1 is well-defined there, and
a straightforward argument shows that b is polyhomogeneous, with a continuous extension to the
boundary of M near p. Let b̃ be a globally polyhomogeneous function extending continuously to all
of ∂M and satisfying b̃ = b near p. Then,

eiθ1−iθ2 = b̃a2, (225)
near p. Since a2 is polyhomogeneous, and since a0 + a1 is uniformly bounded near p, it must be
that a2 extends continuously to a neighborhood of p. So, the right-hand side of eq. (225) extends
continuously to a neighborhood of p.

Moreover, the extension of a2 to the boundary must be nonvanishing near p, and likewise for b̃,
so b̃a2 is nonvanishing near p. This implies that the difference

θ1 − θ2 = −i log(b̃a2) (226)
is, near p, polyhomogeneous with all index sets in {z ∈ C : ℜz ≥ 0} × N, which is equivalent to the
desired result. □

The elementary proof is omitted for brevity’s sake.
Consider now the Gaussian wavepacket

G(t, x) = 1√
1 + 2it

exp
(
− x2

1 + 2it
)
. (227)

This solves the free Schrödinger equation in 1D with Schwartz initial data.

Proposition B.2. The Gaussian wavepacket above is not of the form aeiθ for θ real-valued and
a, θ polyhomogeneous on M/nf or M/dilF. ■

Below, we will use the same names to refer to faces of the M/f as the corresponding faces in M .

Proof sketch. First, suppose, to the contrary, that G = eiφG0 for some φ,G0 polyhomogeneous on
M/nf. Looking at the t→ 0+ behavior of G in compact subsets worth of r, it must be the case that

⋆ the index set EΣ of φ at Σ can be taken to contain no terms (j, k) ∈ C× N with ℜj < 0.
Near the corner Σ∩ dilF ⊂M/nf, we can use ρ = 1/r and s = t/r as a coordinate system. In terms
of these coordinates,

G = ρ1/2
√
ρ+ 2is

exp
(
− 1
ρ2 + 2isρ

)
. (228)
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For s > 0, this has the form ρ1/2 exp(i/(2sρ))C∞(R+
s × [0,∞)ρ;C×) near ρ = 0. Consequently,

applying Lemma B.1,
φ = 1/(2sρ) mod A0−(R+

s × [0,∞)ρ). (229)
But, for no index set Enf can φ ∈ AEnf ,EΣ(([0,∞)s × [0,∞)ρ) be consistent with eq. (229), since this
forces (−1, 0) ∈ EΣ, in conflict with our earlier observation (⋆). So, the supposition that G has the
stated form on M/nf is not tenable.

We now turn to M/dilF. Since (1 + 2it)−1/2 is polyhomogeneous on C, and therefore on M/dilF,
in order to prove the desired result it suffices to prove that we do not have (1 + 2it)1/2G = eiφa for φ
real valued and a, φ polyhomogeneous on M/dilF. Near the corner nf ∩parF, we can use coordinates
ϱ = 1/t1/2 and τ = t/r2. In terms of these coordinates, (1 + 2it)1/2G = exp(−1/τ(ϱ2 + 2i)). So,
for ϱ > 0, (1 + 2it)1/2G is Schwartz as τ → 0+. It follows that a is Schwartz at nf, however,
restricting to ϱ = 0, (1 + 2it)1/2G has magnitude 1, and therefore so does a. This contradicts the
joint expandability of a at the corner, and therefore polyhomogeneity.

□
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