
WIGNER’S THEOREM

ETHAN SUSSMAN

Let H denote a separable Hilbert space over C of dimension d ∈ N+ ∪ {∞} and

PH = {[ϕ] : ϕ ∈ H\{0}} (1)

its projectivization, where [ϕ] = C×ϕ for ϕ ∈ H\{0}. If d < ∞, then PH = CP d−1. Suppose that H
is the Hilbert space used to model some quantum mechanical system. Then, the elements [ϕ] ∈ PH
have the interpretation of being the physical states of the system, possibly modulo unobservable
phases whose metaphysical reality is besides the point. Key in the quantum mechanical formalism
is the function (−,−) : PH × PH → C defined by

([ϕ], [ψ]) = |⟨ϕ, ψ⟩|
∥ϕ∥∥ψ∥

, (2)

for ϕ, ψ ∈ H\{0}. These are called “transition probabilities” because of their central role in Born’s
rule for predicting the results of measurements.

Unitary maps U ∈ U(H) are precisely those bijections H → H preserving the Hilbert space
structure. Wigner emphasized that, due to the unobservability of phases, the physically relevant
notion of symmetry is not that of a unitary map, but rather the notion that will be called here
a “Wigner isomorphism.” A Wigner isomorphism is a bijection T : PH → PH that preserves
transition probabilities. In other words,

(T ([ϕ]), T ([ψ])) = ([ϕ], [ψ]) (3)

for all ϕ, ψ ∈ H\{0}. Let Iso(PH) denote the set of Wigner isomorphisms. How wild can Wigner
isomorphisms be? Nothing in the definition seems to require that Wigner isomorphisms be continuous,
let alone respect much in the way of the vector space structure of H (or whatever of that structure
is left after projectivization). Wigner’s theorem says that, to the contrary, Wigner isomorphisms all
lift to real-linear maps.

First, some notation. If L : H → H is injective and either (C-)linear or anti-linear (the latter
meaning that Lλϕ = λ∗Lϕ and L(ϕ + ψ) = Lϕ + Lψ for all ϕ, ψ ∈ H and λ ∈ C), the map
[L] : PH → PH is defined by

[L] : [ϕ] 7→ [Lϕ], (4)

this being well-defined because, for any λ ∈ C×, either [Lλϕ] = [λLϕ] = [Lϕ], if L is linear, or
[Lλϕ] = [λ∗Lϕ] = [Lϕ], if L is anti-linear.

One obvious source of Wigner isomorphisms is U(H). If U ∈ U(H), then [U ] is a Wigner
isomorphism, as

([U ]([ϕ]), [U ]([ψ])) = ([Uϕ], [Uψ]) = |⟨Uϕ,Uψ⟩|
∥Uϕ∥∥Uψ∥

= |⟨ϕ, ψ⟩|
∥ϕ∥∥ψ∥

= ([ϕ], [ψ]) (5)

for any ϕ, ψ ∈ H\{0}. A natural guess would be that all Wigner isomorphisms arise in this way, so
that the map U(H) ∋ U 7→ [U ] ∈ Iso(PH) is surjective. This is not entirely correct, but it is close:

Theorem 1 (Wigner’s theorem). If T : PH → PH is a Wigner isomorphism, then T = [U ] for
U : H → H either unitary or anti-unitary.
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Just as a unitary operator on H is a linear map U : H → H such that ⟨Uϕ,Uψ⟩ = ⟨ϕ, ψ⟩ for all
ϕ, ψ ∈ H, an anti-unitary operator on H is an anti-linear map V : H → H such that

⟨V ϕ, V ψ⟩ = ⟨ϕ, ψ⟩∗ (6)

for all ϕ, ψ ∈ H. Every Hilbert space admits at least one anti-unitary map; if B = {ϕn}dim H
n=1 is an

orthonormal basis of H, then the map ∗B : H → H defined by

∗B :
dim H∑
n=1

cnϕn 7→
dim H∑
n=1

c∗
nϕn (7)

is anti-unitary. Note that ∗B depends on the choice of B. If d ≥ 2, then, if we are given a map
L : H → H which is known to either be linear or be anti-linear, which possibility holds is determined
by [L] — see Lemma 4.1. So, [∗B] ∈ Iso(PH) is a Wigner isomorphism not coming from any unitary
operator.

When d = 1, PH is the singleton CP 0, so the only Wigner isomorphism is the identity [idC] :
CP 0 → CP 0. This edge case is not particularly interesting, so below we assume d ≥ 2.

Wigner’s theorem was first stated by Wigner, who also provided an incomplete argument. The
details of that first argument were filled in by Bargmann. Many proofs have appeared in the
literature.

The proof of Wigner’s theorem is split into several steps.

1. Proof of Wigner’s theorem in the d = 2 case

As a warmup, and as a lemma for the full result, consider the case H = C2, in which case
PH = CP 1. Let T : CP 1 → CP 1 denote a Wigner isomorphism. Let e1 = (1, 0) and e2 = (0, 1).
The proof involves constructing an explicit unitary U ∈ U(C2) = U(C2) such that

T ∈ {[U ], [U∗]}, (8)

where ∗ : (a, b) 7→ (a∗, b∗). In order to understand the argument, note that any element of the group
U(2) of 2 × 2 unitary matrices, besides scalar multiples of the identity, is uniquely determined by
two independent eigenvectors and their eigenvalues. Since [U ] does not change if U is multiplied by
a phase, this means that T should uniquely determine the eigenvectors and the ratio of the two
eigenvalues. Once a suitable U has been found, the Wigner automorphism [U−1] ◦ T should be one
of [id], [∗].

As a first step, we show that there exists a Wigner automorphism T0 : CP 1 → CP 1 and unitary
U0 ∈ U(2) such that T = [U0] ◦ T0 and

(⋆) T0([ej ]) = [ej ] for each j ∈ {1, 2}.
Indeed, pick normalized e′

1 ∈ T ([e1]) and e′
2 ∈ T ([e2]). Since

|⟨e′
1, e′

2⟩| = ([e′
1], [e′

2]) = (T ([e1]), T ([e2]))
= ([e1], [e2]) = |⟨e1, e2⟩| = 0,

(9)

e′
1, e′

2 are orthogonal. Therefore, there exists a unique unitary map U0 ∈ U(2) such that e1 7→ e′
1

and e2 7→ e′
2. Consider T0 = [U−1

0 ] ◦ T , so that T = [U0] ◦ T0. As T0 is a composition of Wigner
automorphisms, it is a Wigner automorphism, and it satisfies (∗).

Proposition 1.1. If T : CP 1 → CP 1 is a Wigner automorphism satisfying (⋆), then, for any
c1, c2 ∈ C not both zero,

T ([c1e1 + c2e2]) = [c1e1 + c2e
iθe2] (10)

for some θ = θ(c1, c2) ∈ R. ■
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Proof. We can assume without loss of generality that |c1|2 + |c2|2 = 1. Let e = c1e1 + c2e2, and
choose f = d1e1 + d2e2 ∈ T ([e]), where d1, d2 ∈ C are chosen to satisfy |d1|2 + |d2|2 = 1. For each
j ∈ {1, 2},

|dj | = |⟨f , ej⟩| = ([f ], [ej ]) = (T ([e]), T ([ej ]))
= ([e], [ej ]) = |⟨e, ej⟩| = |cj |.

(11)

Thus, [f ] = [c1e1 + c2e
iθe2] for some θ ∈ R. □

As a second step, we show that there exists a Wigner automorphism T1 : CP 1 → CP 1 and unitary
U1 ∈ U(2) such that T0 = [U1] ◦ T1 and

(⋆⋆) T1([e1 + e2]) = [e1 + e2],
in addition to (⋆), so that T1([ej ]) = [ej ] for each j ∈ {1, 2}. By Proposition 1.1, there exists some
f = (1, eiθ) ∈ T0([e1 + e2]) for θ ∈ R. Let U1 ∈ U(2) denote the unitary map

U1 =
[1 0
0 eiθ

]
, (12)

so that U1 : e1 7→ e1 and U1 : e2 7→ e−iθe2. Consider the Wigner automorphism T1 = [U−1
1 ] ◦ T0.

This satisfies (∗), T1 : [ej ] 7→ [ej ] for each j ∈ {1, 2}, and T1 : [e1 + e2] 7→ [U−1
1 f ] = [e1 + e2], so T1

satisfies (⋆⋆).

Proposition 1.2. If T : CP 1 → CP 1 is a Wigner automorphism satisfying (⋆) and (⋆⋆), then, the
θ(1, c) in Proposition 1.1 satisfy |1 + eiθ(1,c)c| = |1 + c|, so eiθ(1,c)c ∈ {c, c∗}. ■

Proof. Letting C =
√

2(1 + |c|2)1/2,

|1 + eiθc| = C([e1 + e2], [e1 + eiθce2]) = C(T ([e1 + e2]), T ([e1 + ce2]))
= C([e1 + e2], [e1 + ce2]) = |1 + c|.

(13)

The reason this implies eiθc ∈ {c, c∗} is that, for any r,R > 0, every circle 1 + rS1 = {1 + z ∈
C : |z| = r} centered around 1 intersects the circle RS1 at no more than two points, which are
conjugates. □

Finally, we check that
T1 ∈ {idCP 1 , [∗]}. (14)

The key point is to check that which of the two possibilities eiθ(1,c)c ∈ {c, c∗} in Proposition 1.1
holds does not depend on c, with the possibility eiθc = c corresponding to T1 = idCP 1 and the
possibility eiθc = c∗ corresponding to T1 = [∗]. In order to disambiguate the possibilities, consider
T1([e1 + ie2]). By the previous proposition, this is [e1 + σie2] for σ ∈ {−1,+1}.

• Suppose that σ = +1. Then, for C as above,

|1 − ieiθc| = C([e1 + ie2], [e1 + eiθce2]) = C(T ([e1 + ie2]), T ([e1 + ce2]))
= C([e1 + ie2], [e1 + ce2]) = |1 − ic|.

(15)

But this implies that −ieiθc ∈ {−ic, (−ic)∗ = ic∗}. That is, eiθc ∈ {c,−c∗}. But Proposi-
tion 1.1 says that eiθc ∈ {c, c∗}. So,

eiθc ∈ {c, c∗} ∩ {c,−c∗} = {c}. (16)

That is, eiθ = 1.
To summarize, T1([e1 + ce2]) = [e1 + ce2]. Also, T1([e2]) = [e2], by (⋆). Since every

element of CP 1 has one of these two forms, we conclude that T1 = [idC2 ] = idCP 1 .
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• On the other hand, suppose that σ = −1. Then, for C as above,

|1 + ieiθc| = C([e1 − ie2], [e1 + eiθce2]) = C(T ([e1 + ie2]), T ([e1 + ce2]))
= C([e1 + ie2], [e1 + ce2]) = |1 − ic|.

(17)

But this implies that ieiθc ∈ {−ic, (−ic)∗ = ic∗}. That is, eiθc ∈ {−c, c∗}. Combining with
Proposition 1.1,

eiθc ∈ {c, c∗} ∩ {−c, c∗} = {c∗}. (18)
That is, eiθc = c∗.

To summarize, T1([e1 + ce2]) = [e1 + c∗e2] = [∗](e1 + ce2). Also, T1([e2]) = [e2] = [∗]([e2]).
We conclude that T1 = [idC2 ] = idCP 1 .

To summarize, T = [U0] ◦ [U1] = [U0U1] or T = [U0] ◦ [U1] ◦ [∗] = [U0U1∗].

2. Proof of Wigner’s theorem in the d ≥ 3 case

Now consider the case d ≥ 3, and fix normalized e ∈ H. Let T : PH → PH denote some Wigner
isomorphism. Pick nonzero f ∈ T ([e]).

Lemma 2.1. For any v ∈ H independent of e, choosing nonzero w ∈ T ([v]), T : P spanC{e,v} →
P spanC{f ,w}. ■

Proof. The fact that T preserves orthogonality means that

T : P spanC{e,v} →
⋂

x∈{e,v}⊥\{0}
{[z] : z ⊥ y for all y ∈ T ([x])}

= P
⋂

x∈{e,v}⊥\{0}
{z : z ⊥ y for all y ∈ T ([x])}.

(19)

The set Sx = {z : z ⊥ y for all y ∈ T ([x])} is a subspace of H containing f ,w and depending on x
only through Cx. The set

S =
⋂

x∈{e,v}⊥\{0}
Sx (20)

is a subspace of H, containing f ,w.
In fact, S = spanC{f ,w}. Otherwise, it would contain some y ∈ H\{0} orthogonal to both of f ,w;

because T is a bijection, y ∈ T ([x]) for some x ∈ H\{0}, and since the set-theoretic inverse T−1 is a
Wigner automorphism, x is orthogonal to both of e,v. But y /∈ Sx, so y /∈ S. So, S = spanC{f ,w}.

Equation (19) says that T : P spanC{e,v} → PS, and by the previous paragraph PS =
P spanC{f ,w}. □

Identifying P spanC{e,v} and P spanC{f ,w} with CP 1, T gives a family Tv of Wigner iso-
morphisms on CP 1. By the already proven d = 2 case of the theorem, there exists a unique or
anti-unitary unitary map

Uv : spanC{e,v} → spanC{f ,w} (21)
such that

[Uv] = [T |P spanC{e,v}] (22)

and Uv = f . Define U : H → H by Uv = Uv0v for any v0 ∈ C3 such that v0 and e are linearly
independent and v ∈ spanC{e,v0}. This is well-defined because Uv0 depends on v0 only through
spanC{e,v0}, in the sense that if v1 is a linear combination of e1 and v0 not proportional to e, then
Uv1 = Uv0 .

The following proposition says that U is either unitary or anti-unitary:



WIGNER’S THEOREM 5

Lemma 2.2. Suppose that L : H → H is a map of sets that, on every two-dimensional subspace V
containing e, the restriction

L|V : V → LV (23)
is either unitary or anti-unitary, and suppose that Lv ∈ (Lw)⊥ whenever v ∈ w⊥. Then L is either
unitary or anti-unitary. ■

Proof. First note that either every L|V for V a two-dimensional subspace containing e is unitary or
every L|V is anti-unitary. Indeed, the former holds if L|Ce is linear, and the latter holds otherwise.

In order to prove the lemma, it suffices to consider the case where each L|V is unitary. This
is because, if each is instead, the map L ◦ ∗B : C → C satisfies the hypotheses of the lemma, and
L ◦ ∗B|V is unitary for each V as above. Indeed, ∗B maps V anti-unitarily onto a two-dimensional
subspace ∗BV of H, and then L maps ∗BV anti-unitarily onto L ◦ ∗BV . If the conclusion of the
lemma holds for L ◦ ∗, then it also holds for L. So, only the unitary case needs to be considered.

Another simplification is that it suffices to consider the case where L maps the elements of B
to themselves: Lϕ = ϕ for all ϕ ∈ B. Indeed, for general L, the images Lϕj of the ϕj ∈ B are
necessarily orthogonal, by assumption, and they must have norm 1 because, for each j, choosing a
two-dimensional subspace V containing e = ϕ1 and ϕj ,

∥Lϕ∥ = ∥L|V ϕj∥ = ∥ϕj∥ = 1, (24)
since L|V is unitary. We can therefore define a unitary map S which maps Lϕj 7→ ϕj for each j.
The map SL now fixes the ϕ ∈ B and satisfies the same hypotheses as L. If SL is known to be
unitary then the same applies to L. So, it suffices to consider only the stated case.

Suppose that L fixes the elements of B. It follows that, for each j ̸= 1, the maps
L|spanC{e,ϕj} : spanC{e, ϕj} → spanC{e, ϕj} (25)

are the identity maps on their domains. Given

v =
dim H∑
j=1

vjϕj , (26)

since ([ϕj ], [v]) = ([Lϕj ], [Lv]) = ([ϕj ], [Lv]), we get |vj | = |(Lv)j | for each j. So, there exists some
αj(v) ∈ [0, 2π) such that

Lv =
dim H∑
j=1

eiαj(v)vjϕj . (27)

Let wj = vjϕj − v1e. Then, wj ⊥ v, so Lw = w satisfies w ⊥ Lv. This means that the vector
formed by the first and jth entries of Lv is proportional to the vector formed by the same entries
of v. In other words, α1 = αj mod 2πZ. Thus, Lv = eiαv for some α = α(v) ∈ R. Consequently,
L : spanC{e,v} 7→ spanC{e,v}. We already knew this for v ∈ B\{e}; we now know that it for all v.
So, L is a linear operator on spanC{e,v} for which every nonzero vector is an eigenvector. This
implies that

LspanC{e,v} = eiα(v)idspanC{e,v}. (28)
Since Le = e, it must be the case that α = 0. So, Lv = v, as desired. □

3. Unitarity vs. anti-unitarity

One elegant way of determining whether a Wigner isomorphism T ∈ Iso(PH) lifts to a unitary or
to an anti-unitary map is to use the following:

Lemma 3.1. Let S = {ϕ ∈ H : ∥ϕ∥ = 1}. Let ∆ : S → {z ∈ C : |z| ≤ 1} be defined by
∆([φ], [ϕ], [ψ]) = ⟨φ, ϕ⟩⟨ϕ, ψ⟩⟨ψ,φ⟩. This is well-defined, and, if dim H ≥ 2, then the image of ∆ is
not a subset of the real line. ■
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Proof. Well-definedness is an immediate consequence of the sesquilinearity of the inner product. In
order to prove the surjectivity clause, it suffices to prove it in the case H = C2. Then, let e1, e2
denote the standard basis vectors, and compute

∆([e1], [ae1 + eiα(1 − |a|2)1/2e2], [be1 + eiβ(1 − |b|2)1/2e2])

= ab∗(a∗b+ ei(α−β)(1 − |a|2)1/2(1 − |b|2)1/2) (29)

for a, b ∈ C with |a|, |b| ≤ 1 and α, β ∈ R. Evidently, if |a|, |b| ∈ (0, 1), then this can be real only for
one value of α, β modulo πZ, so ∆ is not always real. □

If L : H → H is unitary or anti-unitary, then, for any φ, ϕ, ψ ∈ S,

∆ ◦ [L]([φ], [ϕ], [ψ]) = ∆([Lφ], [Lϕ], [Lψ]) =
{

∆([φ], [ϕ], [ψ]) (L unitary),
∆([φ], [ϕ], [ψ])∗ (L anti-unitary).

(30)

Note that ∆,∆∗ are distinct functions, because they are not real-valued. So, L is unitary if
∆ ◦ [L] = ∆, and anti-unitary otherwise.

4. Uniqueness

Frequently, a uniqueness clause is included in Wigner’s theorem.

Lemma 4.1. If d ≥ 2, and if L,Q : H → H are either linear or anti-linear injective maps such
that [L] = [Q], then either L,Q are both linear or they are both anti-linear. ■

Proof. Suppose, to the contrary, that L is linear and Q anti-linear. Let ϕ, ψ ∈ H be linearly
independent. From [L]([ϕ]) = [Q]([ϕ]) and [L]([ψ]) = [Q]([ψ]), it follows that there exist λ, µ ∈ C×

such that Lϕ = λQϕ and Lψ = µQψ.
The requirement that [L]([ϕ+ψ]) = [Q]([ϕ+ψ]) says that L(ϕ+ψ) ∈ C×Q(ϕ+ψ) = C×(Qϕ+Qψ).

But,
L(ϕ+ ψ) = Lϕ+ Lψ = λQϕ+ µQψ. (31)

Because Qϕ,Qψ are linearly independent – since Q is injective – the only way for λQϕ+ µQψ to
be a multiple of Qϕ+Qψ is if µ = λ.

The requirement that [L]([ϕ+ iψ]) = [Q]([ϕ+ iψ]) says that
L(ϕ+ iψ) ∈ C×Q(ϕ+ iψ) = C×(Qϕ− iQψ). (32)

Because L is linear, L(ϕ+ iψ) = Lϕ+ iLψ = λ(Qϕ+ iQψ). But, since λ is nonzero, λ(Qϕ+ iQψ) /∈
C×(Qϕ − iQψ), contrading eq. (32). Having reached a contradiction, the assumption that L be
linear and Q anti-linear is untenable. □

As a corollary:

Proposition 4.2. If d ≥ 2, and if L,Q : H → H are either linear or anti-linear injective maps such
that [L] = [Q], then L = λQ for some λ ∈ C×. ■

Proof. By the previous lemma, either L,Q are both linear or both anti-linear. Fix nonzero ϕ ∈ H.
From [L]([ϕ]) = [Q]([ϕ]), it follows that Lϕ = λQϕ for some λ ∈ C×. If ψ ∈ H is linearly independent
of ϕ, then, as part of the proof of the previous lemma, it was shown that Lψ = λQψ.

Given φ ∈ H, write
φ = ρϕ+ ψ (33)

for ρ ∈ C and ψ which is either 0 or independent of ϕ; then, if L is linear, Lφ = ρLϕ + Lψ =
λ(ρQϕ+Qψ) = λQφ, or, if L is anti-linear, Lφ = ρ∗Lϕ+ Lψ = λ(ρ∗Qϕ+Qψ) = λQφ.

So, regardless of whether the map L is linear or anti-linear, Lφ = λQφ, and therefore, since φ
was arbitrary, L = λQ. □
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So, given a Wigner isomorphism T : PH → PH, while the unitary or anti-unitary operator
U ∈ U(H) whose existence is guaranteed by Wigner’s theorem is not unique, every other unitary or
anti-unitary lift of T has the form eiαU for some α ∈ R.
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