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Abstract. We construct complete asymptotic expansions of solutions of the 1D semiclassical
Schrödinger equation near transition points. Besides the method, there are three main novelties: (1)
transition points of order κ ≥ 2 (i.e. trapped points) are handled, (2) various terms in the operator
are allowed to have controlled singularities of a form compatible with the geometric structure
of the problem, and (3) the term-by-term differentiability of the expansions with respect to the
semiclassical parameter is included. We prove that any solution to the semiclassical ODE with initial
data of exponential type is of exponential-polyhomogeneous type on a suitable manifold-with-corners
compactifying the h → 0+ regime. Consequently, such a solution has an atlas of full asymptotic
expansions in terms of elementary functions.
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1. Introduction

In this note, we revisit the old problem of producing asymptotic expansions of solutions of
semiclassical ODEs near transition points, where the classical Liouville–Green theory breaks down.
Consider the one-dimensional semiclassical Schrödinger operator

P = {P (h)}h>0 = −h2 ∂
2

∂z2 + ςzκW (z) + h2ψ(z, h) (1)

on the interval [0, Z]z, where ς ∈ {−1,+1} is a sign, κ ∈ {−1} ∪ N, W ∈ C∞([0, Z]z;R+), and
ψ ∈ C∞((0, Z]z × [0,∞)h2 ;C) is drawn from some suitable class of admissible functions of the
independent variable z and the semiclassical parameter h. We will be more precise later on about
the meaning of “admissible” in the previous sentence; for now, it suffices to note that any function
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ψ : (0, Z]z × [0,∞)h → C of the form

ψ = ν

z2 + φ(h)
z

+G(z, h) (2)

for ν ∈ C, φ(h) ∈ C∞([0,∞)h2 ;C), and G ∈ C∞([0, Z]z × [0,∞)h2 ;C) is allowed, but this does not
exhaust the admissible ψ. The reader is invited to take ψ = 0 if simplification is desired, though
some of the intended applications, not to mention the proof itself, require greater generality.

Restated, the problem is producing h → 0+ asymptotics of solutions u = {u(−;h)}h>0 to
Pu = 0. The key structural feature of P is the transition point at z = 0, at which the potential
V (z) = ςzκW (z) may have a zero or singularity. The Liouville–Green theory certainly suffices away
from the transition point. Moreover, for h > 0, the operator P (h) ∈ Diff2(0, Z) is (at worst) a
regular singular ordinary differential operator depending smoothly on h, so the behavior of solutions
follows from general theory. It is only the behavior near the corner {z = 0, h = 0} ∈ [0, Z]z × [0,∞)h

that needs to be further understood.
The use of the term “corner” is the first instance of our emphasis on geometric structures. Let

M denote the manifold-with-corners (mwc, which we use in the sense of Melrose [Mel92], though
the precise definition is not important here), depending on κ (and, at the level of sets, on Z),
constructed by performing a quasihomogeneous blowup of the corner {z = 0, h = 0} of the rectangle
[0, Z]z × [0,∞)h2 so as to separate the family {Γλ}λ>0 of curves

Γλ = {z = λh2/(2+κ)}, (3)

with the smooth structure at the front edge fe modified in a manner described below. This blowup
resolves the ratio λ = z/h2/(κ+2), which becomes a smooth coordinate λ ∈ C∞(fe◦) parametrizing
fe◦ and extending smoothly down to one boundary point. Besides fe, the other edges of M are
ze = clM {h = 0, z > 0} (the “zero h edge”), be = clM {h > 0, z = 0} (the “boundary edge”), and
ie = {z = Z} (the “initial edge”). See Figure 1 for a depiction of M . The passage to the blowup
is a specific instance of a general strategy in geometric singular analysis, that of trading analytic
complexity for geometric complexity.

We say that a function u : M◦ ∪ ie◦ → C with C1 slices u|h=h0 ∈ C1(0, Z] has initial data of
exponential-polyhomogeneous type if the restrictions

u|ie : ie◦ = {z = Z and h > 0} → C,
u′|ie : ie◦ → C

(4)

are of exponential-polyhomogeneous type on ie. This restricts their h → 0+ behavior while saying
nothing about the irrelevant h → ∞ regime. Then, our main theorem is a constructive version of:

Theorem A. If Pu = 0 and u has initial data of exponential-polyhomogeneous type, then u is of
exponential-polyhomogeneous type on M .

Roughly, the theorem states the existence of full asymptotic expansions of solutions in suitable
asymptotic regimes which suffice to cover all possible ways of following u along some smooth graph
(Γ(h), h) : [0,∞)h → [0, Z]z × [0,∞)h as h → 0+. The key point is that the asymptotic expansions
in powers of the boundary-defining-functions of the edges of M do not depend on the angle or other
aspects of the manner via which Γ approaches ∂M . Only the endpoint limh→0+(Γ(h), h) ∈ ∂M in
M matters. This sort of behavior can be contrasted with the behavior of the polar angle

θ = arctan(y/x) : ([0,∞)x × [0,∞)y)\{0} → [0, π/2], (5)

the limiting value of which when followed along a curve ending at the origin depends on the angle
of approach. The difference is that θ is not polyhomogeneous on the punctured quadrant but rather
on the blowup [[0,∞)2

x,y; (0, 0)].
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Figure 1. Left: the manifold-with-corners M (the portion with h < h0, for h0 > 0
arbitrary), with some level sets of h in dashed gray. Some local coordinate charts are
denoted in red. Right: some of the curves Γλ, defined by eq. (3), and Γ(z0) = {z = z0}
in M . A curve ΓH probing the “intermediate” regime ze ∩ fe is in red, and one ΓL
probing the other such regime fe ∩ be is in yellow.

A more explicit and precise version of Theorem A appears below. The proof is constructive, in
the sense that it provides an algorithm for computing all asymptotic expansions, as well as joint
asymptotic expansions at the corners.

Given how well-trodden this subject is, it may be surprising that there is something left to say.
Theorem A improves on the existing literature in three ways:

(1) we handle the case κ ≥ 3, for which no full expansions had previously been known (see the
remark of Olver quoted below), and the expansion in the κ = 2 case has been given a proof.
(The statement in the κ = 2 case does not appear explicitly in the existent literature)

(2) Poincaré expandability is improved to polyhomogeneity. This implies control of all derivatives
in the semiclassical parameter, filling an apparent hole in the earlier literature even in the
otherwise well-understood cases.

(3) The potential is allowed to have a natural sort of singularity at the transition point, as arises
in several applications discussed below.

Each of these points will be elaborated upon later in the introduction.

1.1. Regarding generality. Any second-order semiclassical ordinary differential operator

a(z, h)h2 ∂
2

∂z2 + b(z, h)h ∂
∂z

+ c(z, h) (6)

on the real line (with coefficients which are smooth save for isolated poles at locations not depending
on h) is, assuming that the leading coefficient a is nonvanishing and nonsingular, equivalent modulo
conjugation, in the sense of possessing identical kernel, to an operator of the form

P = −h2 ∂
2

∂z2 + V (z) + hQ(z, h). (7)

Generically, we should expect that, insofar as the potential V vanishes, it vanishes only at isolated
points, at each of which the function vanishes to some finite order. This is the case when V is
meromorphic and not identically zero. A very common situation is when Q = hψ for ψ a smooth
function of h2.

If one is concerned with the local properties of solutions, then it suffices to restrict attention to
closed interval I ⊂ R of z’s containing at most a single zero or singularity of V or singularity of ψ.
Without loss of generality, it may be assumed that the interval I is given by I = [0, Z] for some
Z > 0, with the zero or singularity (if it exists at all) at the endpoint z = 0.

Then, we can write the potential as V (z) = ςzκW (z) for ς ∈ {−1,+1}, W as above, and κ ∈ N.
We do not consider κ ≤ −2, as then either P has a regular singularity with variable indicial roots
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(if κ = −2) or an irregular singularity (if κ ≤ −3). These cases are of a rather different character
than those handled here.

1.2. Brief history. The κ = 1 case goes back, of course, to Jeffreys, Wentzel, Kramers, and
Brillouin, after whom the whole industry of semiclassical expansions has come to be referred. The
definitive treatment of Poincaré expandability is due to Langer–Olver and the better part of a
century old. It is quite satisfactory, except in that it stops at Poincaré expandibility. The κ = −1
case has been brought to a similarly refined level by the same authors. The whole range κ ∈ (−2, 2)
can be dispatched via similar techniques, as originally indicated by Langer in his initial works on
the subject.

When κ ≥ 2, the potential vanishes degenerately at z = 0. One might call {z = 0} a trapped
point, since, in addition to being a zero of the potential, it is a point of equilibrium of the associated
classical dynamics, at which the force −V ′ on a Newtonian particle vanishes. Varied terminology
has appeared in the literature. Unlike in the κ ∈ (−2, 2) case, only very incomplete results can be
found therein. Olver describes the situation like so:

In a region containing a turning point of multiplicity κ, uniform asymptotic ap-
proximations to the solutions can be constructed in terms of [Bessel functions of
order 1/(κ+ 2)]... When κ > 1, however, there is no straightforward extension from
asymptotic approximations to asymptotic expansions [Olv75b, §4.3].

By “straightforward extension,” Olver seems to mean the original method of Langer. For the κ = 2
case, a somewhat different method was tried in [Olv75a], building off previous work by others. The
strategy involves using parabolic cylinder functions as a more refined ansatz, the idea being that this
choice eliminates the problematic terms arising in the original method. Though not stated outright,
it is implied in [Olv75a, §11] that the resultant asymptotic approximation can be promoted to a full
expansion as long as uniformity is not demanded as z → ∞. The argument does not appear to have
been written down.

For κ ≥ 3, in which the trapping is degenerate, it seems that little is known beyond what Olver
already states in [Olv54; Olv75b; Olv97]. In particular, I am unable to locate any asymptotic
expansions including lower order terms, though it is hard to rule out the existence of folk theorems.

For a pedagogical account of the aforementioned developments, see Olver’s expository works. An
encyclopedic treatment appears in [Fed93, Chp. 4]. An extensive summary of the research literature,
including the citations omitted above, can be found in [Was87, §31.2]. Wasow’s account does not
cover the last few decades, but it still seems current as far as our particular problem is concerned.

1.3. Primer on exponential-polyhomogeneity. We refer the reader to the geometric singular
analysis literature – of which [Mel92; Mel93; Gri01; She22] is a relevant sample – for the precise
definition of polyhomogeneity on manifolds-with-corners (mwc), in addition to the definitions of
associated function spaces. The particular notation used here will be outlined as needed.

For the sake of this introduction, it suffices to note that polyhomogeneity is a precisification of
the notion of having full asymptotic expansions in terms of powers and logarithms (the particular
combinations of which are allowed to appear being specified by an “index set,” denoted E ,F , etc.
below), with

• each boundary hypersurface (a.k.a. facet) of our mwc M corresponding to one asymptotic
regime, and

• the corners corresponding to “intermediate” asymptotic regimes.
These expansions are differentiable term-by-term — this is certainly useful, and the definition
guarantees it. So, one can think of polyhomogeneity as being a slight weakening of smoothness,
namely smoothness up to the fact that one’s “Taylor series” have logarithms. Polyhomogeneity at
the corners ensures that the asymptotic expansions at the various adjacent facets match up, and
consequently one has well-defined joint asymptotic expansions, a point stressed in [She22]. For an
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application, see [She22, §2.4]. The coefficients in the (joint) expansion at a face f (not necessarily a
facet) are polyhomogeneous functions on f, and the expansion of the derivative of the given function
along f is the derivative of the expansion. This is part of what it means for the expansion to be
differentiable term-by-term, but the latter is stronger because it applies to normal derivatives as
well.

A function u on a mwc M is said to be of exponential-polyhomogeneous type if it can be written as

u =
N∑

n=1
une

θn (8)

for some N ∈ N and polyhomogeneous θn, un : M → C. Thus, the notion of exponential-
polyhomogeneous type is one particular precisification of the notion of having full, well-behaved
asymptotic expansions in terms of elementary functions, i.e. polynomials, logarithms, and expo-
nentials. This amounts to exponential-polyhomogeneity being the gold standard for asymptotic
expandability, stronger than Poincaré-type expandability.

One interesting aspect of the theorem, Theorem A, above is the possible presence of logarithmic
terms, in contrast to the situation, described in appendix §C, when κ ∈ (−2, 2) and ψ ∈ C∞([0, Z]z ×
[0,∞)h2 ;C). An example, with κ = 2, in which such logarithmic terms appear is presented in
appendix §D.

One advantage of working on the blowup M is the ability to avoid the use of the theory of
special functions entirely. Rather than work with parabolic cylinder functions (or some alternative),
as Olver does in [Olv75a] to handle the κ = 2 case, it suffices here to work entirely in terms of
elementary functions. After all, it is only in terms of elementary functions that the notion of
exponential-polyhomogeneity is phrased. Insofar as special functions appear, they appear as the
solutions to some special differential equations considered — see the examples in §3 — and all of
the properties required of them are proven directly from the differential equations they satisfy. No
integral representations are used.

One disadvantage, for instance in the κ = 2 case, is that the possible logarithmic terms, which in
the usual treatment are hidden in asymptotics of the parabolic cylinder functions (see appendix
§D), become explicit and worse organized. This is especially inconvenient when trying to relate
the expansions in the classically allowed and classically forbidden regions. Without care, the result
is proving polyhomogeneity statements with unnecessarily large index sets. A similar statement
should apply when κ ≥ 3.

1.4. Smooth structure of M . Returning to the smooth structure at M , the smooth structure
at the front face fe of the blowup chosen such that ϱfe = z + h2/(κ+2) becomes a defining function
(bdf) of it. Defining functions of the faces ze, be, ie are given by ϱze = h2/ϱκ+2

fe , ϱbe = zϱ−1
fe , and

ϱie = Z − z. Other choices are possible.
When restricting attention to local coordinate charts, it is often possible to work instead with

local bdfs. Outside of any neighborhood of ze, the ratio z/h2/(κ+2) is a bdf for be and h2/(κ+2) is a
bdf for fe, and outside of any neighborhood of be, h2/zκ+2 is a local bdf for ze and z is a bdf for fe.

1.5. Allowed singularities in the operator coefficients. We describe now the allowed singular-
ities of the term ψ, in full generality. The assumptions to be placed on ψ are

• ψ ∈ ϱ−2
be ϱ

−2
fe C

∞(M) = z−2C∞(M), and
• z2ψ|be : be → C is constant.

Allowing the singularity at be is mostly useful when considering the semiclassical ODE arising
from partial wave analysis for semiclassical Schrödinger operators with spherical symmetry. The
second of the two requirements is placed to avoid having to deal with regular singular differential
equations with variable indicial roots.
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More interesting is the singularity at fe. Methods such as Olver–Langer’s do not seem able
to handle this sort of singularity. In fact, Olver–Langer’s does not even seem to be able to
handle ψ ∈ z−2C∞([0, Z]z × [0,∞)h2 ;C). Contrastingly, the singular geometric methods below are
sufficiently robust.

We now define some notation used below. Given any function ψ satisfying the conditions above,
choose α ∈ C with ℜα ≥ 0 such that z2ψ|be = α2 − 1/4, and let Ψ = z2ψ|fe − α2 + 1/4. We assume
for the remainder of the paper that ℜα > 0. The arguments below all go through if ℜα = 0, with
minor modifications and some additional casework.

Notice that Ψ ∈ ϱbeC
∞(fe). Identifying fe\ze with [0,∞)λ for λ = ζ/h2/(κ+2), the previous

sentence says, more prosaically, that Ψ(λ) ∈ λC∞[0,∞)λ and satisfies Ψ(ρ−2/(κ+2)) ∈ C∞[0,∞)ρ2 .
Throughout this paper, we will identify fe\ze with [0,∞)λ. Now define E by

ψ(z, h) = 1
z2

(
α2 − 1

4
)

+ 1
z2 Ψ

( ζ

h2/(κ+2)

)
+ E(z, h) (9)

and ϕ = ψ − E. Since z2E vanishes at be ∪ fe, it must lie in ϱbeϱfeC
∞(M). That is, E ∈

ϱ−1
be ϱ

−1
fe C

∞(M) = z−1C∞(M). As it turns out, the term h2ϕ in P , though subleading at ze, is of
comparable order to the main terms at fe and must therefore be taken into account in order to
understand the h → 0+ limit.

Let

N(P ) = −h2 ∂
2

∂z2 + ςzκW (z) + h2

z2

(
α2 − 1

4
)

+ h2

z2 Ψ
( z

h2/(κ+2)

)
. (10)

Thus, P −N(P ) ∈ (h2/z)C∞(M), so N(P ) arises from omitting from P terms of order O(h2/z) and
better. Thus, solutions Q to N(P )Q = 0 an be considered as O(h2/z)-quasimodes for the original
semiclassical ODE Pu = 0, hence the use of the notation ‘Q’ rather than ‘u.’ These quasimodes will
be studied later.

1.6. Applications with singular coefficients. Some interesting examples to which we would like
to apply the theory come from families {P (r;σ)}σ>0 of ODEs on the whole real line Rr depending
non-semiclassically on a parameter σ, in which the semiclassical regime arises as an artificial
transitional regime in the joint large r, low σ limit. The coordinate r is to be related to z in the
following way: the blown up face fe ⊂ M corresponds to the original face [0,∞]r ×{0}σ ⊂ Rr ×{0}σ.
This is the reason why ψ may be singular before passing to M .

Two examples of families {P (r;σ)}σ>0 with the structure described are
(1) 1D Schrödinger operators with Coulomb-like potentials [Sus22], in which ±σ2 is the energy

and κ = −1, reflecting the scaling under dilations of the exact Coulomb potential ±1/r at
r = 0, and

(2) the anharmonic oscillator in the limit of small anharmonicity, as analyzed using semiclassical
techniques, in which case κ = 4. To the best of our knowledge, this sort of analysis first
appeared in [BW69].

A different situation in which singular a ψ appears is the Regge–Wheeler equation, which describes
linear perturbations of the metric of the exterior of the Schwarzschild spacetime. The angular
momentum ℓ – i.e. the the azimuthal quantum number – enters as a parameter in the equation. One
“semiclassical” regime is the limit of large ℓ. After a conjugation in order to remove the first order
term when written with respect to the Eddington–Finkelstein radial coordinate, the differential
operator in question can be written as

−
(
1 − rH

r

)2 ∂2

∂r2 − σ2 +
(
1 − rH

r

)ℓ(ℓ+ 1)
r2 + VRW(r), (11)

where rH > 0 is the location of the black hole horizon, σ is the perturbation’s temporal frequency, and
VRW ∈ (r−rH)C∞[rH,∞)r is some “effective potential.” To write this operator in the form considered
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above, define z = r−rH and h−2 = ℓ(ℓ+1). Multiplying through by h2(1−rH/r)−2 = h2(z+rH)2/z2,
the result is

−h2 ∂
2

∂z2 + 1
z

1
(z + rH) + h2

z2 (z + rH)2
[

− σ2 + VRW(z + rH)
]
. (12)

This has the form studied above, with κ = −1. Not only is the potential singular, but ψ =
z−2(z + rH)2(−σ2 + VRW(z + rH)) is singular as well. As a corollary of the theorems in this paper,
full asymptotics in the joint small z- large ℓ limit follow, refining the analysis of this regime in
[Cos+12].

1.7. More precise theorem. We now state the precise version of the theorem above, after
introducing some notation. Let

ζ(z) =
(κ+ 2

2

∫ z

0
ωκ/2

√
W (ω) dω

)2/(κ+2)
. (13)

This lies in zC∞([0, Z]z;R+). Let ξ ∈ C∞([0, Z]z;R+) be defined by ζ = zξ. For each j ∈ C, we
use (j, 0) as an abbreviation for the index set {(j + n, 0) : n ∈ N}. In particular, (0, 0), which we
also abbreviate “N,” is the index set for which polyhomogeneity means smoothness. Recall also that
“∞” denotes the empty index set.

Letting Eie, Eze, Efe, Ebe denote index sets, we use AEie,Eze,Efe,Ebe(M) ⊂ C∞(M◦;C) to denote
the set of (complex-valued) polyhomogeneous functions on M◦ with index set Ee at each edge
e ∈ {ie, ze, fe,be}. To avoid having to write too many index sets, we use AE,F (M) as an abbreviation
for this set when Eie, Eze = (0, 0), with E = Efe and F = Ebe. When working with functions supported
away from be, or where the behavior there is unimportant, we will sometimes omit the ‘F ’ from
“AE,F (M).”

Below, we use the index set

E0 =
{⋃∞

j=0((κ+ 2)j, j) (κ /∈ 2N),⋃∞
j=0((κ+ 2)j, 2j) ∪ ((κ+ 2)j + κ/2, 2j + 1) (κ ∈ 2N).

(14)

Let Q ⊂ C∞(R+
λ ) denote

Q =
{
v(λ) ∈ C∞(R+

λ ) : ∂
2v

∂λ2 =
[
ςλκ + 1

λ2

(
α2 − 1

4
)

+ 1
λ2 Ψ

( λ
κ+2
√
W (0)

)]
v(λ)

}
. (15)

There exists a one-dimensional subspace spanCQ0 ⊂ Q of solutions that are recessive (see §3) at
the origin.

Theorem B. For any Q ∈ Q, there exists an index set G and β, γ ∈ AE0(M) with suppβ, supp γ
disjoint from be and δ ∈ AE0,G(M) with supp δ ∩ (ie ∪ ze) = ∅ such that the function u defined by

u = 4

√
ξκ

W

[
(1 + ϱzeϱfeβ)Q

( ζ

h2/(κ+2)

)
+ ϱ(κ+1)/(κ+2)

ze ϱfeγQ
′
( ζ

h2/(κ+2)

)]
+ ϱ

1/2−α
be ϱfeδ (16)

solves Pu = 0 in {h < h0} for some h0 > 0.

The index set G can be extracted from the argument below, but we will not be explicit.
Thus, using Proposition 3.3 to express Q,Q′ in exponential-polyhomogeneous form,

u− 4

√
ξκ

W
Q
( ζ

h2/(κ+2)

)
∈ exp

(
− 2√

ςχ

κ+ 2
ζ(κ+2)/2

h

)√
ϱzeϱfeϱ

1/2−α
be AN,2−1N,E0,∞(M)

+ exp
(2√

ςχ

κ+ 2
ζ(κ+2)/2

h

)√
ϱzeϱfeϱ

1/2−α
be AN,2−1N,E0,∞(M) + ϱfeϱ

1/2−α
be A∞,∞,E0,G(M) (17)

for χ ∈ C∞(M ; [0, 1]) identically 1 near ie ∪ ze and identically vanishing near be.
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This version of the theorem says that, at least for h sufficiently small, there exists a solution u to
the semiclassical ODE Pu = 0 such that

u ≈ 4

√
ξ(z)
W (z)Q

( ζ

h2/(κ+2)

)
. (18)

This is just Langer’s approximation. If |z| ≫ h2/(κ+2), then, as h → 0+, the large-argument
asymptotics of the Q ∈ Q allow Q to be approximated by a linear combination of exponentials, in
which case the approximation above becomes an instance of the Liouville–Green ansatz. If instead
|z| = O(h2/(κ+2)), then ζ ≈ W (0)1/(κ+2)z, and so

u ≈ W (0)−(κ+1)/(4κ+8)Q(z/h2/(κ+2)), (19)

which is an ansatz generalizing that appearing in the JWKB connection analysis. (Since Q can be
replaced by cQ for any c ̸= 0, the multiplier out front is not important.) This sort of analysis goes
back at least to Langer, but Theorem B provides a natural refinement of it.

If Q1, Q2 ∈ Q are linearly independent modes, then the functions u[Q1](−, h), u[Q2](−, h)
produced by the previous theorem are linearly independent for h sufficiently small, so any solution
u to Pu = 0 can be written as u = c1u[Q1] + c2u[Q2] for h sufficiently small for some functions
c1, c2 : (0,∞)h → C. Given the values of u|ie and the derivative u′|ie, the h → 0+ asymptotics of
the coefficients c1, c2 can be computed straightforwardly from the asymptotics of the Q ∈ Q. The
preceding theorem therefore contains within it the means of producing semiclassical expansions for
any such u with prescribed initial data. Thus, Theorem A follows from Theorem B. For completeness,
the deduction is included in the appendices. See §B.

We now sketch the proof of Theorem B, which consists of four steps. All steps are carried out in
the W = 1 case, a simplification which, as originally observed by Langer and discussed in §2, suffices.
As preparation for the later sections, some properties of the quasimodes Q ∈ Q are proven in §3.

(1) The first step of the main argument, carried out in §4, is to produce a solution to the ODE
of the desired form modulo an error of the form fQ+ gQ′ for

f, g ∈ ϱ∞
zeϱfeAE0,∞(M), (20)

i.e. accurate to infinitely many orders at ze, and supported away from be. The proof involves
re-interpreting Langer–Olver’s asymptotic series in [Olv54; Olv97], which fails to define
a uniform expansion down to be◦, as an asymptotic expansion at ze, which can then be
asymptotically summed in suitable function spaces.

(2) The next step is to solve away the error from the previous step near ze ∩ fe modulo
ϱ∞

zeϱ
∞
fe C

∞(M) = h∞C∞([0, Z]z × [0,∞)h;C) remainders supported away from be. The
argument involves the inversion of the normal operator N̂(P ) ∈ Diff2(fe◦) in order to
produce the approximate solution term-by-term. This step is in §5.

(3) In §6, the remaining h∞C∞ error near ze is solved away using the standard method of
variation of parameters [Erd60][Olv97, Chp. 6][Sim15, §15.5]. This is the most technical part
of the argument, but the error is as amenable as possible — as long as we stay away from
be, the O(h∞) suppression is sufficient to kill any large negative powers of h, ζ that arise in
the computations. It is necessary to keep careful track of the exponential weights arising
in the classically forbidden case, but this is the only delicate point. Estimating derivatives
complicates the formulae but is totally straightforward.

(4) For various reasons, the previous steps allow an error supported away from ze. The final
step of the argument is to solve away this error completely in {h < h0}. Because P is a
nondegenerating, smooth family of regular singular differential operator on fe\ze, this follows
from the general theory of regular singular ODE and requires only a short argument. See §7.

The various parts of the argument are combined in §8.
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1.8. Concluding remarks. This work began with the goal of providing a proof of the main result
of [She22] using only the structural features of Bessel’s ODE. The results here are not sufficient for
this purpose. The missing piece is an analysis of the κ = −2 case, in which the ODE possesses a
regular singularity. However, the clause of Sher’s result stating the exponential-polyhomogeneity of
the Bessel functions in a neighborhood of the locus of their Airy function asymptotics is a special
case of Theorem C, with κ = 1.

If the coefficients W,E depend on some parameters p ∈ Rd (or more generally p valued in some
manifold-with-corners), then e.g. smoothness in p implies smoothness of the solutions constructed in
Theorem B in p in a suitable topology. Similar results hold for other L∞-based notions of regularity.
The family Q = kerN(P ) of quasimodes depends smoothly on the coefficients of P with respect to
some function space topologies. Then, it is possible to articulate a theorem to the effect that, given
a smooth section’s worth of chosen quasimodes, the function u constructed in the theorem is also
smoothly varying in some suitable sense.

We end this introduction with a few remarks regarding potential extensions:
• For simplicity, we have restricted attention to integral κ, but the arguments below work for

all real κ > −2, except the specific index sets appearing may differ.
• One can handle ψ polyhomogeneous on M with appropriate index sets at the various faces. If
ψ has only partial regularity (partially polyhomogeneous or something similar), then partial
asymptotic expansions can still be constructed, with the error controlled in a corresponding
conormal space. In the argument, the final step, in which the remaining error is solved away
via the method of variation of parameters, becomes more delicate, as the forcing is no longer
O(h∞) but instead only a decaying conormal function. However, it still seems possible to
make do.

• The previous point also applies if W is polyhomogeneous or partially polyhomogeneous at
0, except now the Langer transformation is no longer a diffeomorphism. This issue is not
critical, as our use of the Langer transformation is only to simplify the algebra. Besides this
one complication, the argument works as expected to produce the desired expansions.

• One particularly natural extension is to allow ψ to have a pole of the form ∼ 1/h, in which
case the term h2ψ in P has an O(h) contribution. Unfortunately, this can dominate the
potential at fe. For instance, at fe, the potential is essentially zκ ∼ h2κ/(κ+2), and the
right-hand side is smaller than h if h < 1 and κ ≥ 3.

For κ ∈ (−2, 2) at least, where such issues do not occur, this problem has been considered
by Langer and others, and there are standard tools which apply. Thus, one can expect
results in the vein of the theorems above.

• Complex h can be considered essentially without modification if ψ has appropriate analyticity.
In fact, considering ℑh = p as a parameter, this is a special case of smooth parameter
dependence. It can be shown that the constructed solutions depend analytically on h in some
neighborhood U ⊂ Ch of (0,∞)h ⊂ Ch. Of course, U cannot contain the origin, because the
Liouville–Green ansatzes have essential singularities there.

If P has appropriate analytic structure in z, then one can allow complex z as well, but
this requires a bit more care, and one has to restrict attention to z in a sector depending on
the order of vanishing of the potential.

• One common occurrence when considering parameters is that the transition point disappears
or changes character when a parameter is varied. Consider for instance V (r; θ) = 1 − reiθ,
where r is the independent variable and θ ∈ R is a parameter. The semiclassical ODE
Pu = 0 for P = −h2∂2

r + V has a turning point at r = 1 if θ ∈ 2πZ but not otherwise. A
more interesting example is that of coalescing turning points, where the potential V (z; a)
depends on a parameter a ≥ 0 and has N ∈ N≥2 turning points for each a > 0, with the
turning points coalescing in some way as a → 0+. The N = 2 case is the setting of [Olv75a].

These sorts of problems cannot be readily addressed with the techniques below.
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It is an open problem to carry out, in the PDE setting, an analysis similar to that here. In
this vein we remark on work by Buchal–Keller [BK60], Ludwig [Lud66], and Guillemin–Schaeffer
[GS73], all of which address the case of a simple turning point. This is an incomplete sample of the
relevant literature. The cited works essentially solve the problem, giving full asymptotics in the
classically allowed region, albeit only rapid decay in the classically forbidden region. The key idea
is the representation of solutions of the equation as oscillatory integrals modeled on the integral
formula for the Airy functions. The cited works prove Poincaré-type asymptotic expansions, but it
is surely the case that e.g. [GS73, Eq. E] can be sharpened to include control on all derivatives.

Whether similar ideas apply in the κ ≥ 2 case remains to be seen, one difficulty being that, in this
case, the semiclassical characteristic set is not a smooth submanifold of the semiclassical cotangent
bundle. Thus, this falls under the header of semiclassical asymptotics for singular Lagrangians.
Some of the relevant theory is developed in [CDV03; Ver03].

The κ = −1 case gives a prototype for Lagrangian distributions for Lagrangian submanifolds which
hit fiber infinity. This situation has been encountered in microlocal studies of the Klein–Gordon
[Sus23] and time-dependent Schrödinger equations [GRHG23].

The κ = 2 case is one of the simplest examples of a semiclassical differential operator whose
associated Hamiltonian flow displays normally hyperbolic trapping, the origin of the cotangent
bundle over the transition point being the trapped set. In the PDE setting, microlocal estimates
near trapped sets have been a popular theme in recent years. We will not attempt to summarize the
literature. The ODE case has also been of interest in the study of wave propagation on spherically
symmetric spacetimes — see for instance [CPS18] and the references therein.

We mention finally the recent thesis of Sobotta [Sob], who, in ongoing work with Grieser, has
constructed O(h∞)-quasimodes for a wide class of semiclassical ODEs, including many of those
considered here. While of a similar spirit to ours, their methods are significantly more general
and not restricted to second order ODEs. They include the use of iterated blowups organized via
Newton polygons. When applied to the second order case, only a single blowup is required, as is
true here. It is expected that the constructed quasimodes can be upgraded to full solutions, but
this has yet to be done.

2. The Langer diffeomorphism

As a first step in the proof of the main theorem, we follow Langer and Olver in the use of a variant
of the “Langer diffeomorphism” — see [Lan31][Olv97, Chp. 12- §14] — to reduce to W = 1 case.
This serves to simplify the computations. While not strictly necessary in the singular geometric
approach, the analysis is somewhat shortened.

Let M [Z] denote the mwc constructed in the introduction and depicted in Figure 1, where we
are now making the dependence on Z explicit. For any Z0 > 0, M [Z] ∼= M [Z0], so this is only a
distinction at the level of sets. This construction was coordinate invariant in the following sense:

Lemma 2.1. If ζ : [0, Z] → [0, ζ(Z)] is any diffeomorphism, then the diffeomorphism [0, Z]z ×
[0,∞)h2/(κ+2) → [0, ζ(Z)]ζ × [0,∞)h2/(κ+2) given by (z, h) 7→ (ζ(h), h) lifts to a diffeomorphism
M [Z] → M [ζ(Z)]. ■

Proof. The polar blowup of a corner is a coordinate invariant notion, so ι : (z, h) 7→ (ζ(h), h) lifts to
a diffeomorphism

[[0, Z]z × [0,∞)h2/(κ+2) ; {0}z × {0}h] → [[0, ζ(Z)]ζ × [0,∞)h2/(κ+2) ; {0}ζ × {0}h]. (21)
This is the desired diffeomorphism M [Z] → M [ζ(Z)], but we do not yet know that it is a diffeomor-
phism, because, although the domain and codomain in eq. (21) agree with M [Z],M [ζ(Z)] at the
level of sets, they differ in terms of smooth structure at ze.

It therefore suffices to verify that the map remains a diffeomorphism after the changes of smooth
structures at ze. We only check smoothness, as smoothness of the inverse map is proven analogously.
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Concretely, it suffices to check that the functions
ϱze(ζ(z), h) = h2(ζ(z) + h2/(κ+2))−(κ+2),

ϱfe(ζ(z), h) = ζ(z) + h2/(κ+2) (22)

are smooth functions on M [Z]. Indeed, writing ζ(z) = zξ(z), we have ξ ∈ C∞([0, Z]z;R+), and
then the identities

ϱze(ζ(z), h) = ϱze(z, h)(ϱbe(z, h)(ξ(z, h) − 1) + 1)−(κ+2),

ϱfe(ζ(z), h) = ϱfe(z, h)ϱbe(z, h)(ξ(z) − 1) + ϱfe(z, h)
(23)

hold. The second of these is manifestly smooth on M [Z]. The first is a smooth function of ϱze, ϱbe, z
away from the set {ϱbe(ξ − 1) ̸= −1}, but this set is avoided on M [Z], because ξ(z, h) > 0 and
ϱbe(z, h) ∈ [0, 1]. □

We apply this lemma to the map defined by eq. (13). That this is a diffeomorphism follows from
dζ
dz = ξ−κ/2

√
W (z) ∈ C∞([0, Z];R+). (24)

Thus, the map (z, h) 7→ (ζ(z), h) lifts to a diffeomorphism M [Z] → M [ζ(Z)]. This lift is what we
refer to as the Langer diffeomorphism. It will be used implicitly below.

Let P (h) be as in the introduction; that is, P (h) = −h2∂2
z +ςzκW (z)+h2ψ(z, h) for ς ∈ {−1,+1},

κ ∈ (−2,∞), W ∈ C∞([0, Z]z;R+), and ψ ∈ ϱ−2
be ϱ

−2
fe C

∞(M [Z]) of the form specified in eq. (9). In
terms of ζ, the operator P (h) can be written as
ξκ

W
P (h) = −h2 ∂

2

∂ζ2 + h2

2
(κ
ξ

∂ξ

∂ζ
− 1
W

∂W

∂ζ

) ∂
∂ζ

+ ςζκ + h2

ζ2
ξκ+2

W

[(
α2 − 1

4
)

+ Ψ
( ζ

ξh2/(κ+2)

)]
+ h2Ẽ

def= P0(h),
(25)

where α,Ψ are as in eq. (9) and Ẽ = ξκE/W ∈ ϱ−1
be ϱ

−1
fe C

∞(M [ζ(Z)]). Viewing P0(h) as a differential
operator on [0, Z]z, Pu = 0 is equivalent to P0u = 0.

In order to simplify the expression, and to facilitate comparison of P0 with P , we can rearrange
some terms; defining

E0 = Ẽ + 1
ζ2

(ξκ+2

W
− 1

)[(
α2 − 1

4
)

+ Ψ
( ζ

ξh2/(κ+2)

)]
+ h2

ζ2

[
Ψ
( ζ

ξh2/(κ+2)

)
− Ψ

( ζ
κ+2
√
W (0)h2

)]
, (26)

we have, owing to the observation that ξ(0)κ+2 = W (0), that E0 ∈ ϱ−1
be ϱ

−1
fe C

∞(M [ζ(Z)]). Indeed,
(ξκ+2W−1 − 1) ∈ zC∞([0, Z]z;C) ⊂ ϱbeϱfeC

∞(M [ζ(Z)]). (27)
Since ζ−2 ∈ ϱ−2

be ϱ
−2
fe C

∞(M [ζ(Z)]) and

Ψ(ζξ−1h−2/(κ+2)) ∈ ϱbeC
∞(M [ζ(Z)]), (28)

overall the first line on the right-hand side of eq. (26) is in ϱ−1
be ϱ

−1
fe C

∞(M [ζ(Z)]). Similarly,

Ψ
( ζ

ξh2/(κ+2)

)
− Ψ

( ζ
κ+2
√
W (0)h2

)
∈ ϱbeϱfeC

∞(M [ζ(Z)]), (29)

so the second line is in ϱ−1
be ϱ

−1
fe C

∞(M [ζ(Z)]) as well.
In terms of E0, the operator P0 can be written

P0 = −h2 ∂
2

∂ζ2 + h2

2
(κ
ξ

∂ξ

∂ζ
− 1
W

∂W

∂ζ

) ∂
∂ζ

+ ςζκ + h2

ζ2

[(
α2 − 1

4
)

+ Ψ
( ζ

κ+2
√
W (0)h2

)]
+ h2E0. (30)
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As P0 has a first order term, unlike P , it is useful to consider the conjugation

P1 = MW 1/4ξ−κ/4P0MW −1/4ξκ/4 , (31)

where M• denotes the multiplication operator u 7→ •u. A computation yields

P1 = −h2 ∂
2

∂ζ2 + ςζκ + h2

ζ2

(
α2 − 1

4
)

+ h2

ζ2 Ψ
( ζ

κ+2
√
W (0)h2

)
+ h2E1, (32)

where

E1 = E0 + 1
4
∂2

∂ζ2 log
(W
ξκ

)
+ 1

16
( ∂
∂ζ

log
(W
ξκ

))2
∈ ϱ−1

be ϱ
−1
fe C

∞(M [ζ(Z)];C). (33)

The operator P1 is therefore of the same form as P , in that it also satisfies the hypotheses of
Theorem B.

So, if we know the result in the W = 1 case, then we can apply it to P1. Let Q be defined by
eq. (15). Given any Q ∈ Q, Theorem B applied to P1 gives a solution u1 to P1u1 = 0 of the form

u1(ζ, h) = (1 + ϱzeϱfeβ)Q
( ζ

h2/(κ+2)

)
+ ϱ(κ+1)/(κ+2)

ze ϱfeγQ
′
( ζ

h2/(κ+2)

)
+ ϱ

1/2−α
be ϱfeδ (34)

for β, γ, δ as in the theorem. Define u(z, h) by u(z, h) = W−1/4ξκ/4u1(ζ(z), h). This satisfies
0 = P1u1 = W 1/4ξ−κ/4P0u, so P0u = 0, and therefore Pu = 0. The form of u specified in
Theorem B follows from the form of u1. Thus, if we know the result in the W = 1 case, then we can
deduce the result in general.

Below, we restrict attention to the case W = 1, in which case ζ = z, and we will mostly write ζ
in place of z.

3. O(h2/ζ)-quasimodes and their properties

Consider

P = −h2 ∂
2

∂ζ2 + ςζκ + h2ψ (35)

for ψ as in eq. (9), i.e. ψ(ζ, h) = ζ−2(α2 − 1/4) + ζ−2Ψ(ζ/h2/(κ+2)) + E for α ∈ C with ℜα > 0,
Ψ ∈ ϱbe|feC∞(fe), and E ∈ z−1C∞(M). Now, eq. (10) reads

N(P ) = −h2 ∂
2

∂ζ2 + ςζκ + h2

ζ2

(
α2 − 1

4
)

+ h2

ζ2 Ψ
( ζ

h2/(κ+2)

)
= P − h2E. (36)

As discussed in the introduction, solutionsQ toN(P )Q = 0 can be considered as O(h2/ζ)-quasimodes
for the original semiclassical ODE Pu = 0. This section is devoted to studying the properties of
these quasimodes.

Conversely, given α ∈ C with ℜα ≥ 0 and Ψ ∈ ϱbe|feC∞(fe), we can consider the semiclassical
ordinary differential operator defined by

N0 = −h2 ∂
2

∂ζ2 + ςζκ + h2

ζ2

(
α2 − 1

4
)

+ h2

ζ2 Ψ
( ζ

h2/(κ+2)

)
. (37)

Setting P = N0, the operator P satisfies the hypotheses of our setup, and N(P ) = N . So, the set of
all N0 of the stipulated form is the set of all N(P ) arising as above. Forgetting P , the ODE under
investigation is therefore N0Q = 0. Per the preceding discussion, this can be thought of either as a
first step in studying the original semiclassical problem or as a special case of the general problem.

So, though this section is required preparation for the proofs in later sections, it can also be read
as providing examples.
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The key observation in studying N0 is that it can be considered as a homogeneous family of
operators on fe. Changing coordinates from ζ to λ = ζ/h2/(κ+2), we have N0 ∝ N for N the ordinary
differential operator defined by

N = − ∂2

∂λ2 + ςλκ + 1
λ2

(
α2 − 1

4
)

+ Ψ(λ)
λ2 , (38)

where ‘∝’ means proportionality up to a nonvanishing function of h. This computation shows that
N0, considered as a family of ordinary differential operators on the positive real axis, has kernel
kerN0 = kerN independent of h.

Let Q = {Q ∈ C∞(R+
λ ) : NQ = 0} denote the kernel of N , thought of as a subset of C∞(R+

λ ) via
h-independence. Cf. eq. (15).

3.1. Asymptotics of quasimodes.

Proposition 3.1. If Q ∈ Q, then Q(λ) ∈ λ1/2−αC∞[0,∞)λ + λ1/2+αC∞[0,∞)λ if α /∈ 2−1Z.
Otherwise, Q(λ) ∈ λ1/2−αC∞[0,∞)λ + λ1/2+α log(λ)C∞[0,∞)λ. In either case, there exists a
nonzero

Q0 ∈ Q ∩ λ1/2+αC∞[0,∞)λ, (39)
unique up to multiplicative constants. If Q ∈ Q is such that limλ→0+ λ−1/2+αQ = 0, then Q ∈
spanCQ0, and Q = (limλ→0+ λ−1/2−αQ(λ))Q0. ■

Proof. Recall that a second-order regular singular ordinary differential operator (λ∂λ)2 + a(λ)λ∂λ +
b(λ) has kernel contained in{

λγ−C∞[0,∞)λ + λγ+C∞[0,∞)λ = A(γ−,0)∪(γ+,0)[0,∞)λ (γ+ − γ− /∈ Z),
λγ−C∞[0,∞)λ + λγ+ log(λ)C∞[0,∞)λ = A(γ−,0)∪(γ+,1)[0,∞)λ (otherwise),

(40)

where γ± are the indicial roots of the equation, i.e. the roots of the polynomial γ2 + a(0)γ + b(0),
and we have chosen them such that ℜγ− ≤ ℜγ+. Moreover, one of the members of the basis can be
chosen to be in λγ+C∞[0,∞)λ.

The operator N defined by eq. (38) is regular singular at λ = 0, which becomes clearer upon
writing

λ2N = −
(
λ
∂

∂λ

)2
+ λ

∂

∂λ
+ ςλκ+2 + α2 − 1

4 + Ψ(λ). (41)

Since Ψ(0) = 0, the indicial polynomial is γ2 − γ − α2 + 1/4, which has roots γ± = ±α+ 1/2. The
difference γ+ − γ− = 2α is integral precisely when α ∈ 2−1Z. Thus, the proposition is a corollary of
this general theory. □

So, every Q(λ) ∈ Q is polyhomogeneous at λ = 0, with index set F(α) = (1/2−α, 0)∪ (1/2+α, 0)
if α /∈ 2−1Z and F(α) = (1/2 − α, 0) ∪ (1/2 + α, 1) otherwise.

Any nonzero element of spanC{Q0} is called the recessive solution of the ODE.

Remark 3.2. As seen in the examples below, if Ψ(λ) ∈ C∞[0,∞)λκ+2 , then the argument above can
be sharpened, via the coordinate change Λ = λκ+2, to yield the absence of log terms as long as
α /∈ 2−1(κ+ 2)Z.

Proposition 3.3. If Q ∈ Q and ς > 0, then Q(ρ−2/(κ+2)) ∈ exp(2(κ+2)−1ρ−1)ρκ/(2κ+4)C∞[0,∞)ρ,
and there exists a nonzero Q∞ ∈ Q such that

Q∞(ρ−2/(κ+2)) ∈ exp(−2(κ+ 2)−1ρ−1)ρκ/(2κ+4)C∞[0,∞)ρ. (42)

If ς < 0, then there exist some Q±(ρ−1/(κ+2)) ∈ exp(±2i(κ+ 2)−1ρ−1)ρκ/(2κ+4)C∞[0,∞)ρ such that
Q = spanC{Q−, Q+}. In all cases the leading order terms in the C∞[0,∞)ρ factors at ρ = 0 are all
nonzero. ■
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Proof. Rewriting N in terms of ρ = 1/λ(κ+2)/2, the result, which is most easily derived from
substituting λ∂λ = −2−1(κ+ 2)ρ∂ρ into eq. (41), is

− 4λ2N

(κ+ 2)2 =
(
ρ
∂

∂ρ

)2
+ 2ρ
κ+ 2

∂

∂ρ
− 4

(κ+ 2)2

[ ς
ρ2 + α2 − 1

4 + Φ(ρ2)
]
, (43)

where Φ(ϱ) = Ψ(ϱ−1/(κ+2)) ∈ C∞[0,∞)ϱ. Note that this is not a regular singular ODE at ρ = 0,
because of the ς/ρ2 term in the brackets. Removing this term, the remainder of the operator is
regular singular. Consequently, we can appeal to Liouville–Green theory in the form it is presented
in [Olv97, Chp. 7] to conclude the proposition.

To wit, to convert the operator above into the form considered by Olver, let Λ = 1/ρ = λ(κ+2)/2,
in terms of which

− 4λ2N

Λ2(κ+ 2)2 = ∂2

∂Λ2 + κ

κ+ 2
1
Λ
∂

∂Λ − 4
(κ+ 2)2

[
ς + 1

Λ2

(
α2 − 1

4 + Φ
( 1

Λ2

))]
, (44)

and the kernel of this operator is also Q. So, the Liouville–Green expansion applies. Note that the
coefficient of the first order term κ(κ+2)−1Λ−1∂Λ is O(1/Λ) and so does not contribute to the phase
or decay rate. The phase φ (chosen to be positive in the ς > 0 case) is therefore φ = 2(κ+ 2)−1Λ
(up to an arbitrary additive constant) and the decay rate is ∼ Λ−ν = ρν with ν = κ/(2κ+ 4). The
conclusion of [Olv97, Chp. 7- Thm. 2.1] applies with these parameters, and the statement of the
proposition may be read off of it. A minor bibliographic note is that, in [Olv97, Chp. 7- Thm. 2.1],
Olver assumes what in our context is the analyticity of Φ, whereas we only assume smoothness.
This assumption is absent in [Olv97, Chp. 7- §1] so is unnecessary for producing solutions to the
ODE modulo Schwartz errors (relative to the desired exponential growth or decay in the ς > 0 case),
and such errors may be solved away via the method of variation of parameters. A more involved
variant of the same standard argument appears below, so we do not belabor the details. □

If the coefficients of N are real, then, in the ς < 0 case, Q0 ̸= Q±. However, in the ς > 0 case,
Q0 = Q∞ is possible.

Combining the preceding two propositions, and identifying fe = [0,∞)λ ∪ [0,∞)1/λ(κ+2)/2 :

Corollary. Let Q ∈ Q. Letting χ ∈ C∞
c (R;R) be identically 1 near the origin,

• if ς > 0, then Q(λ) ∈ exp(2(κ+ 2)−1χ(1/λ)λ(κ+2)/2)A(−κ/(2κ+4),0),F(α)(fe), where (−κ/(2κ+
4), 0) is the index set at λ = ∞ and F(α) is the index set at λ = 0. Also,

Q∞(λ) ∈ exp(−2(κ+ 2)−1χ(1/λ)λ(κ+2)/2)A(−κ/(2κ+4),0),F(α)(fe). (45)

• If ς < 0, then instead Q±(λ) ∈ exp(±2i(κ+ 2)−1χ(1/λ)λ(κ+2)/2)A(−κ/(2κ+4),0),F(α)(fe).
So, Q is of exponential-polyhomogeneous type on fe. ■□

As a reminder, [0,∞]λ = [0,∞)λ ∪ (0,∞]1/λ.

Proposition 3.4. Suppose that f ∈ AE,F [0,∞]λ, where E is the index set at λ = ∞ and F is the
index set at λ = 0. Then, f(ζ/h2/(κ+2)) ∈ A(0,0),(κ+2)−1E,(0,0),F (M). ■

Here, (κ+ 2)−1E denotes the smallest index set containing {((κ+ 2)−1j, k) : (j, k) ∈ E}. If κ is
an integer, then this is {((κ+ 2)−1j, k) : (j, k) ∈ E} itself.

Proof. In terms of ϱze = h2/(ζ + h2/(κ+2))κ+2, ϱfe = ζ + h2/(κ+2), and ϱbe = ζ/(ζ + h2/(κ+2)), we
have ζ/h2/(κ+2) = ϱbeϱ

−1/(κ+2)
ze , so

f(ζ/h2/(κ+2)) = f(ϱbeϱ
−1/(κ+2)
ze ). (46)
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ff

fe

be

ieze

M ′
λ−(κ+2)

h2/(κ+2)λ

ζ

h2

h0 − h

λ

1/ζ

h0 − h

λ−1

Figure 2. The mwc M2, with the subset M ∼= M ′ ⊂ M2 labeled, with the edges
labeled by the corresponding edges in M . A smooth atlas is depicted.

As ϱze is nonvanishing near be, this suffices to imply that f is polyhomogeneous with the claimed
index sets F at be and (0, 0) at fe away from ie ∪ ze. To study the situation near ie ∪ ze, consider
g(t) = f(1/t), which lies in AE [0,∞)t. Thus,

f(ζ/h2/(κ+2)) = g(ϱ1/(κ+2)
ze ϱ−1

be ). (47)

Since ϱbe is nonvanishing near ze, this suffices to imply that f is polyhomogeneous with the claimed
index sets (κ+ 2)−1E at ze and (0, 0) at ie and fe away from be. □

There is a geometric interpretation of the previous proposition. We start with M1 = [0,∞]λ ×
[0,∞)h2/(κ+2) on which f , viewed as a function independent of h, satisfies f ∈ AE,(0,0),F(M1),
where the middle index set is that at {h = 0}. Performing a polar blowup of the upper corner
{λ = ∞, h = 0}, we denote the result, after modifying the smooth structure at the front face of the
blowup so that h2 becomes a boundary-defining-function of its interior,

M2 = [M1; {λ = ∞, h = 0};κ+ 2]. (48)

We have f ∈ AE,(κ+2)−1E,(0,0),F (M2), where the index sets are at clM2{λ = ∞, h > 0}, then the front
face of the blowup, clM2{λ < ∞, h = 0}, and {λ = 0}, respectively. Let

M ′ = clM2{λh2/(κ+2) ≤ Z} ⊆ M2. (49)

From f ∈ AE,(κ+2)−1E,(0,0),F (M2) follows immediately f ∈ A(0,0),(κ+2)−1E,(0,0),F (M ′), where the first
index set is at the curve clM2{λh2/(κ+2) = Z}. The map

(0, Z)ζ × (0,∞)h ∋ (ζ, h) 7→ (ζ/h2/(κ+2), h) (50)

extends to a diffeomorphism M → M ′. This diffeomorphism identifies {λ = 0} ⊂ M ′ with be,
clM ′{λ < ∞, h = 0} = clM2{λ < ∞, h = 0} with fe, the front face of the blowup with ze, and the
curve

clM2{λh2/(κ+2) = Z} (51)
with ie. See Figure 2. Thus, the already deduced f ∈ A(0,0),(κ+2)−1E,(0,0),F (M ′) is equivalent to the
desired result.

Combining the propositions above:

Corollary. If Q ∈ Q, then Q(ζ/h2/(κ+2)) is of exponential-polyhomogeneous type on M . ■□

3.2. Examples.

Example (Liouville–Green). If κ = 0, α = 1/2, and Ψ = 0, then N = −∂2
λ + ς, so Q = spanC{Q− =

e−iλ,Q+ = e+iλ} if ς < 0 and Q = spanC{Q∞ = e−λ, eλ} if ς > 0.

The next most classical case is:
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Example (JWKB). If κ = 1, α = 1/2, and Ψ = 0, then N = −∂2
λ + ςλ, so NQ = 0 is Airy’s ODE

(or its reflection across the origin, depending on the value of ς). So, if ς > 0, then
Q = {c1 Ai(λ) + c2 Bi(λ) : c1, c2 ∈ C} (52)

is precisely the set of Airy functions on the positive real axis. If ς < 0, then similarly Q =
{c1 Ai(−λ) + c2 Bi(−λ) : c1, c2 ∈ C}. Proposition 3.3, applied to these cases, states the qualitative
form of the large-argument asymptotic expansions [OMe, §9.7] of the Airy functions and their
derivatives. In particular, the large-argument expansions of Ai(λ),Bi(λ) are in integral powers of
ρ = 1/λ3/2.

Generalizing the previous two examples:

Example (Langer). If Ψ = 0, then

N = − ∂2

∂λ2 + ςλκ + 1
λ2

(
α2 − 1

4
)
. (53)

As observed by Langer, the elements of Q = kerN can be written in terms of Bessel functions. (For
comparison with the previous two examples, recall that, up to a polynomial weight, the trigonometric
functions are Bessel functions of order 1/2, and the Airy functions are Bessel functions of order
1/3.) More precisely,

Q =
{
λ1/2I

(2λ(κ+2)/2

κ+ 2

)
: I(t) a solution to t2 d2I

dt2 + t
dI
dt − (ςt2 + ν2)I(t) = 0

}
. (54)

The ODE satisfied by I(t) is Bessel’s ODE of order ν = 2α/(κ+ 2), so I is a (modified, if ς > 0,
and unmodified otherwise) Bessel function. For this special the case, the conclusions of the previous
propositions can be checked explicitly using the small- or large- argument expansions of the Bessel
functions. The small argument expansions are in [OMe, §10.8]. The large argument expansions
are Hankel’s expansions [OMe, §10.17(i)][OMe, §10.40(i)]. The expansions given in [OMe] are
Poincaré-type expansions of the Bessel functions and their first derivatives. Taken together, these
suffice to imply smoothness in terms of ρ = 1/λ(κ+2)/2 at ρ = 0, with control of higher derivatives
coming from the ODE. Besides the argument used above, Hankel’s expansions can be proven in
many ways, e.g. extracted from the integral representations of the Bessel functions via the method
of stationary phase.

3.3. The inhomogeneous model problem. We now study the forced ODE Nu = fQ+ gQ′ for
f, g ∈ S(R) ∩ C∞

c (0,∞]. That is, f, g are Schwartz functions vanishing near the origin.
The solutions can be produced using the standard Schwartz kernel construction, which we now

recall. Let Q1, Q2 ∈ Q denote linearly independent elements of Q, in which case their Wronskian
W ∈ C, which we define with the sign convention

W = Q′
1Q2 −Q2Q

′
1, (55)

is nonzero. Then, for each λ′ > 0, the function K(λ, λ′) = K[Q1, Q2](λ, λ′) ∈ C∞(R+
λ \ {λ′}) defined

by

K(λ, λ′) = 1
W

{
Q1(λ)Q2(λ′) (λ > λ′),
Q2(λ)Q1(λ′) (λ < λ′)

(56)

solves NK(λ, λ′) = δ(λ− λ′), where δ ∈ D′(R) denotes a Dirac δ-function. Thus, for nice functions
F ∈ C∞[0,∞)λ, including all F ∈ C∞

c (0,∞)λ, the function N−1[Q1, Q2]F defined by

N−1[Q1, Q2]F = K(λ, F ) =
∫ ∞

0
K(λ, λ′)F (λ′) dλ′ (57)

solves N(N−1[Q1, Q2]F ) = F . In this way, each choice of Q1, Q2 leads to a right inverse N−1[Q1, Q2] :
C∞

c (0,∞)λ → C∞(0,∞)λ of N .
Note that N−1[Q1, Q2] depends on Q1, Q2 only through C×Q1,C×Q2.

http://dlmf.nist.gov/9.7
http://dlmf.nist.gov/10.8
http://dlmf.nist.gov/10.17.i
http://dlmf.nist.gov/10.40.i
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Proposition 3.5. Fix independent Q, Q̃ ∈ Q, and, if ς > 0, then, unless Q = Q∞ is the exponentially
decaying mode, let Q̃ = Q∞ be the exponentially decaying mode. Then, N−1[Q̃,Q] extends to a map

{fQ+ gQ′ + h : f, g, h ∈ S(R) ∩ C∞
c (0,∞]λ} → C∞(0,∞)λ (58)

such that eq. (57) holds for all F in the codomain and such that the extension is a right inverse of
N . ■

Proof. Given the hypotheses, the function K(λ, F ) given by

K(λ, F ) = Q̃(λ)
W

∫ λ

0
Q(s)F (s) ds+ Q(λ)

W

∫ ∞

λ
Q̃(s)F (s) ds (59)

is well-defined for F = fQ+ gQ′ + h with f, g, h as above, the integrals on the right-hand side being
absolutely convergent. Let N−1[Q̃,Q]F (λ) = K(λ, F ). This is a linear extension of N−1[Q̃,Q] to
{fQ + gQ′ + h : f, g, h ∈ S(R) ∩ C∞

c (0,∞]λ}. Differentiating K(λ, F ) in λ works as before, so
NK(λ, F ) = F (λ). □

Denote the extension by N−1[Q̃,Q] as well.
One annoyance is that, even if F ∈ C∞

c (0,∞)λ, then v = N−1[Q̃,Q]F need not be O(⟨λ⟩−∞Q)
as λ → ∞, as

lim
λ→∞

Q(λ)−1v(λ) = 1
W

∫ ∞

0
Q̃(λ)F (λ) dλ, (60)

the right-hand side having no good reason to vanish in general. But this is the only obstruction, so:

Proposition 3.6. Fix Λ0 > λ0 > 0. Given F of the form F = fQ + gQ′ + h for f, g ∈
S(R) ∩ C∞

c (λ0,∞], there exist β, γ ∈ S(R) ∩ C∞
c (0,∞] such that the function v ∈ C∞(0,∞)λ

defined by
v(λ) = β(λ)Q(λ) + γ(λ)Q′(λ) (61)

solves Nv = F +R for some R ∈ C∞
c (0,∞)λ with suppR ⊆ [λ0,Λ0]. ■

Proof. Since Q, Q̃ are linearly independent (which implies linear independence when restricted to
[λ0,Λ0]) there exists a R ∈ C∞

c (0,∞)λ with suppR ⊆ [λ0,Λ0] such that∫ ∞

0
Q̃(λ)R(λ) dλ = −

∫ ∞

0
Q̃(λ)F (λ) dλ,∫ ∞

0
Q(λ)R(λ) dλ = −

∫ ∞

0
Q(λ)F (λ) dλ.

(62)

Now define v = N−1[Q̃,Q](F +R). Then, Nv = F +R. Observe that v vanishes identically near
λ = 0. Indeed, for λ < λ0 such that supp(F +R) ∩ [0, λ] = ∅, we have

v(λ) = Q(λ)
W

∫ ∞

0
Q̃(s)(F (s) +R(s)) ds = 0. (63)

By Proposition A.2,

{
Q̃(λ)

∫ λ

0
Q(s)(F (s) +R(s)) ds, Q(λ)

∫ ∞

λ
Q̃(s)(F (s) +R(s)) ds

}
⊂ (|Q(λ)|2 + |Q′(λ)|2)1/2S(R). (64)

Consequently, the functions β = vQ∗(λ)(|Q(λ)|2 + |Q′(λ)|2) and γ = v(Q′(λ))∗(|Q(λ)|2 + |Q′(λ)|2)
lie in S(R) ∩ C∞

c (0,∞]. These are defined such that v = βQ+ γQ′. □
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4. Quasimodes at ze

The basic strategy of Langer–Olver is to look for a solution u to the ODE

Pu = −h2∂
2u

∂ζ2 + ςζκu+ h2ψu = 0, (65)

of the form
u = βQ

( ζ

h2/(κ+2)

)
+ hκ/(κ+2)γQ′

( ζ

h2/(κ+2)

)
(66)

for β, γ ∈ C∞((0, Z]ζ × [0,∞)h2 ;C) that are well-behaved as ζ → 0+, where Q is an arbitrary
member of Q. In Langer’s original work (which allowed a small error on the right-hand side of the
ODE), well-behaved meant smooth down to ζ = 0, but something weaker (which ends up being
polyhomogeneity on M) is required here.

The power of h in front of the γQ′ term in eq. (66) has been chosen so that, for each fixed ζ > 0,
both terms on the right-hand side have the same order of magnitude as h → 0+. This makes the
semiclassical structure of the argument below more apparent.

In the rest of the body of the paper, we will abbreviateQ = Q(ζ/h2/(κ+2)) andQ′ = Q′(ζ/h2/(κ+2)),
as the ζ/h2/(κ+2) argument will be clear from context.

Applying P to u of the form above, the result is again a function of a similar form:

Pu =
[

Q

hκ/(κ+2)Q′

]⊺ (
−h2 ∂

2

∂ζ2 −2
[
0 ςζκ

1 0

]
h
∂

∂ζ
−
[
0 1
0 0

] (
2ϕh3 ∂

∂ζ
+hςκζκ−1 +h3ϕ′

)
+h2E

)[
β
γ

]
,

(67)
where, as in the introduction, ϕ = ψ−E. Because ϕ ∈ ϱ−2

be ϱ
−2
fe C

∞(M), we have ϕ′ ∈ ϱ−3
be ϱ

−3
fe C

∞(M).
This suggests attempting to choose β and γ so as to satisfy the system of ODEs LU = 0, where

U = (β, γ) and L ∈ Diff2
ℏ((0, Z]ζ ;C2) is the matrix-valued semiclassical operator

L = −h2 ∂
2

∂ζ2 − 2
[
0 ςζκ

1 0

]
h
∂

∂ζ
−
[
0 1
0 0

] (
2ϕh3 ∂

∂ζ
+ hςκζκ−1 + h3ϕ′

)
+ h2E (68)

appearing in eq. (67). It is not true that Pu = 0 is equivalent to LU = 0, at least without specifying
more about the structure of U .

However, for each h > 0, the kernel of L(h) is 4-dimensional. The map U 7→ u, where u is
defined in terms of β, γ by eq. (66), sends kerL(h) to kerP , and it is easily seen that this map
has full rank. So, for every individual h > 0, any u(−, h) ∈ kerP (h) can be decomposed as in
eq. (66) for some functions β(−, h), γ(−, h) ∈ C∞(0, Z] such that the function U(−, h) defined by
U(−, h) = β(−, h), γ(−, h)) satisfies L(h)U(−, h) = 0. Thus, passage to the vector-valued ODE
LU = 0 is without loss of generality as far as constructing elements of kerP is concerned.

Curiously, L is independent of Q; it is only the map U 7→ u that is Q-dependent.
In §4.1 below, we examine the semiclassical structure of L. This subsection can be skipped on

first reading.
If U satisfies the ODE LU = 0 on the nose, then the function u defined by eq. (66) satisfies

Pu = 0 on the nose, but this is too much to ask for right away, so instead we try to solve the
equation up to small errors.

We might like an O(h∞) error, which means that the error should be Schwartz at both edges
ze and fe comprising the h → 0+ regime, in which case it is simply Schwartz at {h = 0} in
[0, Z]ζ × [0,∞)h2 , but this is still too much to ask.

In this section, we aim only for an O(ϱ∞
ze ) error, meaning in

ϱ∞
zeϱ

κ
feAE(M) ⊕ ϱ∞

zeϱ
κ/2
fe AF (M) =

⋂
k∈N

(ϱk
zeϱ

κ
feAE(M) ⊕ ϱk

zeϱ
κ/2
fe AF (M)) (69)

for some to-be-determined index sets E ,F . (The powers of ϱfe in eq. (69) can be absorbed into a
redefinition of E ,F . The convention above is used to match later notation.) That is, the error in
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our quasimode construction will be Schwartz only at ze, but uniformly so all the way up to fe, in a
precise sense.

First, we work on the ray ze\fe, meaning that we will not worry about uniformity up to fe (but
uniformity at the other endpoint ze ∩ ie is handled). This part of the argument is essentially found
in [Olv97, Chp. 12- §14], but we present a full exposition here, in the relevant level of generality.
The formal part is contained in §4.2. The situation at the other endpoint, ze ∩ fe, will be analyzed
second, with uniformity up to fe a consequence. The argument is outlined in §4.3, and the details
are in §4.4.

4.1. Semiclassical structure. We refer to [Zwo12] for unfamiliar terminology.
Though L(h) is certainly elliptic for each individual h > 0, L is not elliptic as a semiclassical

operator. This is true even in the “classically forbidden case” ς > 0, in which case P itself is
semiclassically elliptic. The semiclassically principal part L0 of L consists of the first two terms in
eq. (68),

L0 = −h2 ∂
2

∂ζ2 − 2
[
0 ςζκ

1 0

]
h
∂

∂ζ
(70)

(Here we are ignoring behavior as ζ → 0+. If ϕ = 0, then L ∈ SDiff2
ℏ([0, Z]ζ ;C2), and the principal

part is principal in this stronger sense.) Let ℏT ∗[0, Z] denote the semiclassical cotangent bundle
over [0, Z], which we parametrize by the map (h, ζ, µ) 7→ h−1µ dζ, so µ is the frequency coordinate
dual to the sole variable ζ. Then,

ℏT ∗[0, Z] ∼= [0,∞)h × [0, Z]ζ × Rµ. (71)

In terms of these coordinates, the semiclassical principal symbol σ2
ℏ(L) : ℏT ∗[0, Z] → C is

σ2
ℏ(L) = µ2 Id −2iµ

[
0 ςζκ

1 0

]
, (72)

gotten by replacing h∂ζ with iµ in L0. The semiclassical characteristic set char2
ℏ(L) ⊂ ℏT ∗[0, Z] is

by definition the set of points (h = 0, ζ, µ) at which σ2
ℏ(L)(0, ζ, µ) ∈ C2×2 fails to be invertible. This

occurs when the determinant
detσ2

ℏ(L) = µ4 + 4ςµ2ζκ = µ2(µ2 + 4ςζκ) (73)
vanishes. This includes the zero section {µ = 0}, and, if ς < 0, then it also includes the sets
{µ = ±2ζκ/2}. The interpretation of σ2

ℏ(L) is that it describes the possible oscillations exp(ih−1φ(ζ))
present in the h → 0+ asymptotics of solutions to LU = 0, with the allowed φ being such that
(h = 0, ζ, φ′(ζ)) ∈ σ2

ℏ(L) for each ζ. The key feature of L that allows it to have polyhomogeneous
solutions is therefore that its characteristic set includes the zero section {µ = 0}, since this
corresponds to non-oscillatory asymptotics.

See Figure 3 for an illustration of the characteristic set in the κ = 1, 3 cases, and see Figure 4 for
the κ = −1, 2 cases.

The additional characteristic set in the classically allowed case ς < 0 signals the existence of
highly oscillatory solutions to LU = 0 with initial data that is non-oscillatory as h → 0. Consider
solutions u[Q±] to Pu[Q±] = 0 with the form eq. (66), for Q± in place of Q. The surjectivity of the
map kerL → kerP means that we can write u[Q∓] in the form eq. (66) for Q = Q± (not Q = Q∓!)
and nonzero U∓ ∈ kerL. By assumption, u[Q∓] is highly oscillatory as h → 0+ with the same phase
as Q∓ and therefore with the opposite phase as Q±, it follows that U∓ must be oscillating with
twice the phase with which Q∓ is oscillating. Thus, there exist highly oscillatory solutions U to
LU = 0, but these are not the solutions constructed via asymptotic series below, which are smooth.

The situation is similar to the conjugated perspective of Vasy [Vas21a; Vas21b] in microlocal
scattering theory (where the setting was the Parenti–Shubin–Melrose sc-calculus rather than the
semiclassical calculus, but these are similar in many respects), but there the characteristic set has
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Figure 3. The semiclassical characteristic set char2
h(L) = {µ = 0 or µ2 + 4ςζκ =

0} ⊂ {h = 0} ∩ ℏT ∗(−1,+1) of L, in the κ = 1, 3 cases, with ς = 1; we have extended
L to [−Z,+Z] so as to include both cases of ς in one figure. Various subsets of the
characteristic set have been labeled. When κ ≥ 3, the characteristic set has a cusp
singularity. When κ = 1, it is a fold singularity (i.e. caustic) with respect to the
projection onto the base. When κ = −1 (not pictured), the characteristic set is
unbounded near ζ = 0.

only one nonzero “branch” present, whereas σ2
ℏ(L) has both branches {µ = ±2|ζ|κ/2} present, as

depicted in the figures. This difference is unsurprising, as L (unlike Vasy’s conjugated operator)
does not depend on the choice of Q ∈ Q, so no branch can be singled out.

4.2. Construction away from fe: formalities. Since ϕ is smooth at ze, and since h2 serves as a
defining function for ze\fe in M\fe, we can Taylor expand

ϕ ∼
∞∑

k=0
h2kϕk(ζ) ∈ C∞(ze\fe)[[h2]] (74)

at ze\fe. For later use, not that, because ϕ ∈ ϱ−2
be ϱ

−2
fe C

∞(M), we have ζ2+k(κ+2)ϕk ∈ C∞(ze). Since
E is smooth at ze, we can similarly expand

E ∼
∞∑

k=0
h2kEk(ζ) ∈ C∞(ze\fe)[[h2]]. (75)

Since E ∈ ϱ−1
be ϱ

−1
fe C

∞(M), we have ζ1+k(κ+2)Ek ∈ C∞(ze).
Consider the formal version of L,

L = −h2 ∂
2

∂ζ2 − 2
[
0 ςζκ

1 0

]
h
∂

∂ζ
−h

[
0 ςκζκ−1

0 0

]
−h3

[
0 1
0 0

] ∞∑
k=0

h2k
(
2ϕk

∂

∂ζ
+ϕ′

k

)
+h2

∞∑
k=0

h2kEk(ζ).

(76)
This is an element of Diff2(ze\fe;C2)[[h]]. The task before us is to construct U ∈ C∞(ze\fe;C2)[[h]]
satisfying LU = 0.

Consider the following ansatz for U,:

U =
∞∑

k=0
h2k

[
βk

0

]
+

∞∑
k=0

h2k+1
[

0
γk

]
, βk, γk ∈ C∞(ze◦). (77)

This is the Langer–Olver ansatz.
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Figure 4. The semiclassical characteristic set char2
h(L) = {µ = 0 or µ2 − 4ςζκ =

0} ⊂ ℏT ∗(−1,+1) of L, in the κ = −1 and κ = 2 cases, the latter with ς < 0. In the
former, the characteristic set hits fiber infinity at ζ = 0.

Given U of this form, the formal ODE LU is equivalent to the conjunction of
dβ0
dζ = 0 (78)

and

2dβk+1
dζ = −d2γk

dζ2 +
k∑

j=0
Ejγk−j (79)

and

2ςζκ dγk

dζ + ςκζκ−1γk = −d2βk

dζ2 +
k∑

j=0
Ejβk−j −

k−1∑
j=0

(
2ϕj

dγk−j−1
dζ + ϕ′

jγk−j−1
)

(80)

holding for all k ∈ N. Integrating these two relations yields the equivalent integral formulas
β0 = 1 + c0,

βk+1(ζ) = 1
2

∫ Z

ζ

( d2γk(ω)
dω2 −

k∑
j=0

Ej(ω)γk−j(ω)
)

dω + ck, (81)

γk(ζ) = ς

2ζκ/2

[ ∫ Z

ζ

(d2βk(ω)
dω2 −

k∑
j=0

Ej(ω)βk−j(ω)+
k−1∑
j=0

(
2ϕj

dγk−j−1
dζ +ϕ′

jγk−j−1
)) dω

ωκ/2 +Ck

]
, (82)

where ck, Ck ∈ C are arbitrary constants of integration. These constants of integration have to
do with the fact that if U = {U(−, h)}h>0 solves the semiclassical ODE LU = 0, then so does
(1 + c(h))U for any function c : [0,∞)h → C. Analogously, if U solves LU = 0, then so does cU for
any c ∈ C[[h2]]. If U is constructed as above, then it can be checked that cU arises from a different
choice of ck. Below, we take ck = 0 for all k.

The interpretation of Ck is similar but more complicated. We will choose Ck so as to minimize
the index sets appearing in the ζ → 0+ expansions of the γk(ζ). In other words, C is to be chosen
such that ∫ Z

ζ

(d2βk(ω)
dω2 −

k∑
j=0

Ej(ω)βk−j(ω) +
k−1∑
j=0

(
2ϕj

dγk−j−1
dζ + ϕ′

jγk−j−1
)) dω

ωκ/2 (83)

has no constant term in its polyhomogeneous expansion in ζ at ζ = 0.
The equations above give a recursive definition for U ∈ C∞(ze◦)[[h]]. By construction, LU = 0.
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4.3. Behavior at fe: sketch. We now analyze the behavior of the coefficients βk(ζ), γk(ζ) as
ζ → 0+. Since these Taylor coefficients are thought of as functions on ze, the ζ → 0+ limit
corresponds to the corner ze ∩ fe. Before addressing the situation in full generality, let us suppose
that ϕ = 0 and

E ∈ C∞([0, Z]z × [0,∞)h2 ;C). (84)
The obstruction encountered by Olver in [Olv97, Chp. 12- §14] already comes into view, namely the
fact that, if κ ≥ 2, the right-hand side of eq. (82) will typically be singular as ζ → 0+ (as long as E
is not decaying too rapidly at fe), and this cannot be fixed by judiciously choosing the Ck’s (unlike
in the κ < 2 case). Since β0 = 1, γ0 is already singular, with

γ0(ζ) = ςE0(0)(1 + o(1))
(κ− 2)ζκ−2 (85)

if κ > 2.
At first glance, the existence of such a singularity may seem paradoxical — since the ODE is

regular singular at ζ = 0 with indicial roots 0, 1, solutions cannot be singular at {ζ = 0, h > 0}
except for possible logarithmic terms. So, given that they are singular, how can βk, γk be regarded
as Taylor coefficients in h? With the appropriate goemetric perspective, there is no problem; the
formal series U should only be taken seriously as a possible asymptotic expansion near ze, which is
disjoint from the closure be = clM {ζ = 0, h > 0} of {ζ = 0, h > 0} = be◦ in M . In short, irregularity
at the edge fe is consistent with regularity at the edge be.

But this is merely a justification for performing some blowup of the relevant corner of [0, Z]z ×
[0,∞)h2 . Why is the blowup defining M the correct one for the problem at hand? Certainly, it is
natural to hope that the blowup is the same one on which the quasimodes

Q(ζ/h2/(κ+2)), Q′(ζ/h2/(κ+2)) (86)

are exponential-polyhomogeneous, but it is not obvious that this should be the case. These are
quasimodes for P , and here we are constructing quasimodes for L. So, this fails to answer the
question.

In order to answer it, we need to work in local coordinates. Let ρ = h/ζ(κ+2)/2 and x = ζ. Then
(x, ρ2) is a valid coordinate chart near ze. (We give ζ a new name to avoid conflating the partial
derivative ∂/∂ζ in the original local coordinate system (ζ, h2) with the partial derivative ∂/∂x in
the new one.) More precisely, the map

(x, ρ2) 7→ (ζ, h2) =
(
x, ρ2xκ+2) (87)

defines a diffeomorphism [0, Z]x × [0,∞)ρ2 → M\be ⊃ ze. In terms of these new coordinates, the
vector field ∂/∂ζ can be written

∂

∂ζ
= ∂

∂x
− κ+ 2

2
ρ

x

∂

∂ρ
. (88)

The map

C∞(0, Z)ζ [[h]] ∋ s =
∞∑

k=0
hksk(ζ) 7→

∞∑
k=0

ρkxk(κ+2)/2sk(x) def= {s} (89)

defines an isomorphism

{· · · } : C∞(0, Z]ζ [[h]] → C∞(0, Z]x[[ρ]] ⊂ C∞(ze◦)[[ρ]] (90)

of Diff[0, Z]-modules. The result of applying the right-hand side of eq. (88) to ρx(κ+2)/2 gives 0.
(This is just the statement that ∂h/∂ζ = 0, written in the new coordinate system.) Thus,

∂s
∂ζ

=
∞∑

k=0
ρkxk(κ+2)/2∂sk(x)

∂x
=
{ ∞∑

k=0
hk ∂sk(ζ)

∂ζ

}
. (91)
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So, {· · · } commutes with differential operators, replacing derivatives in ζ with derivatives in x.
We may therefore drop the “{· · · }” in eq. (91) without risk of confusion, identifying elements of
C∞(0, Z)ζ [[h]] with the corresponding elements of C∞(ze◦)[[ρ]].

At a heuristic level, we can answer the question asked above by examining the orders of the
singularities of βk(ζ), γk(ζ) at ζ = 0. We continue to assume ϕ = 0 and eq. (84) holds. Since
differentiation in ζ can worsen the singularity by at most one order, and since integration mollifies
the singularity by at least one order, the recurrence relations eq. (81), eq. (82) tell us that, when
comparing βk+1, γk+1 to βk, γk, the order of the singularity has increased by no more than κ+ 2
orders. But, the former each appear in eq. (77) with an extra power of h2 = ρ2xκ+2 relative to the
previous. So, in the formal series U, the worsening singularity of the coefficients is exactly canceled
by the extra factors of x present in the multiplier h2. This is what allows it to be interpreted as an
asymptotic expansion at ze = {ρ = 0}, including the endpoint ze ∩ fe, in powers of ρ. The fortuitous
numerology needed to make this cancellation happen would not work with a different blowup.

One notable exception to the above heuristic is in going from k = 0 to k = 1, because

∂2β0
∂2ζ

= 0. (92)

This means that going from β0 to β1 increases the order of the singularity by no more than κ+ 1
orders, which is an improvement of one order relative to the other k. (Depending on the behavior of
E at ζ = 0, there may be similar improvements for more k.) Consequently, every subleading term
in the formal series for β in ρ is O(ζ) relative to the leading term as ζ → 0+, and so are subleading
in that sense too. This does not imply that the expansion is a joint expansion, which would require
that subsequent terms have further increasing decay at ζ = 0; the improvement noted typically
stops at O(ζ). Nevertheless, even this improvement aids in understanding leading behavior at fe.

4.4. Behavior at fe: details. A precise version of the argument in the previous section requires
keeping track of logarithmic terms (which we avoided in eq. (85), in the main term, by assuming
κ ≥ 3), but these complicate matters only slightly. Allowing general ϕ ̸= 0 and E does not modify
the conclusions, but only because the assumptions placed on these functions in the introduction
were precisely those needed for the argument here to go through.

We lay out some notation. If F ⊂ C × N is an index set, then let ∂F , F+ denote the index sets

∂F = {(j − 1 + n, k) : (j, k) ∈ F and j ̸= 0, n ∈ N} ∪ {(j − 1, k − 1) : (j, k) ∈ F and k ≥ 1} (93)

and
F+ = {(j + 1, k) ∈ C × N : (j, k) ∈ F} ∪ {(n, k + 1) ∈ N × N : (−1, k) ∈ F}. (94)

Let F+c = {(n, 0) : n ∈ N} ∪ F+, which is also an index set. For any F ∈ AF ,(0,0)[0, Z]ζ , where F
denotes the index set at ζ = 0, we have ∂F ∈ A∂F ,(0,0)[0, Z]ζ , hence the notation. Also,∫ Z

ζ
F (ω) dω ∈ AF+c,(1,0)[0, Z]ζ , (95)

and, for some choice of constant of integration C,

C +
∫ Z

ζ
F (ω) dω ∈ AF+,(0,0)[0, Z]ζ . (96)

These claims can be verified by expanding F (ζ) around ζ = 0, differentiating or integrating each
term in the expansion by hand, and then locating the error in the appropriate conormal space. Also,
recall, for each λ ∈ C, the notation F + λ = {(j + λ, k) : (j, k) ∈ F} = λ+ F .

Proposition 4.1. Except for β0, the functions βk, γk ∈ C∞(ze◦) recursively defined above satisfy
xk(κ+2)βk ∈ AE,(0,0)(ze) and xk(κ+2)γk ∈ AF ,(0,0)(ze) for index sets E ⊆ N × N and F ⊆ Z × N
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defined by

E = 1 +
{⋃∞

j=0((κ+ 2)j, j) (κ /∈ 2N),⋃∞
j=0((κ+ 2)j, 2j) ∪ ((κ+ 2)j + κ/2, 2j + 1) (κ ∈ 2N),

(97)

that is by eq. (14), and F = E − κ− 1. ■

As above, in AI,(0,0)(ze), the index set at ze ∩ fe is I and the index set at ze ∩ ie is (0, 0).

Proof. Via a straightforward inductive argument using eq. (81), eq. (82), we have, for all k ∈ N,
xk(κ+2)βk ∈ AEk,(0,0)(ze) and xk(κ+2),(0,0)γk ∈ AFk(ze) for index sets Ek,Fk defined recursively as
follows. The index sets E0,F0, are defined by E0 = (0, 0) and F0 = (E0 − 1 − κ/2)+ − κ/2. That is,

F0 =
{

(−κ, 0) (κ /∈ 2N),
(−κ, 0) ∪ (−κ/2, 1) (κ ∈ 2N).

(98)

Then, E1 is defined by

E1 = ((∂2F0) ∪ (F0 − 1))+c + κ+ 2 =


(1, 0) (κ = −1),
(1, 0) ∪ (κ+ 2, 1) (κ /∈ 2N),
(1, 0) ∪ (κ/2 + 1, 1) ∪ (κ+ 2, 2) (κ ∈ 2N).

(99)

In order to state the definitions of F1 and Ek,Fk for k ∈ N≥2, let E ′
k = Ek − k(κ + 2) and

F ′
k = Fk − k(κ+ 2). Then, for k ∈ N≥2,

Ek = (((∂2F ′
k−1) ∪ (F ′

k−1 − 1))+c + k(κ+ 2)), (100)

and, for all k ∈ N+,
Fk = (((∂2E ′

k) ∪ (E ′
k − 1) ∪ (E0 − k(κ+ 2)) ∪ (F ′

k−1 − 3) − κ/2)+ − κ/2 + k(κ+ 2)). (101)

If κ /∈ 2N, let, for each K ∈ N, ĒK = {(j, k) ∈ E : k ≤ K} ⊆ E and F̄K = {(j, k) ∈ F : k ≤ K} ⊆
F . Otherwise, if κ ∈ 2N, let ĒK = {(j, k) ∈ E : k ≤ 2K} ⊆ E and F̄K = {(j, k) ∈ F : k ≤ 2K + 1} ⊆
F .

We now check via induction that Ek ⊆ Ēk for all k ∈ N+ and Fk ⊆ F̄k for all k ∈ N. Once
demonstrated, this proves the proposition.

As the base case, we first observe that F0 = F̄0, which follows immediately from the definition.
For the inductive step, let k ∈ N+, and suppose that Ej ⊆ Ēk−1 and Fj ⊆ F̄k−1 for all j ≤ k − 1.

Then the recursive formula for Ek yields
Ek ⊆ (F̄k−1 − (k − 1)(κ+ 2) − 2)+c + k(κ+ 2). (102)

The set (F̄k−1 − (k− 1)(κ+ 2) − 2)+c + k(κ+ 2) is, by definition, a union I ∪ J ∪ K of three terms,
I = (0, 0) + k(κ+ 2) = (k(κ+ 2), 0) ⊆ Ē0 ⊆ Ēk,

J = (F̄k−1 − (k − 1)(κ+ 2) − 2) + 1 + k(κ+ 2) = F̄k−1 + κ+ 1 ⊆ Ēk, (103)
and

K = {(k(κ+ 2) + n, j + 1) : n ∈ N, (−1, j) ∈ F̄k−1 − (k − 1)(κ+ 2) − 2}
= {(k(κ+ 2) + n, j + 1) : n ∈ N, (k(κ+ 2), j) − κ− 1 ∈ F̄k−1}.

(104)

By the definition of F̄k−1, the condition (k(κ+ 2), j) − κ− 1 ∈ F̄k−1 holds if and only if j ≤ k if
κ /∈ 2N and j ≤ 2k if κ ∈ 2N. So,

K =
{

(k(κ+ 2), k) (κ /∈ 2N),
(k(κ+ 2), 2k) (k ∈ 2N).

(105)

So, K ⊆ Ēk. So, altogether, Ek ⊆ Ēk.
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Figure 5. The first few points (j, k) in E , for κ = −1, 0, 1, 2. The cases κ = −1, 0
are in dark gray, and κ = 1, 2 in hatched red.

For the remainder of the inductive step, suppose that k ∈ N+, and suppose that Ek ⊆ Ēk and
Fk−1 ⊆ F̄k−1. Then, the recursive formula for Fk yields

Fk ⊆ ((Ēk − k(κ+ 2) − 2) ∪ (F̄k−1 − 3 − (k − 1)(κ+ 2)) − κ/2)+ − κ/2 + k(κ+ 2). (106)

The right-hand side is the union of (Ēk − k(κ+ 2) − 2 − κ/2)+ − κ/2 + k(κ+ 2) and (F̄k−1 − 3 −
(k − 1)(κ+ 2) − κ/2)+ − κ/2 + k(κ+ 2). Because F̄k−1 ⊆ Ēk − κ− 1, the second of these satisfies

(F̄k−1 −3−(k−1)(κ+2)−κ/2)+ −κ/2+k(κ+2) ⊆ (Ēk −k(κ+2)−2−κ/2)+ −κ/2+k(κ+2), (107)

which is the other. So, in order to show that Fk ⊆ F̄k, it suffices to show that (Ēk − k(κ+ 2) − 2 −
κ/2)+ − κ/2 + k(κ+ 2) ⊆ F̄k. This set is a union I ∪ J of two terms,

I = (Ēk − k(κ+ 2) − 2 − κ/2 + 1) − κ/2 + k(κ+ 2) = Ēk − κ− 1 ⊂ F̄k (108)

and
J = {(−κ/2 + k(κ+ 2) + n, j + 1) : n ∈ N, (−1, j) ∈ Ēk − 2 − k(κ+ 2) − κ/2}

= {(−κ/2 + k(κ+ 2) + n, j + 1) : n ∈ N, (1 + κ/2 + k(κ+ 2), j) ∈ Ēk}.
(109)

If κ /∈ 2N, then J = ∅, so J ⊆ F̄k trivially. Otherwise, the condition (1 + κ/2 + k(κ+ 2), j) ∈ Ēk is
satisfied if and only if j ≤ 2k + 1, so J ⊆ F̄k. □

Via the standard asymptotic summation construction, there exist functions β, γ such that, for
any K ∈ N,

β − 1 −
K−1∑
k=1

h2kβk ∈ ϱK
zeAE(M), γ −

K−1∑
k=0

h2k+1γk ∈ ϱK+1/2
ze ϱ

1+κ/2
fe AF (M). (110)

We may choose β, γ such that β − 1, γ vanish identically near be.
Let U = (β, γ). This might not solve LU = 0, but:

Proposition 4.2. LU ∈ ϱ−1
be ϱ

∞
zeϱ

κ
feAE(M)⊕ϱ∞

beϱ
∞
zeϱ

κ/2
fe AE(M), with the second component supported

away from be. ■

Proof. Since β − 1, γ are supported away from be,

LU = L

[
1
0

]
= h2E

[
1
0

]
(111)

near be. The right-hand side is in ϱ−1
be ϱ

κ+1
fe C∞(M) ⊕ {0} ⊂ ϱ−1

be ϱ
κ
feAE(M) ⊕ {0} near be.
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It remains to understand the situation away from be, for which we can work in the local coordinate
system (x, ρ2) discussed in eq. (87).

Consider the components of L as weighted elements of Diffb = Diffb([0, Z]x × [0,∞)ρ2), i.e. the
unital algebra of differential operators generated over C∞([0, Z]x × [0,∞)ρ2 ;C) by the vector fields
ρ2∂ρ2 ∝ ρ∂ρ and x∂x. Let Diffk

b denote the subset of kth order elements of Diffb. Equation (88)
shows that

h
∂

∂ζ
∈ ρxκ/2 Diff1

b . (112)

Consequently,

L ∈
(
ρ2xκ Diff2

b ρx3κ/2 Diff1
b

ρxκ/2 Diff1
b ρ2xκ Diff2

b

)
, (113)

meaning that the entries L00, L01, L10, L11 of L are in the corresponding sets on the right-hand
side.

It follows that, since U ∈ (1, 0) + (ϱzeAE(M)) ⊕ ϱ
1/2
ze ϱ

(κ+2)/2
fe AF (M), LU is polyhomogeneous on

M away from be, and more specifically

LU ∈ ϱzeϱ
κ
feAE(M\be) ⊕ ϱ3/2

ze ϱ
κ/2
fe AE(M\be). (114)

Thus, in order to conclude the proposition, it suffices to show that the terms in the Taylor expansion
of LU at ze vanish identically. The coefficients of this asymptotic expansion are polyhomogeneous
functions on ze and can therefore be identified with their restrictions to ze◦. These are just the
functions βk, γk above.

Consequently, it suffices to check that, for each ζ > 0, the Taylor expansion of U(ζ, h) at h = 0
vanishes. By construction, this expansion is precisely LU = 0. □

Finally, we have the main result of this section:

Proposition 4.3. There exist functions β0, γ0 ∈ AE−1(M) supported away from be such that,
defining u by

u = (1 + ϱzeϱfeβ0)Q
( ζ

h2/(κ+2)

)
+ ϱ(κ+1)/(κ+2)

ze ϱfeγ0Q
′
( ζ

h2/(κ+2)

)
. (115)

we have Pu = fQ+ gQ′ for f, g ∈ ϱ−1
be ϱ

∞
zeϱ

κ
feAE(M) and g supported away from be. ■

Proof. Consider the function u defined by eq. (66), u = βQ+ hκ/(κ+2)γQ′, with β, γ as above. By
Proposition 4.2, this satisfies

Pu =
[

Q

hκ/(κ+2)Q′

]⊺
LU ∈ ϱ−1

be ϱ
∞
zeϱ

κ/2
fe

[
Q

hκ/(κ+2)Q′

]⊺ [
ϱ

κ/2
fe AE(M)

AE(M)

]
. (116)

Writing out the inner product,[
Q

hκ/(κ+2)Q′

]⊺ [
ϱ

κ/2
fe AE(M)

AE(M)

]
= Qϱ

κ/2
fe AE(M) + hκ/(κ+2)Q′AE(M), (117)

and hκ/(κ+2)AE(M) = ϱ
κ/(2κ+4)
ze ϱ

κ/2
fe AE(M). So Pu = fQ+ gQ′ for some f, g ∈ ϱ−1

be ϱ
∞
zeϱ

κ
feAE(M).

We just need to verify that β, γ can be written in terms of β0, γ0 of the desired form. Indeed, the
function β0 defined by β0 = ϱ−1

ze ϱ
−1
fe (β − 1) is in AE−1(M) by construction, and a short calculation

gives
hκ/(κ+2)γ ∈ h(2κ+2)/(κ+2)AF (M) = ϱ(κ+1)/(κ+2)

ze ϱfeAE−1(M). (118)
Since Proposition 4.2 says that the second component of LU is supported away from be, the same

holds for g. Also, since β − 1 and γ are supported away from be, the same applies to β0, γ0. □
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5. Analysis at the high corner

We now turn to solving, modulo errors which are small relative to Q, the forced ODE Pu =
fQ+ gQ′ near fe. Our assumption on f, g, coming from the previous section, is that

f, g ∈ ϱ∞
zeϱ

κ
feAE(M) =

∞⋂
k=0

ϱk
zeϱ

κ
feAE(M). (119)

The key idea is that, as discussed earlier, P is well approximated by N(P ) near fe, so an approximate
solution can be constructed by asymptotically summing a formal polyhomogeneous series in the bdf
of fe. This yields O(h∞) errors relative to Q.

It will be most convenient to use the coordinates λ = ζ/h2/(κ+2) and ϱ = h2/(κ+2). For any
h0 > 0, λ0 > 0, let

Vh0,λ0 = {(ζ, h) ∈ (0, Z) × (0, h0) : ζ > λ0h
2/(κ+2)}, (120)

Uh0,λ0 = {(ζ, h) ∈ (0, Z) × (0, h0) : ζ < λ0h
2/(κ+2)}. (121)

These are open subsets of [0, Z]ζ × [0,∞)h. The subsets V̄h0,λ0 = (clMVh0,λ0)◦ ⊂ M and Ūh0,λ0 =
(clMUh0,λ0)◦ ⊂ M are relatively open subsets of M containing some points of the boundary. (Here,
◦ denotes the topological interior as taken in M .)

The set Ūh0,λ0 is a neighborhood of the “low corner” fe ∩ be, and V̄h0,λ0 is a neighborhood of the
“high corner” ze ∩ fe. If λ1 > λ0, then Vh0,λ0 ∪ Uh0,λ1 ⊃ fe.

In this section our concern is the situation in Vh0,λ0 , and Uh0,λ0 is considered later.

fe

ze

ie

be

U

V

ϱ = h2/(κ+2)
λ

ζ

λ−(κ+2)

λ

Γλ1

Γλ0

Figure 6. The neighborhoods U = Uh0,λ1 and V = Vh0,λ0 for some h0 > 0 and
λ1 > λ0 > 0. Note that U, V contain points of ∂M .

Recall that, in the coordinate system (λ, ϱ), P can be considered as a family of ordinary differential
operators on fe◦ = R+

λ , and ϱ−κP, ϱ−κN(P ) have smooth coefficients all the way down to ϱ = 0. Let

N̂(P ) = ϱ−κN(P ) ∈ Diff2(fe◦). (122)

To leading order at fe, P is indeed given by N(P ), as ϱ−κP − N̂(P ) = ϱ2E is lower order, both with
respect to the usual differential sense and with respect to decay as ϱ → 0+. The latter of these is
not immediately obvious, as E ∈ ζ−1C∞(M ;C) can be singular at fe and be, but this just means
that E = ϱ−1Ê for some

Ê ∈ λ−1C∞([0,∞)λ × [0,∞)ϱ;C). (123)
So, ϱ2E = ϱÊ = O(ϱ) is still decaying as ϱ → 0+, at least for 0 ≪ λ ≪ ∞.

Consider the Taylor series

E ∼
∞∑

k=−1
ϱkEk(λ) =

∞∑
k=−1

ζkλ−kEk(λ) (124)
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of E at fe. Accordingly, we have the following formal version of ϱ−κP :

P = N̂(P ) +
∞∑

k=−1
ϱk+2Ek(λ) ∈ Diff2(fe◦)[[ϱ]], (125)

the coefficients of which are elements of Diff2(fe◦).
From E ∈ ζ−1C∞(M ;C) and the fact that the second series in eq. (124) is the Taylor series of E

at fe near ze ∩ fe when ζ is taken as a local bdf of fe near ze ∩ fe, it follows that Ek(ρ−2/(κ+2)) ∈
ρ−2k/(κ+2)C∞[0,∞)ρ2 .

The main result of this subsection is:

Proposition 5.1. Let E denote an index set, and let h0, λ0 > 0, thus supported away from be,
λ1 > λ0, and Λ > λ1. Given Q ∈ Q and f, g ∈ ϱ∞

zeϱ
κ
feAE(M) satisfying supp f, supp g ⋐ V̄h0,λ1,

there exist
• β, γ ∈ ϱ∞

ze AE(M) satisfying suppβ, supp γ ⋐ V̄h0,λ0\ie, thus supported away from ie ∪ be,
• R ∈ ϱκ

feAE(M) satisfying
suppR ⋐ V̄h0,λ0 ∩ Ūh0,Λ, (126)

thus supported away from ie ∪ ze ∪ be, and
• f0, g0 ∈ ϱ∞

zeϱ
∞
fe C

∞(M ;C) = h∞C∞(M ;C) satisfying supp f0, supp g0 ⋐ V̄h0,λ1, thus sup-
ported away from be,

such that the function u = βQ+ γQ′ solves Pu = (f + f0)Q+ (g + g0)Q′ +R. ■

Thus, given O(ϱ∞
ze ) forcing relative to Q, we can solve the ODE modulo O(h∞) errors (relative

to Q) near ze ∩ fe.

Proof. If Q = 0, then the claim holds trivially, so assume otherwise. We construct u order-by-order.
By linearity, we may assume without loss of generality that one of f, g is identically 0. Both cases
are similar, so we focus on the case where g = 0.

Expand f at fe as

ϱ−κf ∼
∞∑

(j,k)∈E
fj,kϱ

j logk ϱ (127)

where fj,k ∈ ϱ∞
zeC

∞(fe\be) ⊂ S(Rλ). Necessarily, supp fj,k ∩ [0, λ0] = ∅. Let f denote the formal
series on the right-hand side of eq. (127).

Fix λ1/2 ∈ (λ0, λ1), λ2 ∈ (λ1,Λ), and λ3 ∈ (λ2,Λ). Suppose that we have formal polyhomogeneous
series

b =
∑

(j,k)∈E
bj,kϱ

j logk ϱ, c =
∑

(j,k)∈E
cj,kϱ

j logk ϱ (128)

with coefficients bj,k, cj,k ∈ S(Rλ) ∩ C∞
c (λ2,∞] such that, setting u = bQ(λ) + cQ′(λ), there exists

some formal series
R =

∑
(j,k)∈E

Rj,k(λ)ϱj logk ϱ (129)

with coefficients Rj,k ∈ C∞
c (λ1/2, λ3), such that

P(bQ(λ) + cQ′(λ)) = R + fQ(λ) (130)
holds as an identity of formal polyhomogeneous series. Then, b, c may be asymptotically summed
to yield β ∈ ϱ∞

ze AE(M) and γ ∈ ϱ∞
ze AE(M) whose polyhomogeneous expansions at fe are given by

b, c respectively, and these can be chosen to be supported in V̄h0,λ0\ie. Indeed, we necessarily have
that β, γ are supported there modulo an O(h∞) error, which can be subtracted off. Likewise, R
may be asymptotically summed to yield R ∈ ϱκ

feAE(M) whose expansion at fe is given by ϱκR, and
R can be chosen so as to satisfy the support condition eq. (126).
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Given β, γ as in the previous paragraph, let u = βQ+γQ′. By construction, the polyhomogeneous
expansion of ϱ−κPu at fe◦ is given by R + fQ(λ), and the error R0 = Pu− fQ−R satisfies

R0 ∈ ϱ∞
zeϱ

∞
fe Mod1/2

Q C∞
c (V̄h0,λ0 ;C) ⊂ ϱ∞

zeϱ
∞
fe ϱ

∞
be Mod1/2

Q C∞(M ;C), (131)

where ModQ(λ) is the modulus function defined in the appendix, by eq. (224).
Letting f0 = R0Q

∗/(|Q|2 + |Q′|2) and g0 = R0(Q′)∗/(|Q|2 + |Q′|2), f0, g0 ∈ ϱ∞
zeϱ

∞
fe C

∞
c (V̄h0,λ0 ;C)

holds, as does the desired identity Pu = (f + f0)Q+ (g + g0)Q′ +R.
To summarize, we have shown that it suffices to construct formal series b, c,R with the desired

properties. Such formal series can be constructed recursively:

P(bQ(λ) + cQ′(λ)) =
∑

(j,k)∈E
ϱj log ϱk

[
N̂(P )(bj,kQ+ cj,kQ

′)

+
∑

(j′,k)∈E and j′<j

Ej−j′−2(λ)(bj′,kQ+ cj′,kQ
′)
]
. (132)

Set
vj,k = N̂(P )−1[Q,Q0]

[
fj,kQ−

∑
(j′,k)∈E and j′<j

Ej−j′−2(λ)(bj′,kQ+ cj′,kQ
′)
]
, (133)

where, for arbitrary Q0 ∈ Q linearly independent with Q, N̂(P )−1[Q,Q0] is the right-inverse to
N̂(P ) constructed in §3.3. By Proposition 3.6, vj,k can be modified in a compact subset so that it
can be written as bj,kQ+ cj,kQ

′ for bj,k, cj,k ∈ S(Rλ) ∩ C∞
c (λ2,∞] satisfying

N̂(P )vj,k = Rj,k + fj,kQ−
∑

(j′,k)∈E and j′<j

Ej−j′−2(λ)(bj′,kQ+ cj′,kQ
′) (134)

for fj,k ∈ C∞
c (λ1/2, λ2) and Rj,k ∈ C∞

c (λ1/2, λ3). By construction, P(bQ(λ) + cQ′(λ)) = R + fQ(λ)
is satisfied. □

6. O(h∞) error analysis

In this section, we study, away from be, the forced ODE Pu = fQ+gQ′ for f, g ∈ ϱ∞
fe ϱ

∞
zeC

∞(M) =
h∞C∞([0, Z]ζ ×[0,∞)h;C) supported away from be. The goal is to construct an exact solution which
is O(h∞) relative to the (possibly exponentially growing) quasimode Q. Since we are concerned
with the situation away from be, it is acceptable to produce errors away from ie ∪ ze. We restrict
attention to h ∈ [0, h0) for some h0 > 0 which can be taken as small as desired.

If ς < 0, i.e. we are in the classically allowed case, then the forcing F = fQ + gQ′ satisfies
F ∈ h∞C∞([0, Z]ζ × [0,∞)h;C) as well. However, when ς > 0, i.e. we are in the classically forbidden
case, then it is critical to keep track of the exponential weights at ze present in the quasimodes and
their derivatives, as these can outweigh any O(h∞) multiplier. One way of accomplishing this is to
work with the modulus function

ModQ(ζ, h) = ModQ(ζ/h2/(κ+2)), (135)
where ModQ(λ) is defined by eq. (224), except, in order to avoid conflicting notation, replace χ in
eq. (224) by χ0, where χ0 ∈ C∞

c (R; [0, 1]) is identically 1 in some neighborhood of the origin. We
utilize the weighted Banach spaces

Modν
Q L

∞ = ModQ(ζ, h)νL∞(Vh0,λ0 ;C). (136)
In addition, let

h∞ Modν
Q L

∞ =
⋂

k∈N
hk Modν

Q L
∞. (137)

When ν = 0, the “Mod0
Q” is omitted from all notation. The two main properties of ModQ used

(mostly without further comment) here are Proposition A.2 and Proposition A.3.
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The main result of this section is the following:

Proposition 6.1. Fix Q ∈ Q. Given f, g ∈ h∞C∞([0, Z]ζ ×[0,∞)h;C) satisfying (supp f∪supp g)∩
be = ∅, there exist β, γ with the following four properties:

(1) β, γ ∈ h∞C∞([0, Z]ζ × [0,∞)h;C)
(2) suppM β, suppM γ are disjoint from be, and
(3) the function u = βQ+ γQ′ solves Pu = fQ+ gQ′ + w for w ∈ h∞C∞([0, Z]ζ × [0,∞)h;C)

such that suppM w is disjoint from ze ∪ be.
Here, suppM F is the closure in M of {p ∈ M◦ : F (p) ̸= 0}. ■

Proof. The claim is trivially true if Q = 0, so assume otherwise.
We choose a basis A,B for Q. If ς > 0, choose A = Q∞ to be the exponentially decaying mode

and B to be any other element of Q such that spanC{A,B} = Q. If ς < 0, choose instead A = Q−
and B = Q+. Fix χ ∈ C∞

c (M ; [0, 1]) identically 1 near ze and vanishing near be, and suppose that
χ̄ ∈ C∞

c (M ; [0, 1]) is identically 1 near ze and identically vanishing on supp(1 − χ).
As an ansatz for u, take

u = ℵχ̄A
( ζ

h2/(κ+2)

)
+ ℶχ̄B

( ζ

h2/(κ+2)

)
(138)

for to-be-constructed ℵ,ℶ ∈ C∞((0, Z]ζ × (0,∞)h;C). Below, we will abbreviate A(ζ/h2/(κ+2)) and
B(ζ/h2/(κ+2)) as A,B.

We first address sufficient conditions on (ℵ,ℶ) for such a u to be expressable as βQ + γQ′ for
β, γ satisfying properties (1) and (2). Define

β = ModQ(ζ, h)−1Q(ζ/h2/(κ+2))∗u, (139)

γ = ModQ(ζ, h)−1ζ2h−(κ+2)⟨h−1χ0(h2/(κ+2)/ζ)ζ(κ+2)/2⟩−2Q′(ζ/h2/(κ+2))∗u. (140)

Then, β, γ ∈ C∞((0, Z)ζ × (0,∞)h;C) and u = βQ+ γQ′. The presence of the cutoff χ̄ in u means
that property (2) is satisfied automatically.

In order for property (1) to be satisfied, the ℵ,ℶ are to be constructed satisfying the following
estimates:

• if ς < 0 or Q /∈ spanCQ∞, then, for every j, k ∈ N,

∂j∂k(χℵ)
∂hj∂ζk

∈ h∞ ModB L
∞,

∂j∂k(χℶ)
∂hj∂ζk

∈ h∞L∞. (141)

• If ς > 0 and Q ∈ spanCQ∞\{0}, then

∂j∂k(χℵ)
∂hj∂ζk

∈ h∞L∞,
∂j∂k(χℶ)
∂hj∂ζk

∈ h∞ ModA L
∞. (142)

We now check that these suffice to conclude property (1). If ς < 0 or Q /∈ spanCQ∞, then this
computation is recorded in Lemma 6.2 below. Indeed, β, γ are a linear combination of functions of
the form discussed in the lemma with polyhomogeneous coefficients on M that are smooth at ie.
Since the product of a polyhomogeneous function on M smooth at ie with an element of

h∞C∞([0, Z]ζ × [0,∞)h;C) = ϱ∞
fe ϱ

∞
zeC

∞(M) (143)
supported away from be results in an element of h∞C∞([0, Z]ζ × [0,∞)h;C), it can be concluded
that (1) holds. If ς > 0 and Q ∈ spanCQ∞, then we instead appeal to Lemma 6.3, and the desired
conclusion follows exactly as before.

In order to satisfy property (3), it suffices to arrange that the function u0 = ℵA+ ℶB satisfies
Pu = fQ+ gQ′. The property then holds with

w = −(1 − χ̄)(fQ+ gQ′) + [P, χ̄]u0. (144)
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As follows from writing P in the coordinate system (λ, ϱ), the result of applying [P, χ̄] to to u0 lies
in h∞C∞([0, Z]ζ × [0,∞)h;C), and since [P, χ̄] is vanishing near ze ∪ be, the support of w is disjoint
from ze ∪ be as well.

To summarize, in order to conclude the proposition it suffices to construct ℵ,ℶ ∈ C∞((0, Z]ζ ×
(0,∞)h;C) with the following two properties:

• ℵ,ℶ satisfy the estimates above and
• u0 = ℵA+ ℶB satisfies Pu = fQ+ gQ′.

The ℵ,ℶ are constructed by Proposition 6.4 below. The proposition states that the second item
holds. So, we only need to confirm that ℵ,ℶ satisfy the desired estimates. This is given by the
conjunction of the lemmas below. Indeed, Proposition 6.5 shows that it suffices to prove the k = 0
cases of the desired estimates (with a slightly enlarged cutoff), deducing the others. The propositions
Proposition 6.8 and Proposition 6.10 provide the required k = 0 result, at least if χ is supported in
clM {ζ ≥ h2/(κ+2)λ0} for sufficiently large λ0, which can be arranged. □

We now fill in the required lemmas.

Lemma 6.2. Suppose that ℵ,ℶ ∈ C∞((0, Z)ζ × (0,∞)h;C) satisfy eq. (141) for each j, k ∈ N. Then,
unless ς > 0 and Q ∈ spanCQ∞, each

R ∈
{ ℵχ̄Q∗A

ModQ(ζ, h) ,
ℶχ̄Q∗B

ModQ(ζ, h) ,
ℵχ̄(Q′)∗A

ModQ(ζ, h) ,
ℶχ̄(Q′)∗B

ModQ(ζ, h)
}

(145)

satisfies R ∈ h∞C∞([0, Z]ζ × [0,∞)h;C). ■

Proof. We first demonstrate the proof for R = ModQ(ζ, h)−1ℵχ̄Q∗A. For any j, k ∈ N, ∂j
h∂

k
ζ R is a

linear combination of
∂j0∂k0(χℵ)
∂hj0∂ζk0

∂j1∂k1χ̄

∂hj1∂ζk1

∂j2∂k2Q∗

∂hj2∂ζk2

∂j3∂k3A

∂hj3∂ζk3

∂j4∂k4

∂hj4∂ζk4

1
ModQ

(146)

for j0, j1, j2, j3, j4, k0, k1, k2, k3, k4 ∈ N with j0 + j1 + j2 + j3 + j4 = j and k0 + k1 + k2 + k3 + k4 = k.
By assumption, the first term in eq. (146) is in h∞ ModB L

∞. Multiplying the second term by some
large power of h, the result is in ϱ∞

beL
∞. (The reason is that ∂h, ∂ζ are powers of boundary-defining-

functions times smooth vector fields on M .) Multiplying the third term by some large power of
ϱbeh, the third term is in Mod1/2

B L∞, per Proposition A.2. Likewise, multiplying the fourth term
by some large power of ϱbeh, it is in Mod1/2

A L∞. Finally, using Proposition A.2 again, computing
the higher derivatives of ModQ(λ)−1 yields

ϱK
beh

K ∂j4∂k4

∂hj4∂ζk4

1
ModQ

∈ Mod−1
B L∞ (147)

for some K ∈ N. So, all in all, ∂j
h∂

k
ζ R ∈ h∞L∞. We can then conclude R ∈ h∞C∞([0, Z]ζ ×

[0,∞)h;C).
Consider now the case R = ModQ(ζ, h)−1ℶχ̄Q∗B. For any j, k ∈ N, ∂j

h∂
k
ζ R is a linear combination

of
∂j0∂k0(χℶ)
∂hj0∂ζk0

∂j1∂k1χ̄

∂hj1∂ζk1

∂j2∂k2Q∗

∂hj2∂ζk2

∂j3∂k3B

∂hj3∂ζk3

∂j4∂k4

∂hj4∂ζk4

1
ModQ

(148)

for j0, j1, j2, j3, j4, k0, k1, k2, k3, k4 ∈ N as above. By assumption, the first term in eq. (148) is in
h∞L∞. The second and third were understood above. Multiplying the fourth term by some large
power of ϱbeh, the fourth term is in Mod1/2

B L∞. The fifth term was also understood above. So, all
in all, ∂j

h∂
k
ζ R ∈ h∞L∞. We can then conclude R ∈ h∞C∞([0, Z]ζ × [0,∞)h;C).

Each of the remaining two cases are similar to one of the previous two. □
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Lemma 6.3. Suppose that ς > 0 and Q ∈ spanCQ∞\{0}, and suppose that ℵ,ℶ ∈ C∞((0, Z)ζ ×
(0,∞)h;C) satisfy eq. (142) for each j, k ∈ N. Then, the R as in eq. (145) all satisfy R ∈
h∞C∞([0, Z]ζ × [0,∞)h;C). ■□

The proof is completely analogous to that of Lemma 6.2, so it is omitted.

Proposition 6.4 (Variation of parameters). Let F ∈ C∞((0, Z]ζ ×(0,∞)h;C), ζ0 ∈ C∞(R+
h ; (0, Z]).

There exist unique ℵ,ℶ ∈ C∞((0, Z]ζ × (0,∞)h;C) vanishing at the graph Γ(ζ0) = {(ζ0(h), h) : h ∈
R+} ⊂ (0, Z]ζ × (0,∞)h such that, firstly,

∂ℵ
∂ζ
A+ ∂ℶ

∂ζ
B = 0 (149)

and, secondly, the function u defined by u = ℵA+ ℶB satisfies the forced ODE Pu = h2F . These
ℵ,ℶ solve

∂

∂ζ

[
ℵ
ℶ

]
= h2/(κ+2)

W

(
E

[
−AB −B2

A2 AB

] [
ℵ
ℶ

]
+ F

[
B

−A

])
, (150)

where W is the Wronskian W = A(λ)B′(λ) −A′(λ)B(λ), which is independent of λ and therefore
just a constant. Moreover, ℵ,ℶ depend linearly on F . ■

Proof. Assuming that ℵ,ℶ ∈ C∞((0, Z]ζ × (0,∞)h;C) satisfy eq. (149), the function u defined by
u = ℵA+ ℶB satisfies Pu = h2F if and only if

1
h2/(κ+2)

(∂ℵ
∂ζ
A′ + ∂ℶ

∂ζ
B′
)

= (ℵA+ ℶB)E − F. (151)

Combining eq. (149), eq. (151) into a single system of ODEs, the result is[
A B
A′ B′

]
∂

∂ζ

[
ℵ
ℶ

]
= h2/(κ+2)

(
E

[
0 0
A B

] [
ℵ
ℶ

]
− F

[
0
1

] )
. (152)

Inverting the matrix on the left-hand side,[
A B
A′ B′

]−1
= 1

W

[
B′ −B

−A′ A

]
. (153)

Thus, eq. (152) is equivalent to eq. (150). For each h > 0, this forced ODE has a unique solution
(ℵ(−, h),ℶ(−, h)) ∈ C∞((0, Z]ζ ;C2) vanishing at ζ0(h), as follows from the theory of linear ODE
with smooth dependence on parameters. This solution depends linearly on F . □

Proposition 6.5. Suppose that ℵ,ℶ ∈ C∞((0, Z]ζ × (0,∞)h;C) satisfy eq. (150). Let χ0 ∈ C∞(M)
be identically 1 on suppχ and vanishing near be. If ς < 0 or Q /∈ spanCQ∞ and

∂j(χ0ℶ)
∂hj

∈ h∞L∞,
∂j(χ0ℵ)
∂hj

∈ h∞ ModQ L
∞. (154)

holds for all j ∈ N, then eq. (141) holds for each j, k ∈ N. Similarly, if ς > 0 and Q ∈ spanCQ∞\{0}
and

∂j(χ0ℶ)
∂hj

∈ h∞ ModQ∞ L∞,
∂j(χ0ℵ)
∂hj

∈ h∞L∞. (155)

holds for all j ∈ N, then eq. (142) holds for each j, k ∈ N. ■
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Proof. Using the ODE, one concludes that, for each k ∈ N,

∂j

∂hj

∂k

∂ζk

[
χℵ
χℶ

]
= 1

W

j∑
j0=0

(
j

j0

)[
∂j−j0∂kχ

∂hj−j0∂ζk

∂j0

∂hj0

[
χ0ℵ
χ0ℶ

]
+

k∑
k0=1

∂j−j0∂k−k0χ

∂hj−j0∂ζk−k0

×
j0∑

j1=0

(
j0
j1

)(∂j0−j1h2/(κ+2)

∂hj0−j1

)[ j1∑
j2=0

k0−1∑
k1=0

∂j1−j2∂k0−1−k1F

∂hk0−1−k2∂ζj−j1

∂j2∂k1

∂hj2∂ζk1

[
B

−A

]

+
j1∑

j2=0

k0∑
k1=0

j2∑
j3=0

k1∑
k2=0

(
j1
j2

)(
j2
j3

)(
k0
k1

)(
k1
k2

)( ∂j1−j2∂k0−k1E

∂hj1−j2∂ζk0−k1

)
Mj3,k2

∂j2−j3∂k1−k2

∂hj2−j3∂ζk1−k2

[
χ0ℵ
χ0ℶ

] ]]
(156)

for any j ∈ N, where

Mj,k = ∂j∂k

∂hj∂ζk

[
−AB −B2

A2 AB

]
. (157)

(The factors of χ0 in eq. (156) are not required, but we include them for use below.)
Each derivative of χ is (one-step) polyhomogeneous on M and supported away from be, so, using

the assumptions,

∂j−j0∂kχ

∂hj−j0∂ζk

∂j0

∂hj0

[
χ0ℵ
χ0ℶ

]
∈
{
h∞L∞ ⊕ h∞ ModQ L

∞ (Q /∈ spanCQ∞)
h∞ ModQ∞ L∞ ⊕ h∞L∞ (otherwise),

(158)

so this contribution lies in the desired space. (Here, by “Q /∈ spanCQ∞” we mean that ς < 0 or
Q /∈ spanCQ∞.) If k = 0, then this term is the only term in eq. (156), so the claim has been proven
in this case.

Applying the ODE NQ = 0 to rewrite second and higher derivatives of Q in terms of zeroth and
first derivatives, the terms

∂j−j0∂k−k0χ

∂hj−j0∂ζk−k0

(∂j0−j1h2/(κ+2)

∂hj0−j1

)∂j1−j2∂k0−1−k1F

∂hk0−1−k2∂ζj−j1

∂j2∂k1

∂hj2∂ζk1

[
B

−A

]
(159)

in eq. (156) lie in the same space. If ς < 0, this is just a matter of multiplying elements of h∞L∞.
If ς > 0, then we need to keep track of the exponential factors, with the result being that, if
Q /∈ spanCQ∞, then the entries lie in the entries of

h∞ Mod1/2
Q

[
h∞BL∞ + h∞B′L∞

h∞AL∞ + h∞A′L∞

]
⊆
{

(h∞ ModQ L
∞) ⊕ h∞L∞ (Q /∈ spanCQ∞),

h∞L∞ ⊕ h∞ ModQ∞ L∞ (otherwise).
(160)

The remaining terms in eq. (156) only involve fewer ∂ζ falling on ℵ,ℶ than the left-hand side and
so can be controlled inductively. Computing Mj,k, the result is that

(ζ∞h∞L∞)Mj,k ⊆ ζ∞h∞
[

L∞ ModB L
∞

ModA L
∞ L∞

]
. (161)

So, if ς < 0 or Q /∈ spanCQ∞, the corresponding terms in eq. (156) above are, once the result has
been proven for all smaller k, known to be in

ζ∞h∞
[

L∞ ModB L
∞

ModA L
∞ L∞

] [
ModQ L

∞

L∞

]
⊆ ζ∞h∞

[
ModQ L

∞

L∞

]
. (162)

If Q ∈ spanCQ∞\{0}, then the computation is instead

ζ∞h∞
[

L∞ ModB L
∞

ModA L
∞ L∞

] [
L∞

ModQ∞ L∞

]
⊆ ζ∞h∞

[
L∞

ModQ∞ L∞

]
. (163)

□
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The ODE, together with vanishing initial conditions along the graph of a curve ζ0 : R+
h → [0, Z],

can be combined into an integral equation. Let G = −h2/(κ+2)W−1F and Ê = −W−1ζE ∈ C∞(M).
Integrating eq. (150), the solution of the initial value problem is[

ℵ(ζ, h)
ℶ(ζ, h)

]
=
∫ ζ0

ζ

(
Ê(ω, h)
λ(ω, h)

[
−A(ω, h)B(ω, h) −B(ω, h)2

A(ω, h)2 A(ω, h)B(ω, h)

] [
ℵ(ω, h)
ℶ(ω, h)

]
+G(ω, h)

[
B(ω, h)

−A(ω, h)

])
dω,

(164)
where λ(ζ, h) = ζ/h2/(κ+2) as usual. Thus, (ℵ,ℶ) is a fixed point of an affine map whose linear part
is given by [

,ζ)ג h)
ℸ(ζ, h)

]
7→
∫ ζ0

ζ

Ê(ω, h)
λ(ω, h)

[
−A(ω, h)B(ω, h) −B(ω, h)2

A(ω, h)2 A(ω, h)B(ω, h)

] [
,ω)ג h)
ℸ(ω, h)

]
dω. (165)

We call this linear map Φ if ζ0 = Z and Ξ if ζ0(h) = λ0h
2/(κ+2). We can consider Φ,Ξ as functions

L∞
loc(Vh0,λ0 ;C)2 → L∞

loc(Vh0,λ0 ;C)2.
In the classically forbidden case, ς > 0, in order to get a solution with the desired properties, the

initial data cannot be prescribed anywhere. At the level of technical details, the difficulty is that,
for each ζ0 ∈ [0, Z]\{ζ}, the bound∣∣∣ ∫ ζ

ζ0
exp

(
± 4
κ+ 2

ω(κ+2)/2

h

)
F (ω, h) dω

∣∣∣ ≤ |ζ − ζ0| exp
(

± 4
κ+ 2

ζ(κ+2)/2

h

)
∥F∥L∞ (166)

only holds for one choice of sign ±, namely that matching the sign of ζ − ζ0. It is only in this case
that the exponential has the correct monotone behavior. Estimates of this form are key in the
analysis below.

The difficulty is not an artifact of the method. The fundamental issue is that, according to
the Liouville–Green expansion, if one specifies initial conditions somewhere and supplies a forcing
F with suppF ⋐ (0, Z), then it should be expected that a solution to Pu = F will, for some
ζ ∈ (0, Z), grow exponentially fast as h → 0+ relative to F . If the forcing F is F = fQ+ gQ′ for
O(h∞) coefficients f, g, then u is growing exponentially faster than Q,Q′. Since the overshoot is
exponentially bad, even the O(h∞) terms in f, g are not sufficient to restore decay. This is why,
unless Q ∈ spanCQ∞, we instead supply initial conditions for small ζ, say at ζ = 0, or, in what
ends up being necessary if α ̸= 1/2, along Γλ0 = {ζ = λ0h

(κ+2)/2} for some λ0 > 0. However, if
Q ∈ spanCQ∞\{0}, then instead one has to supply the initial conditions at ζ = Z. In the classically
allowed case, all choices work equally well.

See [Sim15, §15.5] for an exposition of the general method in a simpler setting.
Let Θ = (1 + ς)/2. Let Xh0,λ0 ⊂ L∞

loc(Vh0,λ0 ;C)2 denote the Banach space

Xh0,λ0 =
{

(exp(4Θ(κ+ 2)−1ζ(κ+2)/2/h)L∞(Vh0,λ0 ;C)) ⊕ L∞(Vh0,λ0 ;C) (Q /∈ spanCQ∞),
L∞(Vh0,λ0 ;C)) ⊕ (exp(−4(κ+ 2)−1ζ(κ+2)/2/h)L∞(Vh0,λ0 ;C)) (otherwise).

(167)

Lemma 6.6. Suppose that either ς < 0 or that Q ∈ spanC \{0}, so that the first case of eq. (167)
holds. For each h0, λ0 > 0, Φ is a bounded endomorphism of Xh0,λ0 . Moreover, for fixed h0 > 0, the
operator norm ∥Φ∥Xh0,λ0 →Xh0,λ0

satisfies

∥Φ∥Xh0,λ0 →Xh0,λ0
= O(λ−(κ+2)/2

0 ) (168)

as λ0 → ∞ (meaning that nothing is implied as λ0 → 0+). ■

Proof. Let ∥−∥L∞ stand for the L∞(Vh0,λ0 ;C) norm. Then,

∥Ê∥L∞ = ∥Ê∥C0(clM Vh0,λ0 ) (169)

is finite, since clMVh0,λ0 is a compact subset of M , on which Ê is continuous.
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Furthermore,
∥λ−1AB∥L∞ = ∥λ−1A(λ)B(λ)∥L∞[λ0,∞)λ

= O(λ−(κ+2)/2
0 ), (170)

and, letting ∥exp(· · · )λ−1B2∥L∞ = ∥exp(−4Θ(κ+ 2)−1ζ(κ+2)/h)λ(ω, h)−1B(ζ/h2/(κ+2))2∥L∞ ,

∥exp(· · · )λ−1B2∥L∞ = ∥exp(−4Θ(κ+ 2)−1λ(κ+2)/2)λ−1B(λ)2∥L∞[λ0,∞)λ
= O(λ−(κ+2)/2

0 ) (171)
as λ0 → ∞. These estimates are immediate corollaries of Proposition 3.3.

Similarly, the quantity
∥exp(· · · )λ−1A2∥L∞ = ∥exp(4Θ(κ+ 2)−1ω(κ+2)/h)λ(ω, h)−1A(ω/h2/(κ+2))2∥L∞ (172)

satisfies
∥exp(· · · )λ−1A2∥L∞ = ∥exp(4Θ(κ+ 2)−1λ(κ+2)/2)λ−1A(λ)2∥L∞[λ0,∞)λ

= O(λ−(κ+2)/2
0 ). (173)

So, in order to prove the proposition, it suffices to bound ∥Φ(ג,ℸ)∥Xh0,λ0
by a product of ∥Ê∥L∞ ,

Xh0,λ0∥(ℸ,ג)∥
, and some linear combination of the three norms

∥λ−1AB∥L∞ , ∥exp(· · · )λ−1B2∥L∞ , ∥exp(· · · )λ−1A2∥L∞ = O(λ(κ+2)/2
0 ). (174)

Let Φג denote the first component of Φ(ג,ℸ), and let ℸΦ denote the second. We want to bound

∥Φ(ג,ℸ)∥Xh0,λ0
= ,Φ(ζג∥ h)∥L∞ + ∥exp(4Θ(κ+ 2)−1ω(κ+2)/2/h)ℸΦ(ω, h)∥L∞ (175)

for ג ∈ L∞(Vh0,λ0 ;C) and ℸ ∈ exp(−4Θ(κ+ 2)−1ζ(κ+2)/2/h)L∞(Vh0,λ0 ;C). The first term can be
bounded as follows:

,Φ(ζג| h)| ≤ Z∥Ê∥L∞(∥λ−1AB∥L∞∥ג∥L∞

+ ∥exp(· · · )λ−1B2∥L∞∥exp(4Θ(κ+ 2)−1ω(κ+2)/2/h)ℸ(ω, h)∥L∞). (176)
In order to bound ℸΦ, the inequality

|ℸΦ(ζ, h)| ≤ Z∥Ê∥L∞(sup{λ−1|A(ω/h(κ+2)/2)|2 : ω ≥ ζ}∥ג∥L∞

+ ∥λ−1AB∥L∞ sup{|ℸ(ω, h)| : ω ≥ ζ}) (177)

can be used. Because exp(−4Θ(κ+ 2)−1ζ(κ+2)/2/h) is decreasing on (0, Z) for each individual h,

sup{λ−1|A(ω/h2/(κ+2))|2 : ω ≥ ζ} ≤ exp(−4Θ(κ+ 2)−1ζ(κ+2)/2/h)∥exp(· · · )λ−1A2∥L∞ , (178)

and

sup{|ℸ(ω, h)| : ω ≥ ζ} ≤ exp(−4Θ(κ+ 2)−1ζ(κ+2)/2/h)∥exp(4Θ(κ+ 2)−1ω(κ+2)/2/h)ℸ(ω, h)∥L∞ .
(179)

So, eq. (177) yields

∥exp(4Θ(κ+ 2)−1ζ(κ+2)/2/h)ℸΦ(ζ, h)∥L∞

≤ Z∥Ê∥L∞(∥exp(· · · )λ−1A2∥L∞ + ∥λ−1AB∥L∞)∥(ג,ℸ)∥Xh0,λ0
. (180)

Altogether, ∥Φ(ג,ℸ)∥Xh0,λ0
≤ ΣZ∥Ê∥L∞∥(ג,ℸ)∥Xh0,λ0

for Σ = ∥λ−1AB∥L∞ +∥exp(· · · )λ−1B2∥L∞ +
∥exp(· · · )λ−1A2∥L∞ .

□

Lemma 6.7. If ς < 0 or Q /∈ spanCQ∞, then, for each h0, λ0 > 0, Ξ is a bounded endomorphism
of Xh0,λ0. Moreover, for fixed h0 > 0, the operator norm ∥Ξ∥Xh0,λ0 →Xh0,λ0

satisfies

∥Ξ∥Xh0,λ0 →Xh0,λ0
= O(λ−(κ+2)/2

0 ) (181)
as λ0 → ∞. ■
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Proof. Let Ξג denote the first component of Ξ, and let ℸΞ denote the second. We want to bound

∥Ξ(ג,ℸ)∥Xh0,λ0
= ∥exp(−4Θ(κ+ 2)−1ω(κ+2)/2/h)גΞ(ω, h)∥L∞ + ∥ℸΞ∥L∞ (182)

for ג ∈ exp(4Θ(κ+ 2)−1ζ(κ+2)/h)L∞(Vh0,λ0 ;C) and ℸ ∈ L∞(Vh0,λ0 ;C). The final term above can
be bounded by

|ℸΞ(ζ, h)| ≤ Z∥Ê∥L∞(∥exp(· · · )λ−1A2∥L∞∥exp(−4Θ(κ+ 2)−1ω(κ+2)/2/h)ג(ω, h)∥L∞

+ ∥λ−1AB∥L∞∥ℸ∥L∞). (183)

In order to bound the first term in eq. (182), the inequality

,Ξ(ζג| h)| ≤ Z∥Ê∥L∞(∥λ−1AB∥L∞ sup{|ג(ω, h)| : ω ≤ ζ}

+ sup{λ−1|B(ω/h2/(κ+2))|2 : ω ≤ ζ}∥ℸ∥L∞) (184)

can be used. Because exp(4Θ(κ+ 2)−1ζ(κ+2)/2/h) is increasing on (0, Z) for each individual h,

sup{|ג(ω, h)| : ω ≤ ζ} ≤ exp(4Θ(κ+ 2)−1ζ(κ+2)/2/h)∥exp(−4Θ(κ+ 2)−1ω(κ+2)/2/h)ג(ω, h)∥L∞ ,
(185)

and

sup{λ−1|B(ω/h2/(κ+2))|2 : ω ≤ ζ} ≤ exp(4Θ(κ+ 2)−1ζ(κ+2)/2/h)∥exp(· · · )λ−1B2∥L∞ . (186)
So,

∥exp(−4Θ(κ+ 2)−1ω(κ+2)/2/h)גΞ(ω, h)∥L∞

≤ Z∥Ê∥L∞(∥λ−1AB∥L∞ + ∥exp(· · · )λ−1B2∥L∞)∥(ג,ℸ)∥Xh0,λ0
. (187)

Altogether, ∥Ξ(ג,ℸ)∥Xh0,λ0
≤ ΣZ∥Ê∥L∞∥(ג,ℸ)∥Xh0,λ0

for Σ = ∥λ−1AB∥L∞ + ∥exp(· · · )λ−1B2∥L∞ +
∥exp(· · · )λ−1A2∥L∞ . □

Proposition 6.8. There exists some λ00 > 0 such that, if λ0 ≥ λ00, then for any ℵ,ℶ ∈ C∞((0, Z]ζ ×
(0,∞)h;C) satisfying eq. (164) with ζ0 = Z, then, if ς < 0 or A ∈ spanCQ∞\{0}, then

∂jℵ
∂hj

∈ h∞L∞(Vh0,λ0 ;C), ∂jℶ
∂hj

∈ h∞ ModA L
∞(Vh0,λ0 ;C) (188)

hold for all j ∈ N. ■

Proof. Since ℵ,ℶ depend linearly on F , which is O(h∞) relative to Q, it actually suffices to prove
only that ∂j

hℵ ∈ L∞(Vh0,λ0 ;C) and

∂j
hℶ ∈ ModA L

∞(Vh0,λ0 ;C). (189)

Indeed, once this is known, the result can be applied with hkF in place of F to conclude that
∂j

hℵ ∈ hkL∞(Vh0,λ0 ;C) and ∂j
hℶ ∈ hk ModA L

∞(Vh0,λ0 ;C).
Let

I =
∫ Z

ζ

(
Ê(ω, h)
λ(ω, h)

[
−A(ω, h)B(ω, h) −B(ω, h)2

A(ω, h)2 A(ω, h)B(ω, h)

] [
ℵ(ω, h)
ℶ(ω, h)

]
dω, (190)

C =
∫ Z

ζ
G(ω, h)

[
B(ω, h)

−A(ω, h)

]
dω. (191)

Then, (ℵ,ℶ)⊺ = I + C. Differentiating,
∂j

∂hj

[
ℵ
ℶ

]
= ∂jI
∂hj

+ ∂jC
∂hj

. (192)
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First consider
∂kC
∂hk

=
k∑

k1=0

(
k

k1

)∫ Z

ζ

∂k−k1G

∂hk−k1

∂k1

∂hk1

[
B(ω, h)

−A(ω, h)

]
dω. (193)

Each of the integrands above is in h∞ζ−K Mod1/2
Q ((Mod1/2

B L∞) ⊕ (Mod1/2
A L∞)) = h∞ζ−K(L∞ ⊕

(ModA L
∞)) for some large K ∈ N. Thus, by the to-be-proven Lemma 6.9, each term in the sum in

eq. (193) is in h∞(L∞ ⊕ ModA L
∞).

On the other hand, consider

∂kI
∂hk

=
k∑

k1=0

k1∑
k2=0

k2∑
k3=0

(
k

k1, k2, k3

)∫ Z

ζ

∂k0−k1Ê(ω, h)
∂hk0−k1

( ∂k1−k2

∂hk1−k2

1
λ(ω, h)

)

× Mk2−k3,0(ω, h) ∂
k3

∂hk3

[
ℵ(ω, h)
ℶ(ω, h)

]
dω. (194)

Inserting a cutoff χ0 ∈ C∞(M) which is identically 1 on Vh0,λ0 and therefore on clMVh0,λ0 and
identically vanishing near be, the inductive hypothesis shows, unless k3 = k, that the integrand
satisfies

∂k0−k1Ê(ω, h)
∂hk0−k1

( ∂k1−k2

∂hk1−k2

1
λ(ω, h)

)
Mk2−k3,0(ω, h) ∂

k3

∂hk3

[
ℵ(ω, h)
ℶ(ω, h)

]
∈ h∞

[
L∞

ModA L
∞

]
(195)

on V̄h0,λ0 . Thus, by Lemma 6.9, each term in the sum in eq. (194), except possibly the single term
with k3 = k, lies in h∞(L∞ ⊕ ModA L

∞).
To summarize, for some Cj ∈ h∞(L∞(Vh0,λ0 ;C) ⊕ ModA L

∞(Vh0,λ0 ;C)),

∂j

∂hj

[
ℵ
ℶ

]
= Φ ∂j

∂hj

[
ℵ
ℶ

]
+ Cj . (196)

Consider the map L∞(Vh0,λ0 ;C)⊕ModA L
∞(Vh0,λ0 ;C) → L∞(Vh0,λ0 ;C)⊕ModA L

∞(Vh0,λ0 ;C) given
by [

ג
ℸ

]
7→ Φ

[
ג
ℸ

]
+ Cj . (197)

So, (∂j
hℵ, ∂j

hℶ)⊺ is a fixed point of the affine map eq. (197).
By Lemma 6.6, if λ0 is sufficiently large, then Φ is a contraction map. Thus, the map eq. (197) has

a unique fixed point jג) ,ℸj), and it is given by a convergent series
∑∞

n=0 ΦnCj . For any h1 > 0, the
map eq. (197) is also a contraction map on L∞(Vh0,λ0 ∩{h ≥ h1};C)⊕ModA L

∞(Vh0,λ0 ∩{h ≥ h1};C),
and jג) |{h≥h1},ℸj |{h≥h1}) is a fixed point for it. But, so is

∂j
h(ℵ,ℶ)|Vh0,λ0 ∩{h≥h1} ∈ C∞(Vh0,λ0 ∩ {h ≥ h1})2. (198)

Thus, by the uniqueness of the fixed point, jג) ,ℸj) agrees with ∂j
h(ℵ,ℶ) in {h ≥ h1}. Since h1 can

be taken arbitrarily small, the agreement holds everywhere in Vh0,λ0 . We can therefore conclude
that

∂j
h(ℵ,ℶ) ∈ L∞(Vh0,λ0 ;C) ⊕ ModA L

∞(Vh0,λ0 ;C). (199)
□

Lemma 6.9. If H ∈ h∞ ModA L
∞(Vh0,λ0 ;C), then

∫ Z
ζ H(ω, h) dω ∈ h∞ ModA L

∞(Vh0,λ0 ;C). ■

Proof. In the ς < 0 case, the claim is trivially true, so assume ς > 0, in which case A ∈ spanCQ∞\{0}.
We can write H(ζ, h) = hkHk(ζ, h) ModA(ζ, h) for some Hk ∈ hkL∞(Vh0,λ0 ;C). Then,∣∣∣ ∫ Z

ζ
H(ω, h) dω

∣∣∣ ≤ hkZ∥Hk∥L∞ sup{ModA(ω, h) : ω ∈ [ζ, Z]}. (200)
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The supremum on the right-hand side is finite and can be bounded as

sup{ModA(ω, h) : ω ∈ [ζ, Z]} ≤ sup{ModA(λ) : λ ≥ λ(ζ, h)} < ∞ (201)

on Vh0,λ0 . By Lemma A.4, there exists some λ1 > λ0 such that for all λ, λ′ ≥ λ1 with λ > λ′,
ModA(λ) ≤ 2 ModA(λ′). Consequently:

sup{ModA(λ) : λ ≥ λ(ζ, h)} ≤
{

2 ModA(λ(ζ, h)) (λ(ζ, h) ≥ λ1),
max{2 ModA(λ1), supλ∈[λ(ζ,h),λ1] ModA(λ)} (otherwise)

(202)
If the second case holds, then λ(ζ, h) ∈ [λ0, λ1]. Because ModA(λ) is nonvanishing, there exists some
C > 1 such that ModA(λ′) ≤ C ModA(λ) for all λ, λ′ ∈ [λ0, λ1]. The inequality above therefore
yields

sup{ModA(λ) : λ ≥ λ(ζ, h)} ≤ 2C ModA(λ(ζ, h)) = 2C ModA(ζ, h). (203)
So, all in all, ∣∣∣ ∫ Z

ζ
H(ω, h) dω

∣∣∣ ≤ 2ChkZ∥Hk∥L∞ ModA(ζ, h) ∈ hk ModA L
∞. (204)

Since k was arbitrary, this completes the proof. □

Proposition 6.10. There exists some λ00 > 0 such that, if λ0 ≥ λ00, then for any ℵ,ℶ ∈
C∞((0, Z]ζ×(0,∞)h;C) satisfying eq. (164) with ζ0(h) = λ0h

2/(κ+2), then, if ς < 0 or A /∈ spanCQ∞,
then

∂jℵ
∂hj

∈ h∞ ModB L
∞(Vh0,λ0 ;C), ∂jℶ

∂hj
∈ h∞L∞(Vh0,λ0 ;C) (205)

hold for all j ∈ N. ■□

The proof is analogous to the previous, for instance using Lemma 6.7 in place of Lemma 6.6, and
using Lemma 6.11 in place of Lemma 6.9, so we omit the details.

Lemma 6.11. If H ∈ h∞ ModB L
∞(Vh0,λ0 ;C), then, letting ζ0 = λ0h

2/(κ+2),
∫ ζ

ζ0
H(ω, h) dω ∈

h∞ ModB L
∞(Vh0,λ0 ;C). ■

Proof. In the ς < 0 case, the claim is trivially true, so assume ς > 0. We can write H(ζ, h) =
hkHk(ζ, h) ModB(ζ, h) for some Hk ∈ L∞(Vh0,λ0 ;C). Then,∣∣∣ ∫ ζ

ζ0
H(ω, h) dω

∣∣∣ ≤ hkZ∥Hk∥L∞ sup{ModB(ω, h) : ω ∈ [ζ0, ζ]}. (206)

The supremum on the right-hand side is finite and can be written as

sup{ModB(ω, h) : ω ∈ [ζ0, ζ]} ≤ sup{ModB(λ) : λ0 ≤ λ ≤ λ(ζ, h)} < ∞. (207)

By Lemma A.4, there exists some λ1 > 0 such that for all λ, λ′ ≥ λ1 with λ > λ′, 2 ModB(λ) ≥
ModB(λ′). Consequently:

sup{ModB(λ) : λ0 ≤ λ ≤ λ(ζ, h)} ≤ max{2 ModB(λ(ζ, h)), supλ∈[λ0,λ1] ModB(λ)}. (208)

In λ > λ0, there exists some C > 2 such that ModB(λ′) ≤ C ModB(λ) whenever λ′ ∈ [λ0, λ1]. Thus,
sup{ModB(λ) : λ0 ≤ λ ≤ λ(ζ, h)} ≤ C ModB(λ(ζ, h)). So,∣∣∣ ∫ ζ

ζ0
H(ω, h) dω

∣∣∣ ≤ ChkZ∥Hk∥L∞ ModB(ζ, h) ∈ hk ModB L
∞. (209)

Since k was arbitrary, this completes the proof. □
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7. Analysis at the low corner

We now analyze the forced ODE Pu = F near fe ∩ be. The forcing F ∈ C∞(M◦) is now assumed
to satisfy

suppF ⋐ Ūh0,Λ = {0 ≤ λ < Λ and ϱ < ϱ̄} ⊂ M (210)
for some Λ > 0 and ϱ̄ ∈ (0, Z/Λ), where h0 = ϱ̄(κ+2)/2. (Note that Ūh0,Λ ∩ ie = ∅.) The behavior
of F at be = {λ = 0} will be specified. We draw attention to the fact that Λ may be arbitrarily
large (but still finite). Thus, it is a bit misleading to refer to the analysis below as occurring “near”
fe ∩ be, what matters is excluding ie ∪ ze.

We can identify Ūh0,Λ with [0,Λ)λ × [0, ϱ̄)ϱ. In the coordinates (λ, ϱ), P is a family {P̂ (ϱ)}ϱ≥0 of
operators on [0,Λ]λ converging, as ϱ → 0+, to N(P ) in an appropriate sense, e.g. in the topology of
Diff2

b,E[0,Λ]λ. The indicial roots, γ± = 1/2 ±α, are independent of ϱ, per the assumption that α be
a constant. Recall that we are assuming that ℜα > 0.

If E ,F are two index sets, we use

AE,F
c ([0,Λ)λ × [0, ϱ̄)ϱ) ⊆ A−∞,−∞,E,F (M) (211)

to denote the set of polyhomogeneous functions u with index set E at {ϱ = 0} and F at be = {λ = 0}
satisfying suppu ⋐ Ūh0,Λ = [0,Λ)λ × [0, ϱ̄)ϱ, so in particular u is compactly supported.

Proposition 7.1. Suppose that, for some index sets E ,F ⊂ C × N with ℜj > −3/2 − ℜα for every
(j, k) ∈ F , we are given F ∈ AE,F

c ([0,Λ)λ × [0, ϱ̄)ϱ). Then, there exists a solution

u ∈ AE,G
c ([0,Λ)λ × [0, ϱ̄)ϱ) (212)

to Pu = F for some index set G. ■

Proof. The map [0, ϱ̄)ϱ ∋ ϱ 7→ P (ϱ) ∈ λ−2 Diff2
b,E[0,Λ]λ is smooth. Recall that Diffb,E[0,Λ] consists

of those differential operators in the algebra generated over C∞[0,Λ] by λ∂λ. Moreover, the
coefficient of ∂λ in P (ϱ) is identically zero. From the theory of regular singular ODE, there exist
independent solutions

{v±(λ, ϱ)}ϱ∈[0,ϱ̄) ⊆ AF(α),(0,0)[0,Λ]λ (213)
to P (ϱ)v±(λ, ϱ) = 0 depending smoothly on ϱ, all the way down to ϱ = 0. Here, F(α) is the index
set at λ = 0. Choose v+ to be recessive.

Now let W (ϱ) = v′
−(λ, ϱ)v+(λ, ϱ) − v′

+(λ, ϱ)v−(λ, ϱ) denote their Wronskian, where the primes
denote differentiation in the first slot. The Wronskian is a function of ϱ alone, smooth down to
ϱ = 0. Since v± are independent, W is nonvanishing. Now let

K(λ, λ′, ϱ) = 1
W (ϱ)

{
v−(λ, ϱ)v+(λ′, ϱ) (λ > λ′),
v+(λ, ϱ)v−(λ′, ϱ) (λ < λ′).

(214)

Consider the function v(λ, ϱ) = K(λ, F (−, ϱ), ϱ), i.e.

v(λ, ϱ) =
∫ ∞

0
K(λ, λ′, ϱ)F (λ′, ϱ) dλ′. (215)

The integral converges because v+(λ) ∈ λ1/2+ℜαL∞
loc[0,∞)λ, so∣∣∣ ∫ λ

0
v+(λ′, ϱ)F (λ′, ϱ) dλ′

∣∣∣ ⪯
∫ λ

0
s1/2+ℜα+min F ds ⪯

∫ λ

0
s−1+ϵ ds < ∞ (216)

for some ϵ > 0, where min F = min{ℜj : (j, k) ∈ F}.
The function v satisfies P (ϱ)v = F , and it is polyhomogeneous: v ∈ AE,G0([0,Λ)λ × [0, ϱ̄)ϱ) for

some index set G0, which can be computed in terms of F(α) and F .
We have v(Λ, ϱ), ∂λv(λ, ϱ)|λ=Λ ∈ AE [0, ϱ̄)ϱ.
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Note that v may not satisfy supp v ⋐ [0,Λ)λ × [0, ϱ̄)ϱ, so v is not the desired solution to Pu = F .
The next step is to add to v a linear combination of v± so that the resulting solution is compactly
supported in λ.

Let w(−, ϱ) denote the solution to P (ϱ)w(−, ϱ) = 0 with initial conditions w(Λ, ϱ) = −v(Λ, ϱ)
and ∂λw(λ, ϱ)|λ=Λ = −∂λv(λ, ϱ)|λ=Λ. This can be written in terms of v± as

w(λ, ϱ) = 1
W (ϱ)

[
v−(λ, ϱ)
v+(λ, ϱ)

]⊺ [
v′

+(λ, ϱ) −v+(λ, ϱ)
−v′

−(λ, ϱ) v−(λ, ϱ)

] [
v(Λ, ϱ)
v′(Λ, ϱ)

]
(217)

Thus, w is also in AE,G1([0,Λ)λ × [0, ϱ̄)ϱ), for some index set G1. Letting u = v + w, we have
u ∈ AE,G([0,Λ)λ × [0, ϱ̄)ϱ) for G the smallest index set containing G0,G1. This solves the desired
ODE with vanishing initial data at Λ. Since the forcing satisfies suppF ⋐ [0,Λ)λ × [0, ϱ̄)ϱ, this
implies the compact support condition in eq. (212). □

8. Main proof

We turn now to the proof of Theorem B in the W = 1 case which we observed in §2 suffices. Our
goal, given Q ∈ Q, is to construct

• β, γ ∈ AE0,∞(M) with suppβ, supp γ disjoint from be, and
• δ ∈ AE0,F0(M) with supp δ ∩ (ie ∪ ze) = ∅,

where E0,F0 are the index sets referenced in the theorem, such that the function u defined by

u = (1 + ϱzeϱfeβ)Q
( ζ

h2/(κ+2)

)
+ h(2κ+2)/(κ+2)γQ′

( ζ

h2/(κ+2)

)
+ ϱ

1/2−α
be ϱfeδ (218)

solves Pu = 0 in {h < h0} for some h0 > 0.
The upshot of §4, as recorded in Proposition 4.3, was that, letting E0 = E − 1 ⊂ N×N, with E as

in the proposition, there exist β0, γ0 ∈ AE0(M) with support disjoint from be such that the function

u0 = (1 + ϱzeϱfeβ0)Q+ ϱ1/2
ze ϱfeγ0Q

′ (219)
satisfies Pu0 = f0Q+ g0Q

′ for f0, g0 ∈ ϱ−1
be ϱ

∞
zeϱ

κ
feAE(M), with g0 supported away from be. Write

f0 = f00 + f01 for
f00, f01 ∈ ϱ∞

zeϱ
κ
feAE(M) (220)

with f00 supported away from be and f01 supported away from ze. This decomposition can be
arranged because ze ∩ be = ∅.

We now apply Proposition 5.1 with f = −f00 and g = −g0 to produce β1, γ1 ∈ ϱ∞
ze AE0,∞(M)

supported away from ie ∪ be and R ∈ ϱκ
feAE,∞(M) supported away from ie ∪ ze ∪ be such that

the function u0 = ϱfe(β1Q + γ1Q
′) solves Pu1 = (−f00 + f1)Q + (−g0 + g1)Q′ + R for some

f1, g1 ∈ h∞C∞(M ;C) supported away from be.
Now apply Proposition 6.1 with f = −f1 and g = −g1 to produce β2, γ2 ∈ h∞C∞(M ;C)

supported away from be such that the function u2 = β2Q+ γ2Q
′ solves Pu2 = −f1Q− g1Q

′ +H
for some H ∈ h∞C∞(M ;C) supported away from ie ∪ ze ∪ be. There exist Λ, h1 > 0 such that the
quantity ϱ̄ defined by

ϱ̄ = h
2/(κ+2)
1 (221)

satisfies ϱ̄ < Z/Λ (so that the set Ūh1,Λ is defined) and such that (suppR∪suppH)∩{h < h1} ⋐ Ūh1,Λ.
Let χ ∈ C∞

c [0,∞)h be identically 1 near h = 0 and supported in {h < h1}.
Finally, we apply Proposition 7.1 with F = −χf01Q− χR − χH to give, for some index set G,

δ0 ∈ AE,G(M) with supp δ0 ∩ (ie ∪ ze) = ∅ satisfying
Pδ0 = −χf01Q− χR− χH. (222)

The hypothesis of that proposition regarding the index set of the forcing is satisfied, because the only
contribution to the index set is f01Q, which has index set F(α) − 1 at zero. So, min{F(α) − 1} =
−1/2 − ℜα > −3/2 − ℜα.
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fe

ze

ie

be

suppβ0, γ0

supp f0, g0

fe

ze

ie

be

supp f1, g1
suppβ1, γ1

suppR

fe

ze

ie

be

suppβ2, γ2 suppH

fe

ze

ie

be

suppF

supp δ0

Figure 7. Top left: the supports of the functions β0, γ0, f0, g0 appearing in the
first step of the argument, using §4. Top right: the supports of the functions
β1, γ1, f1, g1, R appearing in the second step, using §5. Bottom left: the supports
of the functions β2, γ2, H appearing in the third step, using §6. Bottom right: the
supports of the functions appearing in the final step of the argument, using §7.

We can write δ0 = ϱ
1/2−α
be ϱfeδ for δ ∈ AE0,G . Set u = u0 + u1 + u2 + δ0. This solves

Pu = (1 − χ(h))(f01 +H +R) (223)

and has the form eq. (218) for β = β0 + ϱ−1
ze β1 + ϱ−1

ze ϱ
−1
fe β2 and γ = γ0 + ϱ

−1/2
ze γ1 + ϱ

−1/2
ze ϱ−1

fe γ2. By
construction, β, γ lie in the desired function spaces, and they have the required support properties.

If a new h0 > 0 is chosen such that χ = 1 identically on [0, h0], then Pu = 0 for h < h0.

Appendix A. Bounds on the modulus function

In the body of the paper, we saw that, when upgrading the quasimode Q ∈ Q\{0} to a full
solution to the ODE, it is convenient to work with the modulus function ModQ(λ) defined by

ModQ(λ) = |Q(λ)|2 + λ2⟨χ(1/λ)λ(κ+2)/2⟩−2|Q′(λ)|2, (224)

where ⟨ρ⟩ = (1 + ρ2)1/2 and χ ∈ C∞
c (R; [0, 1]) is identically 1 in some neighborhood of the origin. In

this section, L∞ = L∞(R+
λ ).

Lemma A.1. ModQ(λ) ̸= 0 for any λ > 0. ■

Proof. This is the statement that Q(λ) and Q′(λ) cannot vanish simultaneously. Because Q satisfies
the second order ODE NQ = 0, it is the case that, for each λ0 > 0, Q is uniquely determined among
elements of Q by the pair (Q(λ0), Q′(λ0)). If we were to have Q(λ0), Q′(λ0) = 0, then this would
force Q to vanish identically, contrary to assumption. □

The key property of the modulus functions is that they control the other elements of Q and their
derivatives:
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Proposition A.2. Suppose that either ς < 0 or Q /∈ spanCQ∞. Let A ∈ Q. Then, for any k ∈ N,
there exists some K ∈ N depending on k such that

∂kA(λ)
∂λk

∈ λ−K⟨λ⟩2K ModQ(λ)1/2L∞. (225)

If ς > 0, then ∂k
λQ∞ ∈ λ−K⟨λ⟩2K ModQ∞(λ)1/2L∞ for some K ∈ N depending on k. ■

Proof. By Lemma A.1, the claim holds within any bounded interval I ⋐ R+
λ worth of λ.

To prove the claim in an interval I ⋐ [0,∞)λ, which may contain 0, first use that, because
A is polyhomogeneous at λ = 0 by Proposition 3.1, it and its derivatives are growing at most
polynomially as λ → 0+. Then use that, because Q is nonzero, the functions ModQ(λ),ModQ∞(λ)
are decaying at most polynomially as λ → 0+. So the proposition also holds here.

It therefore remains only to check that eq. (225) holds in {λ ≥ λ0} for some λ0 = λ0(k,A,Q) > 0,
and to check the corresponding result for Q∞.

If ς < 0, then the elements of Q and their derivatives all grow at worst polynomially as λ → ∞,
as shown by Proposition 3.3. Similarly, Lemma A.5 below shows that ModQ obeys a polynomial
lower bound in the same asymptotic regime. The proposition therefore holds in this case.

If ς > 0 and Q /∈ spanCQ∞, then, by Proposition 3.3, it is the case that |A(λ)| ≤ C|Q(λ)| for
some C > 0 if λ is sufficiently large. Thus, since |Q(λ)| ≤ ModQ(λ)1/2, the proposition holds in the
k = 0 case. Consider now the k = 1 case. Differentiating the conclusion of Proposition 3.3 once,
A′(λ) is at worst growing polynomially as λ → ∞ relative to Q, so the bound eq. (225) also holds
in this case. Having verified the k = 0, 1 cases of the proposition, we deduce the remaining cases
from the ODE NA = 0 which A is defined to satisfy. If k ∈ N≥2, differentiating this ODE k − 2
times yields

∂kA

∂λk
=

k−2∑
j=0

∂jA

∂λj

∂k−2−j

∂λk−2−j

(
ςλκ + 1

λ2

(
α2 − 1

4
)

+ Ψ(λ)
λ2

)
. (226)

Taking K0 ∈ N sufficiently large, each of the derivatives of ςλκ + λ−2(α2 − 1/4) + λ−2Ψ(λ) lies in
λ−K0⟨λ⟩2K0L∞(R+

λ ). We can conclude that

∂k
λA ∈ λ−K−K0⟨λ⟩2K+2K0 ModQ(λ)L∞, (227)

assuming we have proven already that ∂j
λA ∈ λ−K⟨λ⟩2K ModQ(λ)1/2L∞ for each j ∈ {0, . . . , k − 2}.

This inductive argument completes the proof in the Q /∈ spanCQ∞ case.
In the Q ∈ spanCQ∞ case, then the result follows from the same inductive argument, except the

base cases k = 0, 1 are now trivial because we are only comparing |Q∞|2, |Q′
∞|2 with ModQ∞ . □

Proposition A.3. Suppose that ς > 0 and Q /∈ spanCQ∞. For some K ∈ N, we have ModQ∞ ∈
λ−K⟨λ⟩2K Mod−1

Q L∞ and Mod−1
Q∞ ∈ λ−K⟨λ⟩2K ModQ L

∞. Consequently, for any n, n′,m,m′ ∈ Z
satisfying n′ −m′ = n−m, it is the case that

Modn
Q Modm

Q∞ L∞ ⊆ λ−K⟨λ⟩2K Modn′
Q Modm′

Q∞ L∞ (228)
for some K = K(n,m, n′,m′) ∈ N. ■

Proof. This is an immediate corollary of Lemma A.4 (and Proposition 3.1). □

Recall that 1/λκ+2 is a boundary-defining-function of {λ = ∞} = ze ∩ fe in fe.

Lemma A.4. If ς > 0, then ModQ(ρ−2/(κ+2)) ∈ exp(4(κ + 2)−1ρ−1)ρκ/(κ+2)C∞[0,∞)ρ. Unless
Q ∈ spanCQ∞,

ModQ(ρ−2/(κ+2))−1 ∈ exp(−4(κ+ 2)−1ρ−1)ρ−κ/(κ+2)C∞[0,∞)ρ. (229)

Also, ModQ∞(ρ−2/(κ+2)) ∈ exp(−4(κ + 2)−1ρ−1)ρκ/(κ+2)C∞[0,∞)ρ, and ModQ∞(ρ−2/(κ+2))−1 ∈
exp(4(κ+ 2)−1ρ−1)ρ−κ/(κ+2)C∞[0,∞)ρ. ■
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Proof. Certainly Q(ρ−2/(κ+2)) ∈ exp(2(κ+ 2)−1ρ−1)ρκ/(2κ+4)C∞[0,∞)ρ.
Let λ = ρ−2/(κ+2). Writing Q = exp(2(κ + 2)−1ρ−1)q for q(ρ) ∈ ρκ/(2κ+4)C∞[0,∞)ρ, taking

derivatives yields
λ∂λQ(ρ−2/(κ+2)) = exp(2(κ+ 2)−1ρ−1)(ρ−1q + λ∂λq), (230)

and λ∂λq(ρ−2/(κ+2)) ∈ ρκ/(2κ+4)C∞[0,∞)ρ by the dilation invariance of the operator λ∂λ. Equa-
tion (230) yields

λ⟨λ(κ+2)/2⟩−1∂λQ(λ) = exp(2(κ+ 2)−1ρ−1)ρκ/(2κ+4)C∞[0,∞)ρ. (231)
Thus, ModQ(λ) lies in the claimed space. The function q has nonvanishing leading order term at
λ = ∞, since otherwise Q would be in spanCQ∞ by Proposition 3.3. From this, it follows that the
leading order term of ModQ(λ) exp(−4(κ + 2)−1ρ−1) ∈ ρκ/(κ+2)C∞[0,∞)ρ is nonvanishing. This
implies that ModQ(λ)−1 lies in the desired space.

The remaining clause of the theorem is proven similarly, switching the signs of the exponentials
around. □

If ς < 0, then, unless Q ∈ spanCQ±, then the real-valued functions |Q|2 and ModQ −|Q|2 have
oscillatory terms as their leading asymptotics in the λ → ∞ limit, and thus vanish infinitely often.
We already know that the modulus function itself is nonvanishing, but it has to be ruled out that it
does not take on any superpolynomially small values. Indeed:

Lemma A.5. If ς < 0, then, for some C = C(Q) > 0, ModQ(λ) − Cλ−κ/2 ∈ λ−(κ+1)L∞
loc(0,∞]λ.

Thus, ModQ(λ)−1 − C−1λκ/2 ∈ λ−1L∞
loc(0,∞]λ. ■

Proof. We write Q = c−Q− + c+Q+ for c−, c+ ∈ C not both zero. As above, we can write
Q± = exp(±2i(κ+ 2)−1λ(κ+2)/2)q± for q± ∈ ρκ/(2κ+4)C∞[0,∞)ρ having nonvanishing leading parts
at λ = ∞, so that

lim
ρ→0+

ρ−κ/(2κ+4)q± ̸= 0. (232)

Thus, for some C± ∈ C\{0}, we have q± − ρκ/(2κ+4)C± ∈ ρ(3κ+4)/(2κ+4)C∞[0,∞)ρ. Observe that

|Q|2 = |c−|2|q−|2 + |c+|2|q+|2 + 2ℜ[exp(4i(κ+ 2)−1λ(κ+2)/2)c+c
∗
−q+q

∗
−] (233)

= ρκ/(κ+2)(|c−C−|2 + |c+C+|2 + 2ℜ[· · · ]) + ρ(2κ+2)/(κ+2)L∞, (234)

where ℜ[· · · ] = ℜ[exp(4i(κ+ 2)−1λ(κ+2)/2)c+c
∗
−C+C

∗
−].

By the same computation as above, λ⟨λ(κ+2)/2⟩−1∂λQ±(λ) = exp(±2i(κ + 2)−1λ(κ+2)/2)q̃± for
q̃± satisfying

q̃± ∓ iρκ/(2κ+4)C± ∈ ρ(3κ+4)/(2κ+4)C∞[0,∞)ρ. (235)
Thus,

|λ⟨λ(κ+2)/2⟩−1Q′
±|2 = |c−|2|q̃−|2 + |c+|2|q̃+|2 + 2ℜ[exp(4i(κ+ 2)−1λ(κ+2)/2)c+c

∗
−q̃+q̃

∗
−] (236)

= ρκ/(κ+2)(|c−C−|2 + |c+C+|2 − 2ℜ[· · · ]) + ρ(2κ+2)/(κ+2)L∞, (237)

So, ModQ(ρ−2/(κ+2)) = ρκ/(κ+2)C + ρ(2κ+2)/(κ+2)L∞ for C = 2|c−C−|2 + 2|c+C+|2. Rewriting this
in terms of λ, the result is the claim. □

Appendix B. The initial value problem

We now consider the derivation of Theorem A from Theorem B.
Let Q1, Q2 ∈ Q denote a basis of Q. If ς < 0, then choose Q1 = Q− and Q2 = Q+. If ς > 0,

choose Q1 = Q∞ and Q2 to be an independent element of Q. Let u1, u2 denote the corresponding
solutions to Pu = 0 produced by Theorem B, for Q = Q1 and Q = Q2, respectively.

First, a lemma:
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Lemma B.1. The Wronskian W{u1, u2}(h) = u1u
′
2 − u′

1u2 satisfies

W{u1, u2}(h) − h−2/(κ+2)W{Q1, Q2} ∈ hκ/(κ+2)C∞[0,∞)h, (238)

where W{u1, u2} = Q1Q
′
2 −Q′

1Q2. ■

Proof. By the Langer diffeomorphism, it suffices to work in the case where the coefficient W in the
PDE is W = 1.

Because u1u
′
2 − u′

1u2 is only a function of h, we can evaluate it at any ζ. Near ie, we can
write u1 = (1 + ha1)Q1(λ) and u2 = (1 + ha2)Q2(λ) for a1, a2 ∈ C∞((0, Z]ζ × [0,∞)h;C) and
λ = ζ/h2/(κ+2), in part because, for the chosen Q•, the functions Q1(λ), Q2(λ) are not vanishing for
λ sufficiently large. (This is just a way of saying that the Liouville–Green ansatz only requires a
single term, unlike Langer’s ansatz which involves both Q,Q′.)

Then, explicitly,

W{u1, u2}(h) = h−2/(κ+2)W{Q1, Q2} + hW{Q1(λ), a2Q2(λ)}(h)
+ hW{a1Q1(λ), Q2(λ)}(h) + h2W{a1Q1(λ), a2Q2(λ)}(h), (239)

where W{Q1, Q2} = Q1Q
′
2 −Q′

1Q2 is a constant. (Because a2Q2, a1Q1 typically do not solve the
ODE, the “Wronskians” on the right-hand side depend on the ζ at which they are evaluated, but
we will not denote this explicitly.)

The particular choice of Q1, Q2 means that

h−κ/(κ+2)Q1(λ)Q2(λ), Q′
1(λ)Q2(λ), Q1(λ)Q′

2(λ) ∈ C∞((0, Z]ζ × [0,∞)h;C), (240)

using Proposition 3.3, where λ is still ζ/h2/(κ+2).
Then, we explicitly evaluate

W{Q1(λ), a2Q2(λ)}(h) = a′
2Q1(λ)Q2(λ) + h−2/(κ+2)a2Q1(λ)Q′

2(λ)

− h−2/(κ+2)a2Q
′
1(λ)Q2(λ) ∈ h−2/(κ+2)C∞, (241)

hW{a1Q1(λ), Q2(λ)}(h) = −a′
1Q2(λ)Q1(λ) − h−2/(κ+2)a1Q2(λ)Q′

1(λ)

+ h−2/(κ+2)a1Q
′
2(λ)Q1(λ) ∈ h−2/(κ+2)C∞, (242)

and

W{a1Q1, a2Q2} = a1a
′
2Q1Q2 + h2/(κ+2)a1a2Q1Q

′
2 − a′

1a2Q1Q2 − h2/(κ+2)a1a2Q1Q
′
2

∈ h−2/(κ+2)C∞, (243)

where C∞ = C∞((0, Z]ζ × [0,∞)h;C). Adding everything together, the claim follows. □

We return to the proof of Theorem A. It must be the case that W{Q1, Q2} ̸= 0. Thus, if h
is sufficiently small, Lemma B.1 implies that u1, u2 are linearly independent, and a solution u to
Pu = 0 with prescribed initial data u|ie, u′|ie can be written as

u(ζ, h) =
[
u1(ζ, h)
u2(ζ, h)

]⊺ [
u1|ie(h) u2|ie(h)
u′

1|ie(h) u′
2|ie(h)

]−1 [
u|ie(h)
u′|ie(h)

]
= 1
W{u1, u2}(h)

[
u1(ζ, h)
u2(ζ, h)

]⊺ [
u′

2|ie(h) −u2|ie(h)
−u′

1|ie(h) u1|ie(h)

] [
u|ie(h)
u′|ie(h)

]
.

(244)

Thus, u is a linear combination of products of functions of exponential-polyhomogeneous type on
M , so is therefore of exponential-polyhomogeneous type itself.
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Appendix C. Collapsing fe

We now consider some simplifications to the main result that apply when κ < 2 (we can now
allow noninteger κ), assuming that ϕ = 0, so that

P = −h2 ∂
2

∂z2 + ςzκW (z) + h2E, (245)

where we assume that E ∈ C∞([0, Z]z×[0,∞)h2 ;C) if κ ∈ [0, 2) and E ∈ z−1C∞([0, Z]z×[0,∞)h2 ;C)
if κ ∈ (−2, 0). It is convenient in applications to allow the analysis to extend beyond z = 0 if κ is
an integer. In this case, let Z− ∈ (−∞, 0], W ∈ C∞([Z−, Z]z;R+), and

E ∈
{
C∞([Z−, Z]z × [0,∞)h2 ;C) (κ = 0, 1),
z−1C∞([Z−, Z]z × [0,∞)h2 ;C) (κ = −1).

(246)

With the stated assumptions, we have the following sharpening of the classic result:

Theorem C. For any Q ∈ Q, there exist β, γ ∈ C∞([0, Z]z × [0,∞)h2 ;C) such that the function u
defined by

u = 4

√
ξκ

W

[
(1 + h2β)Q

( ζ

h2/(κ+2)

)
+ h(2κ+2)/(κ+2)γQ′

( ζ

h2/(κ+2)

)]
(247)

solves Pu = 0, where

ζ(z) = sign(z)
(κ+ 2

2

∫ |z|

0
ωκ/2

√
W (sign(z)ω) dω

)2/(κ+2)
∈ C∞(Rz). (248)

Under the stated conditions, one can simplify Theorem A in an analogous way.

Proof. By the Langer diffeomorphism, which applies in the present context, it suffices to consider
the W = 1 case. The proof follows that of Theorem B, with a few simplifications.

The first key simplification is that the coefficients functions βk, γk ∈ C∞(0, Z]ζ defined by eq. (81),
eq. (82), with Ck as in the body and an appropriate choice of ck, are all extendable to elements
of the subset C∞[Z−, Z]ζ . If, for some ν ∈ N, we know that β1(ζ), . . . , βk(ζ) ∈ C∞[Z−, Z]ζ , then
eq. (82), which now reads

γk(ζ) = − ς

2ζκ/2

∫ ζ

0

(d2βk(ω)
dω2 −

k∑
j=0

Ek(ω)βk−j(ω)
) dω
ωκ/2 , (249)

tells us that γk(ζ) ∈ C∞[Z−, Z]ζ . Then, eq. (81), for some choice of ck, reads

βk+1 = −1
2

∫ ζ

0

(d2γk(ω)
dω2 −

k∑
j=0

Ek(ω)γk−j(ω)
)

dω, (250)

with the key point being that the integral converges because the functions in the integrand are all
smooth, and βk+1 is also smooth. Since β0 = 1, one proceeds inductively to conclude that all βk, γk are
smooth down to ζ = 0 (and through, if Z− < 0). Then, the βk, γk can be asymptotically summed, not
in polyhomogeneous spaces onM as in the body of the paper, but in C∞ = C∞([Z−, Z]ζ×[0,∞)h2 ;C).
Then, one gets a v of the form eq. (247), for β, γ ∈ C∞ such that Pv ∈ h∞C∞.

The analysis in §6 applies mutatis mutandis, and there is no longer any need to restrict attention
to λ ≥ λ0 for some λ0 > 0. Instead, the fixed point argument takes h0 sufficiently small so as to
guarantee the smallness of the operator norms of the maps Φ,Ξ. So the argument in that section
directly produces a w of the form w = δQ+ εQ′ for δ, ε ∈ h∞C∞ such that Pw = −Pv.

Then, u = w + v has the desired form, after absorbing the δ, ε into a redefinition of β, γ, and
satisfies Pu = 0. □
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Appendix D. An example with logarithms

Consider the case κ = 2, ς = 1, W = 1, and E = a for constant a > 0. Then, P = −h2(∂/∂z)2 +
z2 + h2a, and the ODE Pu = 0 reads

h2∂
2u

∂z2 = z2u+ h2au. (251)

The solutions to this can be written

u = c1(h)U
(

− ah

2 ,

√
2
h
z
)

+ c2(h)U
(ah

2 , i

√
2
h
z
)
, (252)

for arbitrary c1, c2 : (0,∞) → C, where U is the usual parabolic cylinder function [Olv97, Chp. 6-
§6]. From eq. (252), it is not apparent where the logarithmic terms at fe discussed above come from.
Indeed, if we take c1 = 1 and c2 = 0, or vice versa, then u is simply smooth at fe◦, due to the fact
that U(a, z) ∈ C∞(R+

a ×K◦
z ;C) for K ⊂ R compact.

The paradox is resolved by noting that u = U(−ah/2, 21/2zh−1/2) is not of exponential type at
ze◦ (i.e. smooth up to an exponential prefactor), only exponential-polyhomogeneous type.

In order to see this, we use the coordinate system (x, ρ) for x = 2−1/2az1/2 and ρ = 2−1/2hz−1/2.
Then, u = U(−xρ, 1/ρ). The large-argument expansion of the parabolic cylinder function [OMe,
§12.9] gives the Poincaré-type expansion

u ∼ e−1/4ρ2
ρ1/2−xρ

∞∑
k=0

(−1)k Γ(1/2 + 2k − xρ)
k!Γ(1/2 − xρ)

(ρ2

2
)k

(253)

as ρ → 0. The logarithmic terms are hidden in the ρ−xρ = e−xρ log ρ term. Indeed, we have the
following polyhomogeneous expansion:

ρ−xρ ∼
∞∑

k=0

(−1)k

k! (xρ log ρ)k. (254)

So, when organized into the form of an exponential-polyhomogeneous expansion, eq. (253) has
logarithmic terms.

If one instead chooses c1, c2 so as to make u of exponential-type at ze◦ (which can be done already
by Liouville–Green), then instead logarithmic terms appear at fe.
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