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Abstract. We discuss the meromorphic continuation of certain hypergeometric integrals modeled
on the Selberg integral, including the 3-point and 4-point functions of BPZ’s minimal models of
2D CFT as described by Felder & Silvotti and Dotsenko & Fateev (the “Coulomb gas formalism”).
This is accomplished via a geometric analysis of the singularities of the integrands. In the case
that the integrand is symmetric (as in the Selberg integral itself) or, more generally, what we call
“DF-symmetric,” we show that a number of apparent singularities are removable, as required for the
construction of the minimal models via these methods.
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1. Introduction

Let
4N = {(x1, . . . , xN ) ∈ [0, 1]N : x1 ≤ · · · ≤ xN} (1.1)

denote the standard N -simplex, which we consider as a subset of CN . We study in this note
Selberg-like integrals, by which we mean definite integrals of the form

SN [F ](α,β,γ) =
∫
4N

F (x1, . . . , xN )
N∏
j=1

x
αj
j (1− xj)βj

∏
1≤j<k≤N

(xk − xj)2γj,k dx1 · · · dxN , (1.2)

for N ∈ N+, F ∈ C∞(4N ), and α = {αj}Nj=1,β = {βj}Nj=1,γ = {γj,k = γk,j}1≤j<k≤N ⊂ C such
that the integrand above is absolutely integrable on 4N . Integrals of this form are relevant to an
array of topics in mathematical physics [FW08]. However, it is often necessary to consider exponents
α,β,γ for which the integral above is not absolutely convergent, in which case a meromorphic
extension needs to be performed. In some applications, only the behavior of this extension at generic
exponents is required. In others, such as the application – discussed below – to the construction
of the minimal models of 2D CFT, it is necessary to consider particular values, e.g. γj,k = −1.
Unfortunately, for these particular values, previous work on the subject is not sufficient.
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We will identify indexed collections of complex numbers (and tuples thereof) with column vectors.
For example, we identify γ with an element of CN(N−1)/2 and

(α,β,γ) ∈ CN × CN × CN(N−1)/2 (1.3)

with an element of C2N+N(N−1)/2. Similar identifications will be made throughout the rest of the
paper without further comment. Let

ΩN =
{

(α,β,γ) ∈ C2N+N(N−1)/2 :
N∏
j=1

x
αj
j (1− xj)βj

∏
1≤j<k≤N

(xk − xj)2γj,k ∈ L1(4N )
}

(1.4)

denote the (open, nonempty) subset of C2N+N(N−1)/2 consisting of the (α,β,γ) ∈ C2N+N(N−1)/2

for which the integrand in eq. (1.2) is absolutely integrable on 4N . We begin with SN [F ] defined
as a function SN [F ] : ΩN → C. It can be checked – see §2 – that, letting

αj,∗(α,β,γ) =
j∑

j0=1
αj0 + 2

∑
j0,k∈{1,...,N}

1≤j0<k≤j

γj0,k,

βj,∗(α,β,γ) =
N∑

j0=N−j+1
βj0 + 2

∑
j0,k∈{1,...,N}

N−j+1≤j0<k≤N

γj0,k

(1.5)

for each j ∈ {1, . . . , N}, and letting

γj,k,∗(α,β,γ) = 2
∑

j0,k0∈{1,...,N}
j≤j0<k0≤k

γj0,k0 (1.6)

for each pair of j, k ∈ {1, . . . , N} with j < k,

ΩN =
[ N⋂
j=1
{<αj,∗ > −j}

]
∩
[ N⋂
j=1
{<βj,∗ > −j}

]
∩
[ ⋂

1≤j<k≤N
{<γj,k,∗ > −(k − j)}

]
. (1.7)

So, ΩN is nonempty, open, and convex (in particular, connected) and contains all (α,β,γ) ∈
C2N+N(N−1)/2 such that the real parts of the components of α,β,γ are sufficiently large.

To simplify the formula above, let γ0,k,∗ = αk,∗ and γN+1−j,N+1,∗ = βj,∗. Then

ΩN =
⋂

0≤j<k≤N+1
{(α,β,γ) ∈ C2N+N(N−1)/2 : <γj,k,∗ > −(k − j)}. (1.8)

Our first goal is to prove that SN [F ] can be analytically continued to a subset

Ω̇N ⊆ C2N+N(N−1)/2 (1.9)

having full measure in C2N+N(N−1)/2.
In order to describe precisely the structure of the singularity at C2N+N(N−1)/2\Ω̇N , we introduce

some terminology. Let T(N) denote the collection of maximal families I of consecutive subsets
I ( {0, . . . , N + 1} such that

• 2 ≤ |I| ≤ N + 1 for all I ∈ I and
• if I, I ′ ∈ I satisfy I ∩ I ′ 6= ∅, then either I ⊆ I ′ or I ′ ⊆ I.

“T” stands either for “tree” in “full binary trees” or “Tamari” in Tamari lattice [Tam62][Gey94], and
the elements of T(N) can be thought of as specifying the valid ways of adding a maximal number of
nonredundant parentheses to a string of N + 2 identical characters. There are #T(N) = CN+1 such
ways, where CN+1 is the (N + 1)st Catalan number. To each I ∈ I, we associate the facet

fI = {(x1, . . . , xN ) ∈ 4N : xj = xk for all j, k ∈ I} (1.10)
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of 4N , where x0 = 0 and xN+1 = 1. Let oI ∈ N denote the order of vanishing of F at fI . (So,
oI = 0 unless F is vanishing identically at fI .)

Theorem 1.1. There exist entire functions SN ;reg,I[F ] : C2N+N(N−1)/2 → C associated to the
I ∈ T(N) such that

SN [F ](α,β,γ) =
∑

I∈T(N)
SN ;reg,I[F ](α,β,γ)

∏
I∈I

Γ(oI + |I| − 1 + γmin I,max I,∗) (1.11)

for all (α,β,γ) ∈ ΩN . �

Here, Γ : C\{−n : n ∈ N} → C is the Gamma function. As a consequence of the theorem, there
exists an entire function SN ;reg[F ] : C2N+N(N−1)/2 → C such that

SN [F ](α,β,γ) = SN ;reg[F ](α,β,γ)
∏

0≤j<k≤N+1
Γ(k − j + γj,k,∗) (1.12)

for all (α,β,γ) ∈ ΩN .

Corollary 1.1.1. The function SN [F ] : ΩN → C admits an analytic continuation ṠN [F ] : Ω̇N → C
to the domain

Ω̇N = C2N+N(N−1)/2
α,β,γ

∖[( N⋃
j=1
{αj,∗ ∈ Z≤−j−δj}

)
∪
( N⋃
j=1
{βj,∗ ∈ Z≤−j− δj}

)
∪
( ⋃

1≤j<k≤N
{γj,k,∗ ∈ Z≤−(k−j)−dj,k}

)]
, (1.13)

where Z≤n = {m ∈ Z : m ≤ n} and δj = δj [F ] = o{0,...,j}, δj = δj [F ] = o{N−j+1,...,N+1}, and
dj,k = dj,k[F ] = o{j,...,k}. ��

The set Ω̇N contains all elements of C2N+N(N−1)/2 lying outside of a locally finite arrangement
of affine hyperplanes.

Consider F ∈ C[x1, . . . , xN ]. Letting [F ]d1,...,dN denote the coefficient of xd1
1 · · ·x

dN
N in F , and

letting refl : (x1, . . . , xN ) 7→ (1− x1, . . . , 1− xN ), we have
δj [F ] = min{d1 + · · ·+ dj : [F ]d1,...,dj ,dj+1,...,dN 6= 0 for some dj+1, . . . , dN ∈ N}, (1.14)
δj [F ] = min{dN + · · ·+ dN+1−j : [F ◦ refl]d1,...,dN−j ,dN+1−j ,...,dN 6= 0 for some d1, . . . , dN−j ∈ N}.

(1.15)

Example. The simplest case is when N = 1 and F = 1 identically, when the integral is given by

S1(α, β, γ) = B(α+ 1, β + 1) =
∫ 1

0
xα(1− x)β dx = Γ(1 + α)Γ(1 + β)

Γ(2 + α+ β) , (1.16)

defined initially for <α,<β > −1 via the definite integral and then extended meromorphically via
the formula on the right-hand side above (or via another method). This is Euler’s β-function. One
method of meromorphic continuation involves the Pochhammer contour (a.k.a. Pochhammer double
loop)

b−1a−1ba ∈ π1(C\{0, 1}), (1.17)
where a, b are the generators of π1(C\{0, 1}) corresponding to one (say, counterclockwise) circuit
around each of 0, 1 respectively.

Then, b−1a−1ba can be lifted to a closed contour p in the coverM of C\{0, 1} corresponding to
the commutator subgroup of π1(C\{0, 1}). Then, choosing the basepoint of p appropriately,

B(α+ 1, β + 1) = 1
1− e−2πiα

1
1− e−2πiβ

∫
p
xα(1− x)β dx, (1.18)



4 ETHAN SUSSMAN

0 1

Figure 1. The Pochhammer contour in C\{0, 1}, up to homotopy.

where we are now considering xα(1− x)β as an analytic function onM. The theorem above tells us
that there exist entire S1;reg,(••)•, S1;reg,•(••) such that

B(α+ 1, β + 1) = Γ(1 + α)S1;reg,(••)•(α, β) + Γ(1 + β)S1;reg,•(••)(α, β). (1.19)
This splitting is not so obvious from the formula B(α+1, β+1) = Γ(1+α)Γ(1+β)/Γ(2+α+β). �

Example. Now consider the case when N = 2 and F = 1. It can be computed that the Selberg-like
integral is then

S2(α,β,γ) = Γ(1 + α1)Γ(1 + β2)Γ(2 + 2γ1,2 + α1 + α2)Γ(1 + 2γ1,2)
Γ(2 + α1 + 2γ1,2)Γ(3 + α1 + α2 + β2 + 2γ1,2) 3F2(a, b; 1), (1.20)

where a = (a1, a2, a3) = (1 + α1,−β1, 2 + 2γ1,2 + α1 + α2) and b = (b1, b2) = (2 + α1 + 2γ1,2, 3 +
α1 + α2 + β2 + 2γ1,2), where pFq denotes the generalized hypergeometric function. For N = 2, the
theorem above reads

S2(α,β,γ) = Γ(1 + α1)Γ(2 + α1 + α2 + 2γ1,2)S2;reg,((••)•)•(α,β,γ)+
Γ(1 + α1)Γ(1 + β2)S2;reg,(••)(••)(α,β,γ) + Γ(1 + β2)Γ(2 + β1 + β2 + 2γ1,2)S2;reg,•(•(••))(α,β,γ)

+ Γ(1 + 2γ1,2)Γ(2 + β1 + β2 + 2γ1,2)S2;reg,•((••)•)(α,β,γ)
+ Γ(1 + 2γ1,2)Γ(2 + α1 + α2 + 2γ1,2)S2;reg,(•(••))•(α,β,γ), (1.21)

but once again this splitting is not so obvious from the exact formula eq. (1.20). This example is
explored more in the appendix. �

The proof below is lower-brow than the twisted homological constructions of [KT86a, §5][KT86b],
Aomoto [Aom87], and others [TV03][War09], as it is based on the method described in [Var95, Chp.
10]. This involves the geometric analysis of the singularities of the Selberg(-like) integrand. The key
observation is that if the N -simplex is blown up to the N -dimensional associahedron [Sta63][MSS02,
§1.6][Pos09] (see Figure 2, Figure 6), then the Selberg integrand – which is not polyhomogeneous
on 4N – becomes one-step polyhomogeneous (a.k.a “classical”) on the resolution. See §2 for details.
This observation appears, in an essentially equivalent form (albeit with different terminology),
already in [KT86a][KT86b][MY03], though the term “associahedron” does not appear there. Closely
related observations have appeared in the physics literature [Miz17][CKW18][CMT19][Miz20].

The application of polyhomogeneity to the proof of the theorem above is given in §3. The
classicality of the lift of the Selberg integrand on the associahedron allows us to reduce the problem
to what is essentially a product of one-dimensional cases. The faces of the associahedron are in
bijective correspondence with the quantities defined in eq. (1.5), eq. (1.6). The correspondence is
depicted in Figure 2 in the case N = 3. The quantities αj,∗, βj,∗, γj,k,∗ are the orders of the Selberg
integrand at the corresponding faces. Each I ∈ T(N) is associated with a minimal facet of the
associahedron, and the I ∈ I are associated with the faces containing that facet. Thus, we have a
geometric interpretation of each of the terms in eq. (1.11).

The theorem cannot be sharpened while maintaining generality. Indeed, the proof of the theorem
shows that if F > 0 everywhere in 4N (including the boundary), then

SN ;reg[F ](α,β,γ) 6= 0 (1.22)

for any (α,β,γ) ∈ R2N+N(N−1)/2 for which both of
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α1 + α2 + α3 + 2γ1,2 + 2γ1,3 + 2γ2,3

2γ2,3

α1 + α2 + 2γ1,2

2γ1,2 + 2γ1,3 + 2γ2,3

α12γ1,2

β1 + β2 + β3 + 2γ1,2 + 2γ1,3 + 2γ2,3

β3

β2 + β3 + 2γ2,3

Figure 2. The 3-dimensional associahedron, with its faces labeled by the associated
functions in eq. (1.5), eq. (1.6). The C4 = 14 vertices are in correspondence with the
14 elements T(3).

• γj,k,∗ ∈ Z≤−(k−j) for precisely one pair of j, k ∈ {0, . . . , N + 1} with j < k,
• γj,k,∗ > −(k − j) for all other j, k

hold, as for such (α,β,γ) the quantity SN ;reg[F ](α,β,γ) is proportional to a convergent integral of a
positive integrand over the corresponding face of the associahedron. Consequently, SN [F ] : ΩN → C
cannot be analytically continued to the complement of any strictly smaller collection of hyperplanes
than that in eq. (1.13).

However, for the desired application, we do not need full generality. Of special importance is the
case when α,β,γ are each “constant,” meaning that, for some α, β, γ ∈ C,

• αi = α and βi = β for all i ∈ {1, . . . , N}, and
• γj,k = γ for all j, k ∈ {1, . . . , N} with j < k.

In this case, we simply write

SN [F ](α, β, γ) =
∫
4N

F (x1, . . . , xN )
N∏
j=1

xαj (1− xj)β
∏

1≤j<k≤N
(xk − xj)2γ dx1 · · · dxN . (1.23)

We now consider F ∈ C[x1, . . . , xN ]SN , i.e. symmetric polynomial F . This case includes, of course,
Selberg’s original example, in which F = 1, as well as the 3-point coefficients of the (1, s)- and
(r, 1)-primary fields and their descendants in the BPZ minimal models. It also includes certain
Selberg-like integrals considered by Aomoto [Aom87], Kadell [Kad97; Kad93], and others [Alb+11].
The computation of such integrals is listed as an open problem in [KT86a].

Below, we will introduce a more general notion of “DF-symmetric” Selberg-like integrals, this
including the other 3-point coefficients. For the purposes of an introductory discussion we focus on
the – already interesting – symmetric case.

The integral eq. (1.23) is defined initially on the subset UN [F ] ⊂ C3
α,β,γ given by

UN [F ] =
{

(α, β, γ) ∈ C3 : <j(α+ (j − 1)γ) > −1− δj [F ] and

<j(β + (j − 1)γ) > −1− δj [F ] for all j ∈ {1, . . . , N}, and <γ > − 1
N − 1

}
, (1.24)

which contains

UN = UN [1] =
{

(α, β, γ) ∈ C3 : min{<α,<β}+ min{0, (N − 1)γ} > −1 and <γ > − 1
N − 1

}
.

(1.25)
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An immediate corollary of the theorem above is that the function SN [F ] : UN [F ]→ C defined by
eq. (1.23) admits an analytic continuation ṠN [F ](α, β, γ) : U̇N [F ]→ C to the domain U̇N [F ] ) UN [F ]
given by

U̇N [F ] = C3
α,β,γ

∖[( N⋃
j=1
{j(α+ (j − 1)γ) ∈ Z≤−j−δj}

)
∪
( N⋃
j=1
{j(β + (j − 1)γ) ∈ Z≤−j− δj}

)

∪
(N−1⋃
j=1
{j(j + 1)γ ∈ Z−j}

)]
. (1.26)

Example. Consider F = 1, i.e. the Selberg integral. In this case, Selberg proved in [Sel44] that
SN (α, β, γ) = SN [1](α, β, γ) is given by

SN (α, β, γ) = 1
N !

N∏
j=1

Γ(1 + α+ (j − 1)γ)Γ(1 + β + (j − 1)γ)Γ(1 + jγ)
Γ(2 + α+ β + (N + j − 2)γ)Γ(1 + γ) . (1.27)

See [FW08] for a review of the history of this result. �

The example of the Selberg integral suggests that, in the symmetric case, eq. (1.26) is not the
maximal domain of analyticity. Set

degj [F ] = max{d1 + · · ·+ dj : [F ]d1,...,dj ,dj+1,...,dN 6= 0 for some dj+1, . . . , dN ∈ N}. (1.28)

(Since F is symmetric, degj [F ] = degj [F ◦ refl].) Then:

Theorem 1.2. For any F ∈ C[x1, . . . , xN ]SN , there exists an entire function SN ;Reg[F ] : C3
α,β,γ → C

such that

SN [F ](α, β, γ) =
[ N∏
j=1

Γ(1 + δ̄j + α+ (j − 1)γ)Γ(1 + ¯δj + β + (j − 1)γ)Γ(1 + jγ)
Γ(2 + d̄j + α+ β + (N + j − 2)γ)Γ(1 + γ)

]
× SN ;Reg[F ](α, β, γ) (1.29)

for all (α, β, γ) ∈ UN , where δ̄j = dj−1δj [F ]e, ¯δj = dj−1 δj [F ]e, and d̄j = b(N − j + 1)−1 degj [F ]c
for each j ∈ {1, . . . , N}. �

Thus, SN [F ](α, β, γ) admits an analytic continuation S̊N [F ](α, β, γ) : ŮN [F ]→ C to the domain
ŮN [F ] ) U̇N [F ] defined by

ŮN [F ] = C3
α,β,γ

∖[( N⋃
j=1
{α+ δ̄j + (j − 1)γ ∈ Z≤−1}

)
∪

( N⋃
j=1
{β + ¯δj + (j − 1)γ ∈ Z≤−1}

)
∪
(N−1⋃
j=1
{(j + 1)γ ∈ Z≤−1, γ /∈ Z}

)]
.

(1.30)

Observe that eq. (1.30) allows γ = −1.
In the case of the original Selberg integral, Theorem 1.2 describes precisely the singularities

and zeroes of the meromorphic continuation of the original integral, and SN ;Reg = SN ;Reg[1] is just
constant. The functions S2[F ] and S2;Reg[F ] are explored in §A.

The proof of the theorem above consists of three steps:
(1) The first step is the removal of the fictitious singularities of ṠN [F ](α, β, γ) only in γ (as

required e.g. in the Coulomb gas formalism with both kinds of screening charges).
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The basic idea is to employ the relation – which can be found in a heuristic form in
[DF85a, Ap. A] – between the symmetrization of SN [F ](α,β,γ) and the “DF-like” integral

IN [F ](α,β,γ) =
∫
�N

[ N∏
j=1

x
αj
j (1− xj)βj

]
×
[ ∏

1≤j<k≤N
(xk − xj + i0)2γj,k

]
F dx1 · · · dxN , (1.31)

where �N = [0, 1]N . We can analytically continue IN [F ] via an argument similar to that
used to prove Theorem 1.1. Unlike that of SN [F ](α,β,γ), this extension has no singularities
associated with hyperplanes of constant γ. The true singularities of the extension of
SN [F ](α, β, γ) associated with hyperplanes of constant γ show up in the relation with the
extension of IN [F ](α, β, γ).

(2) The second step removes the other unwanted singularities away from the loci of two or
more unwanted singularities, via some identities proven via Aomoto [Aom87] in the F = 1
case (and [DF85a, Ap. A], at a physicist’s level of rigor). The use of these identities for
computing the original Selberg integral is sketched in [FW08]. It seems there cannot be a
similar computation of SN [F ] in the degF > 1 case, so a statement about the singularities
is the best we can do.

The simplex 4N ⊂ RN can be thought of as a subset of

(C\{0, 1})N = (CP 1\{0, 1,∞})N (1.32)

via the embedding R ↪→ C ↪→ CP 1, and the rough idea of this step of the proof is to relate
the integrals above to the result of replacing 4N with L�N4N for L one of the six linear
fractional transformations preserving CP 1\{0, 1,∞}. Only three of these are essentially
different, and one of these three is just the identity and therefore uninteresting. The other
two integrals each have meromorphic extensions with different manifest singularities. Using
Proposition 4.2, these functions can be related to each other, and this can be used to
remove most of the apparent singularities that are not present in all three functions. Some
singularities are present in the relations between the integrals, and these cannot be removed.

(3) The third step is the application of Hartog’s theorem to remove the remaining removable
singularities, which now lie on a codimension two subvariety of C3.

This argument is carried out in §4.1. The version more relevant to [DF85a] (with the additional
steps needed) is in §4.2.

We call IN [F ] a “DF-like” integral because similar integrals appear, albeit at a somewhat formal
level, in [DF85a]. A similar construction appears in [Fel89].

Let ΣT(N) denote the collection of maximal collections I of pairs (x0, S) of x0 ∈ {0, 1} and
nonempty subsets S ⊆ {1, . . . , N} such that, given (x0, S), (x0, Q) ∈ I, either S ⊆ Q or Q ⊆ S.

Theorem 1.3. There exist entire functions IN ;reg,I[F ] : C2N+N(N−1)/2
α,β,γ → C associated to the

I ∈ ΣT(N) such that

IN [F ](α,β,γ) =
∑

I∈ΣT(N)

[ ∏
(1,S)∈I

Γ
(
|S|+

∑
j∈S

βj + 2
∑

j,k∈S,j<k
γj,k

)]
×
[ ∏

(0,S)∈I

Γ
(
|S|+

∑
j∈S

αj + 2
∑

j,k∈S,j<k
γj,k

)]
IN ;reg,I[F ](α,β,γ) (1.33)

for all (α,β,γ) for which the left-hand side is a well-defined integral. �
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In particular, IN [F ](α,β,γ) admits an analytic extension İN [F ](α,β,γ) to an open, dense set

V̇N = C2N+N(N−1)/2
α,β,γ

∖[( ⋃
S⊆{1,...,N}

{αS,∗ ∈ Z≤−|S|}
)
∪
( ⋃
S⊆{1,...,N}

{βS,∗ ∈ Z≤−|S|}
)]
. (1.34)

1.1. Some comments on the Coulomb gas formalism. Here, we discuss a particular application
to the Coulomb gas formalism (a.k.a. “free field realization,” “Feigin–Fuchs representation,” etcetera)
of 2D CFT [DF84][DF85a][DF85b][FS89][PM97, Chp. 9][FW08]. This approach of Dotsenko–Fateev
to the construction of the “minimal models” of Belavin–Polyakov–Zamolodchikov (BPZ) [BPZ84]
has been the subject of substantial interest, but it appears that it has not yet been placed on
entirely rigorous mathematical footing. The construction in [FS89][FS92] of the 3-point coefficients
of the (1, s)- and (r, 1)-primary fields and their descendants in the minimal models is satisfactorily
rigorous, but it has remained an open problem to handle the rest of the primary fields at a similarly
satisfactory degree of rigor. From our perspective, the issue is an insufficient treatment of the
meromorphic continuation of Selberg-like integrals, which are instead treated somewhat formally in
the original works.

The issue is that Dotsenko & Fateev (DF) take some of the γ’s to be −1 — see e.g. [DF85a,
Appendix A][FS92, p. 27][FW08, §2] — and then the integrand above is, say for F = 1, no longer
integrable over the integral’s domain. As a consequence, the integrals in [DF85a, Appendix A] are
formal. Dotsenko & Fateev suggest making sense of them via meromorphic continuation in the
exponents of the integrand, but they do not prove that a suitable meromorphic continuation exists,
nor do they discuss the singularities of the extension in sufficient detail to justify their manipulations.
Here, we have constructed a suitable extension and analyzed its singularities in detail.

The reason why it is necessary to take some of the γ’s to be −1 is that, for fixed central charge,
there are two sorts of vertex operators Vα± used in screening operators. Both are necessary to
produce all solutions of the BPZ equations. The relevant vertex operators are those of conformal
weights h± = 1. If the central charge is c, the two screening charges have conformal weights given
in terms of α± by

h± = α2
± − 2α±α0, (1.35)

according to the conventions in [PM97, §9.2.1], where c = 1 − 24α2
0, so, by Vieta, α−α+ = −1.

The correlation functions involving these screening charges are Dotsenko–Fateev integrals with
γj,k = α−α+ = −1, as follows from the commutation properties of vertex operators. See [PM97, §9]
for further exposition.

A construction of Kanie–Tsuchiya [KT86a][KT86b], rediscovered by Mimachi–Yoshida [MY04;
MY03][Yos03], yields the existence of some meromorphic continuation defined for almost all values of
the exponents. This extension is not quite sufficient for our purposes: it has removable singularities
that, while removable, are nontrivial to actually prove removable. In particular, the Kanie–Tsuchiya
construction has an apparent isolated singularity at γ = −1 (see [KT86b, §5, above Thm. 5]), along
with at a few other problematic affine hyperplanes in the space of possible parameters. One of
the advantageous features of the meromorphic continuation here is that it lacks these problematic
apparent singularities and therefore applies to the cases considered in the physics literature.

Most of the rigorous work on the analysis of integrals of Dotsenko–Fateev type — see e.g.
[FK15a][FK15b][FK15c][FK15d][LV19] for some recent work — focuses on screened multipoint
correlation functions with at most one screening charge screening per insertion point. Such integrals
are related to the N = 1 case of SN (α,β,γ). Not much has been done about the N > 1 case.
Moreover, while a fair amount of work has gone into the study of general hypergeometric integrals
associated to hyperplane arrangements — the literature on this topic is large, so we just cite
[Var95][AK11] — it does not seem possible to deduce the specific, concrete results below from results
in the current literature.
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Note that Ω̇N = Ω̇N [1], as defined in eq. (1.13), does not contain (α,β,γ) with γj,k = −1 for
|j − k| = 1, so Theorem 1.1 is insufficient for the construction of the BPZ minimal models. This is
one of the motivations for proving the sharper theorems above.

The Γ(2 + d̄j + α + β + (N + j − 2)γ) term in the denominator of eq. (1.29) implies that
S̊N [F ](α, β, γ) = 0 for all

(α, β, γ) ∈ ŮN [F ] ∩ {α+ β + (N + j − 2)γ ∈ Z≤−2−d̄j for some j ∈ {1, . . . , N}}. (1.36)
When constructing the 3-point coefficients of the BPZ minimal models, this is one mechanism
preventing the fusion of (0, s)-primary fields (which are not included in the model) with the primary
fields that are included. In BPZ’s terminology, this is the truncation of the operator algebras, as
originally argued for on the basis of the constraint of OPE associativity — see [BPZ84, §6][PM97,
Chp. 7.3.2].

For the full application to [DF84; DF85a], we use the following notion of “DF-symmetric”
polynomials. Given λ ∈ C and S ⊆ {1, . . . , N}, let DFSym(N, S, λ) denote the set of F ∈
C[x1, x

−1
1 , . . . , xN , x

−1
N ] such that:

• given any σ ∈ SN such that σ : S→ S, i.e. in the Young subgroup associated to S,
F = F ◦ σ (1.37)

where we are identifying σ with the map CN 3 {xi}Ni=1 → {xσ(i)}Ni=1 ∈ CN , and
• for any j ∈ S and k ∈ {1, . . . , N}\S,

λ
( ∂

∂xj
F
)∣∣∣
xj=xk

= ∂

∂xk

(
F
∣∣∣
xj=xk

)
∈ C[x1, x

−1
1 . . . , x̂j , x̂

−1
j . . . , xN ]. (1.38)

In particular, DFSym(N, {1, . . . , N}, λ) = C[x1, x
−1
1 , . . . , xN , x

−1
N ]SN , so in this sense DF-symmetry

is a generalization of ordinary symmetry. Our disallowal of Laurent polynomials F in the symmetric
case was without loss of generality, as, were F Laurent, we could shuffle factors of x1 · · ·xN between
the polynomial and the rest of the Selberg integrand. However, it is useful here to allow general
Laurent polynomials.

For each λ and S, DFSym(N, S, λ) is a (unital) C-subalgebra of C[x1, x
−1
1 . . . , xN , x

−1
N ]. It is

nontrivial. If S is a proper subset of {1, . . . , N}, then

λ−
∑
j∈S

xj + λ+
∑

k∈{1,...,N}\S
xk ∈ DFSym(N, S, λ),

λ−
∑
j∈S

1
xj

+ λ+
∑

k∈{1,...,N}\S

1
xk
∈ DFSym(N, S, λ)

(1.39)

is a nonzero member for λ+ defined by λ−1
− (λ− + λ+) = λ, so DFSym(N, S, λ) contains polynomials

of all degrees.
The key method of constructing DF-symmetric Laurent polynomials is the following:

Example. For any M ∈ N+ and matrix-valued polynomials ϕ,ψ ∈ xCM×M [x] such that the
coefficients of ϕ are strictly upper-triangular, the coefficients of ψ are strictly lower-triangular.
Suppose that the A’s all commute with each other and that the B’s all commute with each other.
(We do not assume that the A’s commute with the B’s.) Then, the matrix elements of

exp
(
λ−
∑
j∈S

ψ(x−1
j ) + λ+

∑
k∈{1,...,N}\S

ψ(x−1
k )
)

exp
(
λ−
∑
j∈S

ϕ(xj) + λ+
∑

k∈{1,...,N}\S
ϕ(xk)

)
(1.40)

lie in DFSym(N, S, λ), where λ = λ−1
− (λ− + λ+). The vertex operators which Dotsenko and Fateev

integrate to define the minimal model 3-point coefficients have this form up to some scalar factors
which are part of the Selberg integrand. In this example, the coefficients of ϕ are annihilation
operations on some Fock space, and the coefficients of ψ are creation operators, with all operators
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truncated to some finite dimensional subspace of the Fock space. That the creation operators in
eq. (1.40) are all to the left of the annihilation operators is normal ordering.

See [DF84][KT86b][KT86a][Fel89][PM97, Chp. 9]. �

For a set S ⊆ {1, . . . , N} and α±, β±, γ±, γ0 ∈ C, let αDF0,S, βDF0,S ∈ CN be given by

αj =
{
α+ (j ∈ S),
α− (j /∈ S),

βj =
{
β+ (j ∈ S),
β− (j /∈ S),

(1.41)

and let γDF0,S ∈ CN(N−1)/2 be given by

γj,k =


γ+ (j, k ∈ S),
γ0 (j ∈ S, k /∈ S or vice versa),
γ− (j, k /∈ S).

(1.42)

Let

ẆDF0,S
N [F ] = {(α−, α+, β−, β+, γ−, γ0, γ+) ∈ C7 : (αDF0,S,βDF0,S,γDF0,S) ∈ V̇N [F ]}, (1.43)

where V̇N [F ] is defined by eq. (1.34). Define, for (α−, α+, β−, β+, γ−, γ0, γ+) ∈ ẆDF0,S
N [F ],

İDF0,S
N [F ](α−, α+, β−, β+, γ−, γ0, γ+) = İN [F ](αDF0,S,βDF0,S,γDF0,S). (1.44)

Now let ẆDF,S
N [F ] denote the set of (α+, β+, γ+) ∈ C3 such that γ+ 6= 0 and, setting

γ− = γ−1
+ , α− = −γ−α+, β− = −γ−β+ (1.45)

— cf. [DF85a, eq. A.2] — it is the case that (α−, α+, β−, β+, γ−,−1, γ+) ∈ ẆDF0,S
N [F ]. This is an

open and dense subset of C3. Let

İDF,S
N [F ](α+, β+, γ+) = İDF0,S

N [F ](−γ−1
+ α+, α+,−γ−1

+ β+, β+, γ
−1
+ ,−1, γ+). (1.46)

for (α+, β+, γ+) ∈ ẆDF,S
N [F ]. Set N+ = |S| and N− = N −N+.

Theorem 1.4. Fix γ+ ∈ C\{0, 1} and S ⊆ {1, . . . , N}. Suppose that

F ∈ DFSym(N, S, γ−1
+ (1− γ+)). (1.47)

Then, there exists an entire function IDF,S
N ;Reg[F ](α+, β+, γ+) : C2

α+,β+
→ C such that

İDF,S
N [F ](α+, β+, γ+) =

[∏
±

N±∏
j=1

sin(π(α± + β± + (N± + j − 2)γ±))
sin(π(α± + (j − 1)γ±)) sin(π(β± + (j − 1)γ±))

]
× IDF,S

N ;Reg[F ](α+, β+, γ+) (1.48)

when α−, β−, γ− are related to α+, β+, γ+ by eq. (1.45) and the left-hand side is well-defined. �

If desired, it is possible to replace the sines with Γ-functions with appropriate integral shifts.
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Example. When F = 1, Dotsenko and Fateev claim in [DF85a, Eqs. A.8, A.35]1 that the integral
above is given by

İDF,S
N [1](α+, β+, γ+) ∝ γ2N−N+

∓

[ N±∏
j=1

e−iπ(j−1)γ± Γ(jγ±) sin(πjγ±)
Γ(γ±) sin(πγ±)

]

×
[ N∓∏
j=1

e−iπ(j−1)γ∓ Γ(jγ∓ −N±) sin(πjγ∓)
Γ(γ∓) sin(πγ∓)

][ N±∏
j=1

Γ(1 + α± + (j − 1)γ±)Γ(1 + β± + (j − 1)γ±)
Γ(2− 2N∓ + α± + β± + (N± − 2 + j)γ±)

]

×
[ N∓∏
j=1

Γ(1 + α∓ + (j − 1)γ∓ −N±)Γ(1 + β∓ + (j − 1)γ∓ −N±)
Γ(2−N± + α∓ + β∓ + (N∓ − 2 + j)γ∓)

]
(1.49)

for each choice of sign. �

2. Associahedra

We use the term ‘mwc’ to mean manifold-with-corners in the sense of Melrose – e.g. [Mel][HMM97],
these possessing C∞-structure. Roughly, a mwc is locally diffeomorphic to an open neighborhood
of [0,∞)N , and there is an additional requirement that boundary hypersurfaces be embedded.
In this section, we define the mwcs that will be used to resolve the singularities of Selberg- and
Dotsenko–Fateev-like integrands:

• in §2.1, we define the associahedra K`,m,n, used to meromorphically continue the Selberg-like
integrals, and
• in §2.2 we define the mwcs A`,m,n, used to meromorphically continue the DF-like integrals.

Since K0,N,0 is the usual N -dimensional associahedra, we refer to the mwcs defined below as
associahedra as well, hence the title of this section. If M is a mwc, we use F(M) to denote the set
of faces of M , where by faces we mean only the boundary hypersurfaces. We use “facet” to refer to
the higher codimension boundary components.

It is worth comparing Melrose’s notion of mwc to that of polyhedron. A mwc is locally a
polyhedron, but the converse is not true, as the basic requirement of M being locally diffeomorphic
to a relatively open neighborhood of [0,∞)N means that every facet f (M is the intersection of
at most N faces. While the (closed) ball, tetrahedron, cube, and dodecahedron are all mwcs, the
octahedron and icosahedron are not. It is necessary for the argument in §3 that the associahedra
A`,m,n and K`,m,n are not just polyhedra, but rather mwcs. The reason is that, since [0,∞)N is a
product of half-closed intervals, any mwc is locally diffeomorphic to a product of open or half-closed
intervals. This product structure is exploited in §3. In contrast, the octahedron is not, in any
reasonable sense, a product of one-dimensional manifolds-with-boundary near its vertices.

To summarize, the notion of “mwc” used here plays a similar role in our analysis to that of
“polyhedra in general position” in [Var95, §10.7], but the notions are not equivalent. For the purposes
of this paper, we find it more natural (and technically simpler, as it avoids the need for polyhedral
realizations) to use the language of mwcs.

We keep track of the full C∞-structure of these mwcs below. Were it required, we could keep
track of Cω- (i.e. real analytic) structure, but since this would require going somewhat beyond the
existent literature on mwcs, and since this level of precision is not needed for the rest of the paper,
we will restrict ourselves to the smooth category.

If f is a facet of M , then the blowup [M ; f] is a mwc, and the blowdown map

bd : [M ; f]→M (2.1)

1There seem to be a couple typos in [DF85a, Eq. A.35]. Equation (1.49) has these fixed. The first few cases of
eq. (1.49) have been numerically checked, so as to verify that the fixes are correct.



12 ETHAN SUSSMAN

is smooth. For convenience, we can identify the interior [M ; f]◦ with M◦. (If F is a codimension ≤ 1
facet of M , then we can identify [M ; F] with M itself.) Naturally, if f has codimension ≥ 2, then

F([M ; f]) = {[F; f ∩ F] : F ∈ F(M)} ∪ {ff}, (2.2)

where ff = bd−1(f) is the front face of the blowup. Then, given boundary-defining-functions (bdfs)
xF ∈ C∞(M ;R+) of the faces F ∈ F(M), we can choose bdfs x[F;f∩F], xff of the faces of [M ; f] such
that, for each F ∈ F(M),

xF ◦ bd =
{
x[F;f∩F]xff (f ⊆ F),
x[F;f∩F] (otherwise).

(2.3)

(We identify polyhomogeneous – in particular, smooth – functions on [M ; f] with their restrictions
to the interior, so, going forwards, we can drop the “◦ bd.”) Specifically, in addition to defining
x[F;f∩F] = xF if f 6⊆ F, we can take

xff =
∑

F∈F(M),f⊆F
xF, (2.4)

and, if f ⊆ F, then

x[F;f∩F] = xF
( ∑

F∈F(M),f⊆F
xF
)−1

. (2.5)

This follows from the analogous result for blowing up a facet of [0,∞)N . Note that because M is a
mwc and not just a polyhedron, if F1, . . . ,Fd ∈ F(M) are distinct faces with ∩δFδ 6= ∅, then the
connected components of ∩δFδ are codimension d facets of M . (The 2D lens is an example of a
mwc with two faces whose intersection is disconnected.)

If U is an open subset of a mwc, then U can be considered as a mwc in its own right. We will say
that some function x ∈ C∞(U ; [0,∞)) is a bdf in U of F ∈ F(M) if it is a bdf of the face F∩U of U ,
assuming that F ∩ U 6= ∅, in which case it is automatically a face of U . Let Rt = Rt ∪ {−∞,+∞}
denote the “radial” compactification of R. This is a (C∞-)manifold-with-boundary, with 1/t serving
as a bdf for {∞} in {t > 0} and −1/t serving as a bdf for {−∞} in {t < 0}.

2.1. The Associahedra K`,m,n. We now define the mwc K`,m,n for `,m, n ∈ N not all zero. The
blowup procedure below is a generalization of that in [KT86a]. We begin with the set

4`,m,n = {(x1, . . . , xN ) ∈ RN : x1 ≤ · · · ≤ x` ≤ 0
≤ x`+1 ≤ · · · ≤ x`+m ≤ 1 ≤ x`+m+1 ≤ · · · ≤ xN}, (2.6)

where N = `+m+ n. This is a compact sub-mwc of RN . Naturally,

4`,m,n
∼= 4`,0,0 ×40,m,0 ×40,0,n. (2.7)

Also, 4`,0,0 ∼= 4`, 40,m,0 ∼= 4m, and 40,0,n ∼= 4n.
For example, in the case N = 2, we have six cases. These are 42,0,0,40,2,0,40,0,2, each of which

is diffeomorphic to the triangle 42, and 41,1,0,41,0,1,40,1,1, each of which is diffeomorphic to the
square �2.

If `, n = 0, in which case m = N , then 4`,m,n is just the standard N -simplex 4N .
We call a subset I ⊆ Z/(N + 3)Z consecutive if it is of the form {k mod (N + 3), · · · , k +

κ mod (N + 3)Z} for some k ∈ Z/(N + 3)Z and κ ∈ N. (Thus, the empty set will not be considered
consecutive.)

We label the facets (of any codimension, possibly zero) of 4`,m,n using (unordered) partitions I
of Z/(N + 3)Z into consecutive subsets I, with no two of 0, `+ 1, `+m+ 2 ∈ Z/(N + 3)Z appearing
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together in any element I ∈ I. Specifically,

f0,I =
{

(x1, . . . , xN ) ∈ 4`,m,n :
(
I ∈ I⇒

{
j ∈ I ⇒ tj = ±∞ (0 ∈ I)
j, k ∈ I ⇒ tj = tk (0 /∈ I)

)}
, (2.8)

where
• tj = xj for j = 1, . . . , `,
• t`+1 = 0,
• t`+1+j = x`+j for j = 1, . . . ,m,
• t`+m+2 = 1, and
• t`+m+2+j = x`+m+j for j = 1, . . . , n.

The dimension of f0,I is given by
dim f0,I = |I| − 3. (2.9)

For notational simplicity, if I0 ⊆ I is I with the singletons removed, then we define fI0 = f0,I. Thus,
f∅ denotes the “bulk” of 4`,m,n, and the faces of 4`,m,n are of the form f{I} for I a consecutive
pair. Rephrasing eq. (2.9),

codim fI =
∑
I∈I

(|I| − 1). (2.10)

As a bdf of f{I} for I = {k mod Z/(N + 3)Z, k+ 1 mod Z/(N + 3)} when k ∈ {1, . . . , N + 1}, we
can take

xf{I} = tk+1 − tk. (2.11)

For the remaining two cases of F{0,1} (which only exists if ` ≥ 1) and f{N+2,N+3} (which only exists
if n ≥ 1), we can take xf{0,1} = −1/x1 and xf{N+2,N+3} = 1/xN .

Let F`,m,n = F`,m,n(4) denote the family of facets fI of 4`,m,n such that I = {I} for some
consecutive subset I ⊂ Z/(N + 3)Z of size |I| ≥ 2 not containing any two of 0, ` + 1, ` + m + 2.
In other words, F`,m,n is the set of facets fI for I defining a partition of Z/(N + 3)Z into a single
interval of length at least two (not containing any two of 0, ` + 1, ` + m + 2) and a number of
singletons which are being omitted from the notation.

For each d ∈ {0, . . . , N}, let F`,m,n;d denote the set of elements of F`,m,n of dimension d. Then,
the mwc K`,m,n is defined by the iterated blowup

K`,m,n = [4`,m,n;F`,m,n,0; · · · ;F`,m,n,N ] = [· · · [4`,m,n;F`,m,n;0] · · · ;F`,m,n;N ]. (2.12)

I.e., we first blow up the elements of the collection F`,m,n;0 (which may be empty, namely if `,m, n
are all nonzero), and then, proceeding from higher to lower codimension, iteratively blow up the
lifts of the facets in F`,m,n;d (meaning the closures of the lifts of the interiors).

We should check that the blowup eq. (2.12) is well-defined, which concretely means that, for each
d, the blow-ups in the step in which we blow up the lifts of the elements of F`,m,n;d commute. This
can be done via a somewhat tedious inductive argument, which we only sketch.

When the time has come to blow up the facets f 6= f ′ in the lifted F`,m,n;d, their intersection is –
if nonempty – either a point (which we denote K0,0,0) or else an associahedron K`∩,m∩,n∩ (which
will not change upon performing further blowups) of dimension < N , and a neighborhood thereof is
diffeomorphic to

[0, 1)N−dt ×K`∩,m∩,n∩ × [0, 1)N−dt′ , (2.13)

with f corresponding to {t = 0} and f ′ corresponding to {t′ = 0}; the blowups of these two faces in
the product above commute, with the result being naturally diffeomorphic to

[[0, 1)N−dt , {0}]×K`∩,m∩,n∩ × [[0, 1)N−dt′ ; {0}]. (2.14)
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In order to prove the claimed decomposition, eq. (2.13), it is first useful to note when f ∩ f ′ = ∅.
If I, I ′ satisfy |I| = N − d+ 1 = |I ′| and I ∩ I ′ 6= ∅, then the corresponding facets

f = cl[4`,m,n;F`,m,n,0;··· ;F`,m,n,d−1]f◦{I} (2.15)
f ′ = cl[4`,m,n;F`,m,n,0;··· ;F`,m,n,d−1]f◦{I′} (2.16)

of [4`,m,n;F`,m,n,0; · · · ;F`,m,n,d−1] satisfy f ∩ f ′ = ∅. Indeed, I ∩ I ′ 6= ∅ implies

f{I} ∩ f{I′} = f{I∪I′} ∈ F`,m,n(4), (2.17)

and since this is blown up in an earlier stage of the construction, f and f ′ cannot intersect.
So, if our two facets f, f ′ to be blown up have nonempty intersection, then they must be the

lifts of f{I} and f{I′} for I, I ′ satisfying I ∩ I ′ = ∅. The intersection f ∩ f ′ lies in the preimage of
f{I} ∩ f{I′} = f{I,I′}. This facet of 4`,m,n is of the form 4`∩,m∩,n∩ for `∩ +m∩ + n∩ = 2d−N ≥ 0.
As seen inductively, the lift of this facet after performing the blow-ups so far is K`∩,m∩,n∩ , although
this is not crucial for the proof that the construction is well-defined. Since this has dimension
2d−N , a neighborhood of this facet in our partially blown-up manifold automatically has the form

L = [0, 1)2N−2d ×K`∩,m∩,n∩ , (2.18)

so it just needs to be checked that f, f ′ sit inside of this in the expected way. The d-dimensional
facets of L containing (0, · · · , 0)×K`∩,m∩,n∩ all have the form [0,∞)N−d×K`∩,m∩,n∩ for one of the(2N−2d
N−d

)
divisors [0,∞)N−d ⊆ [0,∞)2N−2d. Thus, we can decompose

[0, 1)2N−2d = [0, 1)#
t × [0, 1)#′

t′ × [0,∞)δt′′ , (2.19)

for some δ ∈ N, such that f corresponds to {t = t′′ = 0} and f ′ corresponds to {t′ = t′′ = 0}. But, if
δ 6= 0, then f ∩ f ′ is too big, so δ = 0. Thus, since f, f ′ both have dimension d, it must be the case
that # = #′ = N − d. This completes our sketch.

We now discuss the combinatorial structure of K`,m,n. All of the faces of 4`,m,n are in F`,m,n;N−1,
so every face of K`,m,n is the front face of one of our blowups. So, the faces of K`,m,n are in bijection
with the elements of F`,m,n and thus with I as above. Such a subset is uniquely specified by its
endpoints j, k ∈ Z/(N + 3)Z, since only two consecutive subsets of Z/(N + 3)Z have the same
endpoints as I, namely I itself and I{ ∪ {j, k}, and the latter contains two of 0, `+ 1, `+m+ 2.
Let J`,m,n denote the set of unordered pairs {j, k} arising in this way. For {j, k} ∈ J`,m,n, let
I(j, k) = I(k, j) denote the unique consecutive subset of Z/(N + 3)Z having these endpoints and
containing at most one member of {0, `+ 1, `+m+ 2}. For such j, k, let Fj,k = Fk,j denote the
corresponding face of K`,m,n, and let xFj,k = xFk,j denote a bdf of that face constructed inductively
as in the introduction to this section. (Note that these bdfs may depend on the particular order in
which the elements of the F`,m,n;d are blown up.)

There are 2−1N(N + 3) faces in K`,m,n.

Example. Consider the case N = 2. Then, up to essential equivalence, the cases to consider are
K1,1,0 and K0,2,0. These are depicted in Figure 3. The mwc K1,1,0 is identical to A1,1,0; in §2.2
we introduce notation for labeling the faces of the A`,m,n, and this notation appears in Figure 4
alongside that used for the K`,m,n. We have introduced an additional notation for the faces of
K`,m,n, indicating I in the subscript using the following conventions:

• The elements 0, ` + 1, ` + m + 2 ∈ Z/5Z are depicted using a ‘◦,’ and 0 is omitted if not
included in I.
• The other elements of Z/5Z are depicted using a ‘•.’
• Except for 0, the elements of Z/5Z are depicted in order. If 0 is to be depicted, it is listed
either first or last.

The elements included in I are enclosed in parentheses. �
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F3,4 = F•◦(•◦)

F2,3 = F•(◦•)◦

F0,1 = F(◦•)◦•◦ F1,2 = F(•◦)•◦

F1,3 = F(•◦•)◦

x2

w1

F1,2 = F(◦•)•◦

F3,4 = F◦•(•◦)

F2,3 = F◦(••)◦
F1,3 = F(◦••)◦

F2,4 = F◦(••◦)

1− x2

x1

Figure 3. The associahedra K1,1,0 (left) and K0,2,0 (right), realized as polyhedra
roughly in accordance with the blowup procedure. In the first figure, the horizontal
axis is roughly w1 = 1/(1− x1), increasing to the right. In the second figure, it is
just (roughly) x1. In both figures, the vertical axis is (roughly) x2.

F4,5 = F•◦•(◦•) = F{3},∅;1

F0,1 = F(◦•)◦•◦• = F{1},∅;∞

F1,5 = F◦•)◦•◦(• = F{1},{3};∞
F2,3 = F•(◦•)◦• = F{2},∅;0

x2

y3

w1

F1,3 = F(•◦•)◦• = F{1},{2};0 F3,4 = F•◦(•◦)• = F{2},{∅};1

F3,5 = F•◦(•◦•) = F{2},{3};1

F1,2 = F(•◦)•◦• = F{1},{∅};0

F0,5 = F5,6 = F•◦•◦(•◦) = F∅,{3};∞

Figure 4. The mwc K1,1,1, with labeled faces, realized as a polyhedron roughly in
accordance with the blowup procedure. Here w1 = 1/(1− x1) and y3 = (x3 − 1)/x3.
The faces in the line of sight are F1,2 = F(•◦)•◦•, F1,3 = F(•◦•)◦•, F3,4 = F•◦(•◦)•,
F3,5 = F•◦(•◦•), and F0,5 = F•◦•◦(•◦).

Example. Consider the case N = 3. Then, up to essential equivalence, the cases to consider are
K1,1,1, K1,2,0, and K0,3,0. These are depicted in Figure 4, Figure 5, Figure 6. The mwc K1,1,1 is
identical to A1,1,1.

We have modified the “•” notation from the previous example and used it to label the faces in
the figures, alongside the notation used in the rest of this section. For instance, when considering
K0,3,0, “◦(• • •)◦” denotes {2, 3, 4} ⊂ Z/6Z. When considering K1,2,0, “◦(• ◦ •)• ◦” denotes {1, 2, 3}.
When considering K1,1,1, “•) • ◦(•◦” denotes {0, 1, 5}. �

The K`,m,n satisfy the following “universal property:”
• For any subsets S ⊆ {1, . . . , `}, Q ⊆ {`+ 1, . . . , `+m}, R ⊆ {`+m+ 1, . . . , N} that are not
all empty, let forg : 4`,m,n →4|S|,|Q|,|R| denote the forgetful map forgetting the variables xj
for j /∈ S ∪Q ∪R. Then, forg lifts to a smooth b-map [Mel]

forg : K`,m,n → K|S|,|Q|,|R|. (2.20)

Given any face F of K|S|,|Q|,|R|, forg∗xF vanishes to first order at each face in forg−1(F).
This can be proven by inducting on the number of blowups.



16 ETHAN SUSSMAN

Figure 5. The mwc K1,2,0, with
labeled faces, realized as a polyhe-
dron roughly in accordance with
the blowup procedure. As above,
w1 = 1/(1 − x1). The faces
in the line of site are F1,2 =
F(•◦)••◦, F1,3 = F(•◦•)•◦, and
F4,5 = F•◦•(•◦).

F3,4 = F•◦(••)◦

F2,3 = F•(◦•)•◦ F0,1 = F(◦•)◦••◦

F3,5 = F•◦(••◦)
F1,4 = F(•◦••)◦

F2,4 = F•(◦••)◦
x2

x3 − x2

w1

F4,5 = F•◦•(•◦)

F1,2 = F(•◦)••◦

F1,3 = F(•◦•)•◦

Figure 6. The mwc K0,3,0, with
labeled faces, realized as a polyhe-
dron roughly in accordance with
the blowup procedure. The faces
in the line of sight are F4,5 =
F◦••(•◦) and F3,5 = F◦•(••◦). Cf.
[KT86a, Fig. 5.2], where the full
blowup procedure is depicted.

F1,4 = F(◦•••)◦

F3,4 = F◦•(••)◦

F1,3 = F(◦••)•◦

F2,4 = F◦(•••)◦

F1,2 = F(◦•)••◦F2,3 = F◦(••)•◦

F2,5 = F◦(•••◦) x2 − x1

x3 − x2

x1

F4,5 = F◦••(•◦)

F3,5 = F◦•(••◦)

Proposition 2.1. Suppose that µ ∈ C∞(4`,m,n; Ω4`,m,n) is a strictly positive smooth density on
4`,m,n. Then, the lift of µ to K`,m,n has the form[ ∏

{j,k}∈J`,m,n

x
|j−k|−1
Fj,k

]
µ (2.21)

for a strictly positive µ ∈ C∞(K`,m,n; ΩK`,m,n). Here, for j, k ∈ Z/(N + 3)Z, we use the notation
|j − k| = min{|j0 − k0|, |k0 − j0| : j0, k0 ∈ Z : j0 ≡ j mod (N + 3), k0 ≡ k mod (N + 3)}. �

In the product, each unordered pair is counted only once.

Proof. We recall the following lemma:
• Suppose that M is a mwc and µ ∈ C∞(M ; ΩM) is a strictly positive smooth density on M .
Then, if f is a facet of M of codimension d ∈ N+, the lift of µ to [M ; f] has the form xd−1

ff ν
and ν a strictly positive smooth density on [M ; f].

Working in local coordinates, this follows from the case of blowing up a facet in [0,∞)N . In this
case, we can use cylindrical coordinates (that is, spherical coordinates if the facet we are blowing up
is the corner). The result follows from the form of the Lebesgue measure in cylindrical coordinates.

The proposition follows from an inductive application of the lemma, once we note that |j − k| is
the codimension of Fj,k. �

Proposition 2.2. The Lebesgue measure on RN , which defines a strictly positive smooth density
on 4◦`,m,n, has the form [ ∏̀

j=1
(1− xj)2

][ N∏
j=`+m+1

x2
j

]
µ (2.22)

for µ ∈ C∞(4`,m,n; Ω4`,m,n) a strictly positive smooth density on 4`,m,n. �
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Proof. It is the case that the 1-form dxj ∈ Ω14◦`,m,n defines an extendable 1-form on 4`,m,n if
j ∈ {`+ 1, · · · , `+m}, and the extension is nonvanishing. The same holds for

• dwj = (1− xj)−2 dxj for wj = 1/(1− xj) if j ∈ {1, . . . , `} and
• dyj = x−2

j dxj for yj = (xj − 1)/xj if j ∈ {`+m+ 1, · · · , N},

since 4`,m,n is a submanifold of RN . The µ in eq. (2.22) can therefore be taken to be |dw1 ∧ · · · ∧
dw`∧ dx`+1∧ · · · ∧ dx`+m∧ dy`+m+1∧ · · · ∧ dyN |, which lies in C∞(4`,m,n; Ω4`,m,n) and is strictly
positive. �

We now record the results of lifting the factors xi, 1 − xi, and xj − xk comprising the Selberg
integrand to K`,m,n. Beginning with the first two cases:

• If i ∈ {1, . . . , `}, then

−xi ∈
[ N+3∏
j=`+m+3

∏̀
k=i

x−1
Fj,k

][ i∏
j=1

`+m+1∏
k=`+1

xFj,k

]
C∞(K`,m,n;R+), (2.23)

1− xi ∈
[ N+3∏
j=`+m+3

∏̀
k=i

x−1
Fj,k

]
C∞(K`,m,n;R+). (2.24)

• If i ∈ {`+ 1, . . . , `+m}, then

xi ∈
[ `+1∏
j=1

`+m+1∏
k=i+1

xFj,k

]
C∞(K`,m,n;R+), (2.25)

1− xi ∈
[ i+1∏
j=`+2

N+2∏
k=`+m+2

xFj,k

]
C∞(K`,m,n;R+). (2.26)

• If i ∈ {`+m+ 1, . . . , N}, then

xi ∈
[ i+2∏
j=`+m+3

∏̀
k=0

x−1
Fj,k

]
C∞(K`,m,n;R+), (2.27)

−(1− xi) ∈
[ i+2∏
j=`+m+3

∏̀
k=0

x−1
Fj,k

][ `+m+2∏
j=`+2

N+2∏
k=i+2

xFj,k

]
C∞(K`,m,n;R+). (2.28)

If N = 1, then these are all trivial to prove. By applying the universal property of the associahedra,
the N ≥ 2 case follows from the N = 1 case.

In a similar manner, by working out the case of K0,2,0 in detail and applying the universal
property, we get, for k > j:

• If j, k ∈ {`+ 1, . . . , `+m}, then

xk − xj ∈
[ `+1∏
j0=1

`+m+1∏
k0=k+1

xFj0,k0

][ j+1∏
j0=`+2

N+2∏
k0=k+1

xFj0,k0

]
C∞(K`,m,n;R+). (2.29)

Indeed, in the case of `, n = 0 and m = 2, this says that x2 − x1 ∈ xF1,3xF2,3xF2,4C
∞(K0,2,0;R+).

Indeed, if we construct K0,2,0 by first blowing up F1,3 and then blowing up F2,4, we get

xF1,3 = x2, xF2,3 = x2 − x1
2x2 − x2

2 − x1
, xF2,4 = 2x2 − x2

2 − x1
x2

, (2.30)

so that xF1,3xF2,3xF2,4 = x2 − x1, on the nose. On the other hand, if we reverse the order of the
blowups, then we get

xF1,3 = x2 − x2
1

1− x1
, xF2,3,0 = x2 − x1

x2 − x2
1
, xF2,4 = 1− x1, (2.31)
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so we still get xF1,3xF2,3xF2,4 = x2 − x1.
From this, we can deduce the following.
• If j, k ∈ {1, . . . , `}, then, in terms of wi = −xi/(1−xi), (xk−xj) = (1−wj)−1(1−wk)−1(wj−
wk), so,

xk − xj ∈
[ ∏̀
j0=j

N+3∏
k0=`+m+3

x−1
Fj0,k0

][ j∏
j0=1

`+m+1∏
k0=k

xFj0,k0

]
C∞(K`,m,n;R+). (2.32)

• If j, k ∈ {`+m+ 1, . . . , N}, then, in terms of yi = 1/xi, (xk − xj) = y−1
j y−1

k (yj − yk), so

xk − xj ∈
[ j+2∏
j0=`+2

N+2∏
k0=k+2

xFj0,k0

][ k+2∏
j0=`+m+3

∏̀
k0=0

x−1
Fj0,k0

]
C∞(K`,m,n;R+). (2.33)

The next three follow from the K1,1,0, K1,0,1, and K0,1,1 cases. We illustrate the K1,1,0 case, and
the others are similar.

• If j ∈ {1, . . . , `} and k ∈ {`+ 1, . . . , `+m}, then (xk−xj) = (1−wj)−1(wj +xk−xkwj), so

xk − xj ∈
[ ∏̀
j0=j

N+3∏
k0=`+m+3

x−1
Fj0,k0

][ j∏
j0=1

`+m+1∏
k0=k+1

xFj0,k0

]
C∞(K`,m,n;R+). (2.34)

In the case `,m = 1, n = 0, this says that (x2 − x1) ∈ x−1
F1,5

xF1,3C
∞(K1,1,0;R+). Indeed,

the bdf xF1,3 of F1,3 in K1,1,0 is defined by

xF1,3 = (1− w1) + x2 = − x1
1− x1

+ x2, (2.35)

and xF1,5 = xF0,1 = w1 = 1/(1− x1). So,

x−1
F1,5

xF1,3 = x2 − x1 − x1x2. (2.36)

The supposed C∞(K1,1,0;R+) term above is therefore (x2 − x1)(x2 − x1 − x1x2)−1 =
(1− x2x1/(x2 − x1))−1. One way (besides checking in a system of local coordinate charts)
to see that this is smooth (and positive) on K1,1,0 is the identity

− x2x1
x2 − x1

=
xF1,2xF1,3xF2,3

xF1,2 + xF2,3xF0,1

. (2.37)

The faces F0,1,F2,3 are disjoint from F1,2 (see Figure 3), so the denominator on the right-hand
side of eq. (2.37) is nonvanishing, so the quotient is indeed smooth.

Likewise:
• If j ∈ {`+ 1, . . . , `+m} and k ∈ {`+m+ 1, . . . , N}, then (xk − xj) = y−1

k (1− xjyk), so

xk − xj ∈
[ j+1∏
j0=`+2

N+2∏
k0=k+2

xFj0,k0

][ ∏̀
j0=0

k+2∏
k0=`+m+3

x−1
Fj0,k0

]
C∞(K`,m,n;R+). (2.38)

• If j ∈ {1, . . . , `} and k ∈ {`+m+ 1, . . . , N}, then (xk−xj) = y−1
k (1−wj)−1(1−wj +wjyk),

so

xk − xj ∈
[ ∏̀
j0=j

N+3∏
k0=k+3

x−1
Fj0,k0

][ ∏̀
j0=0

k+2∏
k0=`+m+3

x−1
Fj0,k0

]
C∞(K`,m,n;R+). (2.39)

We associate to each face F• ∈ F(K`,m,n) an affine functional

ρ• : C2N+N(N−1)/2 3 (α,β,γ) 7→ ρ•(α,β,γ) ∈ C. (2.40)
Suppose that we are given some α,β ∈ CN and γ = {γj,k = γk,j}1≤j<k≤N ∈ CN(N−1)/2. If one of

(I) j, k ∈ {1, . . . , `}
(II) j, k ∈ {`+ 2, . . . , `+m+ 1},
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(III) j, k ∈ {`+m+ 3, . . . , N + 2}
holds, then, letting k denote the larger of {j, k},

ρj,k = k − j + 2
∑

j′≤j0<k0≤k′
γj0,k0 , (2.41)

where, for each i ∈ {j, k}, i′ = i if i ∈ {1, . . . , `}, i′ = i− 1 if i ∈ {`+ 2, . . . , `+m+ 1}, and i′ = i− 2
if i ∈ {`+m+ 3, . . . , N + 2}. The other cases are:

• If j ∈ {1, . . . , `+ 1} and k ∈ {`+ 1, . . . , `+m+ 1} and j 6= k, then

ρj,k = k − j − 1 +
∑̀
i=j

αi +
k∑

i=`+2
αi−1 + 2

∑
j≤j0<k0≤k−1

γj0,k0 . (2.42)

• If j ∈ {`+ 2, . . . , `+m+ 2} and k ∈ {`+m+ 2, . . . , N + 2} and j 6= k, then

ρj,k = k − j − 1 +
`+m+1∑
i=j

βi−1 +
k∑

i=`+m+3
βi−2 + 2

∑
j−1≤j0<k0≤k−2

γj0,k0 . (2.43)

• If j ∈ {0, . . . , `} and k ∈ {`+m+ 3, . . . , N + 3} and at least one of j 6= 0, k 6= N + 3 holds,
then

ρj,k = k − j −N − 4−
j∑
i=1

αi −
j∑
i=1

βi −
N+2∑
i=k

αi−2 −
N+2∑
i=k

βi−2 − 2
j∑

j′=1

N∑
i=1,i 6=j′

γi,j′

− 2
N∑

k′=k−2

N∑
i=1,i 6=k′−2

γi,k′ + 2
∑

1≤j′<k′≤j
γj′,k′ + 2

∑
k−2≤j′<k′≤N

γj′,k′ + 2
j∑

j′=1

N∑
k′=k−2

γj′,k′ . (2.44)

Proposition 2.3. Given any α,β ∈ CN and γ = {γj,k = γk,j}1≤j<k≤N ∈ CN(N−1)/2, the Selberg-
like integrand

N∏
i=1
|xi|αi |1− xi|βi

∏
1≤j<k≤N

(xk − xj)2γj,k |dx1 · · · dxN | ∈ C∞(4◦`,m,n; Ω4◦`,m,n) (2.45)

lifts, via the blowdown map bd : K`,m,n →4`,m,n, to an extendable density of the form[ ∏
{j,k}∈J`,m,n

x
ρj,k
Fj,k

]
µ`,m,n(α,β,γ), (2.46)

for some strictly positive smooth density µ`,m,n(α,β,γ) ∈ C∞(K`,m,n; ΩK`,m,n), depending entirely
on α,β,γ. �

Proof. Each ρj,k is an affine function of α,β,γ, so it suffices to check 2N +N(N − 1)/2 + 1 cases,
the case when all three of α,β,γ are zero and 2N +N(N − 1)/2 cases where the triple (α,β,γ)
ranges over a basis of C2N+N(N−1)/2. Write

ρj,k(α,β,γ) = ρ
(0)
j,k + ρ

(1)
j,k(α,β,γ), (2.47)

where ρ(0)
j,k = ρj,k(0,0,0) and ρ(1)

j,k(α,β,γ) = ρj,k(α,β,γ)− ρ(0)
j,k is the linear part of ρj,k. Thus, we

want to show that, upon lifting to K`,m,n,

|dx1 · · · dxN | ∈
[ ∏
{j,k}∈J`,m,n

x
ρ

(0)
j,k

Fj,k

]
C∞(K`,m,n; ΩK`,m,n), (2.48)

N∏
i=1
|xi|αi |1− xi|βi

∏
1≤j<k≤N

(xk − xj)2γj,k ∈
[ ∏
{j,k}∈J`,m,n

x
ρ

(1)
j,k

(α,β,γ)
Fj,k

]
C∞(K`,m,n;R+), (2.49)
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with it sufficing to check eq. (2.49) on a basis of C2N+N(N−1)/2.
• Equation (2.48) is simply a restatement of Proposition 2.2.
• For a basis of C2N+N(N−1)/2, we look at (α,β,γ) such that all of the components α1, . . . , αN ,
β1, . . . , βN , γ1,2, · · · of α,β,γ are all 0 except for one, which we set to 1. The result then
follows, via a bit of algebra, from eq. (2.23) through eq. (2.39).

�

Let T(`,m, n) denote the collection of maximal families I of consecutive subsets I ( Z/(N + 3)Z
such that

• 2 ≤ |I| ≤ N + 1 for all I ∈ I,
• no two of 0, `+ 1, `+m+ 2 are in any I ∈ I together, and
• if I, I ′ ∈ I satisfy I ∩ I ′ 6= ∅, then either I ⊆ I ′ or I ′ ⊆ I.

The elements of T(`,m, n) can be thought of as specifying valid ways of adding parentheses to group
together the elements of Z/(N + 3)Z without grouping any of 0, ` + 1, ` + m + 2 together. The
minimal facets of K`,m,n are in bijective correspondence with the elements of T(`,m, n), with

fI =
⋂

I(j,k)∈I

Fj,k (2.50)

the facet corresponding to I.

2.2. The Associahedra A`,m,n. We now define the mwc A`,m,n for `,m, n ∈ N not all zero. We
begin with the N = `+m+ n cube �N = [0, 1]N . Parametrizing �N by (t1, . . . , tN ), the cube is
identified with

[−∞, 0]`x1,...,x` × [0, 1]mx`+1,...,x`+m × [1,∞]nx`+m+1,...,xN (2.51)
via the coordinate changes ti = 1/(1− xi) for xi ∈ [−∞, 0] and i ∈ {1, . . . , `} and ti = (xi − 1)/xi
for xi ∈ [1,∞] and i ∈ {`+m+ 1, . . . , N}.

The facets of �N we label by sextuples (S,Q, S′, Q′, S′′, Q′′) consisting of (possibly empty)
subsets S,Q ⊆ {1, . . . , `}, S′, Q′ ⊆ {`+ 1, . . . , `+m}, and S′′, Q′′ ⊆ {`+m+ 1, . . . , N} such that
S ∩Q = S′ ∩Q′ = S′′ ∩Q′′ = ∅. Let

FS,Q,S′,Q′,S′′,Q′′ =
{

(t1, . . . , tN ) ∈ �N : j ∈ S ∪ S′ ∪ S′′ ⇒ tj = 0
j ∈ Q ∪Q′ ∪Q′′ ⇒ tj = 1

}
. (2.52)

For instance, �N = F∅,∅,∅,∅,∅,∅.
Now let F`,m,n = F`,m,n(�) denote the family of facets defined by
F`,m,n = ({FS,∅,∅,∅,∅,Q′′}S,Q′′ ∪ {F∅,Q,S′,∅,∅,∅}Q,S′ ∪ {F∅,∅,∅,Q′,S′′,∅}Q′,S′′)\{�N} (2.53)

where S, S′, S′Q,Q′, Q′′ range over all subsets as above. For each d ∈ {0, . . . , N − 1}, let F`,m,n;d
denote the set of elements of F`,m,n of dimension d. Then, A`,m,n is defined by the iterated blowup

A`,m,n = [�N ;F`,m,n] = [�N ;F`,m,n;0; · · · ;F`,m,n;N−1]. (2.54)
As in the previous section, we should check that, for each d = 1, . . . , N , having already blown up

F`,m,n;d0 for d0 < d, the blowups of the closures of the lifts of the interiors of all of the F ∈ F`,m,n;d
all commute. One way to see this is to split

�N =
⋃

S,S′,S′′

�`,m,n(S, S′, S′′), (2.55)

where S varies over all subsets of {1, . . . , `}, S′ varies over all subsets of {`+ 1, . . . , `+m}, and S′′
varies over all subsets of {`+m+ 1, . . . , N}, and

�`,m,n(S, S′, S′′) =
{

(t1, . . . , tN ) ∈ �N : i ∈ S ∪ S′ ∪ S′′ ⇒ ti ∈ [0, 2/3)
i /∈ S ∪ S′ ∪ S′′ ⇒ ti ∈ (1/3, 1]

}
. (2.56)
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t2

t3

t1

A1,1,1 A1,2,0 A0,3,0

Figure 7. The 3-cube �3 and the three blowups A1,1,1 = K1,1,1, A1,2,0, A0,3,0
thereof. The �`,m,n(S, S′, S′′) are eight subcubes corresponding to the eight vertices
of �3. One such cube is depicted in red.

Once we have established that blowing up F`,m,n;0, · · · ,F`,m,n;d−1 is fine, then

[�N ;F`,m,n;0; · · · ;F`,m,n;d−1] =
⋃

S,S′,S′′

[�`,m,n(S, S′, S′′);F`,m,n;0; · · · ;F`,m,n;d−1] (2.57)

naturally, with the left-hand side being well-defined if the right-hand side is. Thus, it suffices to
check that the blowups [�`,m,n(S, S′, S′′);F`,m,n;0; · · · ;F`,m,n;d] are all well-defined. To see this,
identify

�`,m,n(S, S′, S′′) =
([

0, 2
3
)S
{ti}i∈S

×
(1

3 , 1
](S′′){
{ti}i∈(S′′){

)
×
([

0, 2
3
)S′
{ti}i∈S′

×
(1

3 , 1
]S{

{ti}i∈S{

)
×
([

0, 2
3
)S′′
{ti}i∈S′′

×
(1

3 , 1
](S′){
{ti}i∈(S′){

)
(2.58)

and note that the blowup prescription is just that of performing the total boundary (tb) blowup
[HMM97] on each of the three factors. (Note that this is not the same as the total boundary blowup
of the product of the factors.) Here,

• S{ = {1, . . . , `}\S,
• (S′){ = {`+ 1, . . . , `+m}\S′,
• and (S′′){ = {`+m+ 1, . . . , N}\S′′.

Thus,

A`,m,n =
⋃

S,S′,S′′

[
([

0, 2
3
)S
×
(1

3 , 1
](S′′){)

tb
×
([

0, 2
3
)S′
×
(1

3 , 1
]S{)

tb
×
([

0, 2
3
)S′′
×
(1

3 , 1
](S′){)

tb

]
. (2.59)

The faces of A`,m,n are in bijection with the elements of F`,m,n. We label the faces of A`,m,n as
follows:

• for S ⊆ {1, . . . , `} and Q ⊆ {` + m + 1, . . . , N}, the face corresponding to FS,∅,∅,∅,∅,Q is
labeled as FS,Q;∞ = FQ,S;∞,
• for Q ⊆ {1, . . . , `} and S ⊆ {` + 1, . . . , ` + m}, the face corresponding to F∅,Q,S,∅,∅,∅ is
labeled as as FS,Q;0 = FQ,S;0, and
• for S ⊆ {`+m+1, . . . , N} and Q ⊆ {`+1, . . . , `+m}, the face corresponding to F∅,∅,∅,Q,S,∅
is labeled as FS,Q;1 = FQ,S;1.

Here, S,Q are not allowed to both be empty.
For any subsets S ⊆ {1, . . . , `}, Q ⊆ {` + 1, . . . , ` + m}, R ⊆ {` + m + 1, . . . , N} that are not

all empty, let forg : �`,m,n → �|S|,|Q|,|R| denote the forgetful map forgetting the coordinates xi for
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F∅,{3};0

F∅,{1};∞
F∅,{2};0

F∅,{2,3};0

F∅,{1};0

F∅,{2};1

F∅,{3};1

F∅,{2,3};1

F{1},{2,3};0

F{1},{3};0

F{1},{2};0

F∅,{3};0

F∅,{1};0
F∅,{2};0

F∅,{1,2};0

F∅,{2,3};0 F∅,{1,3};0

F∅,{1,2,3};0

F∅,{3};1

F∅,{1,2,3};1

F∅,{1,2};1

F∅,{2};1F∅,{1};1

F∅,{1,3};1
F∅,{2,3};1

Figure 8. The eleven faces of A1,2,0 and the fourteen faces of A0,3,0.

i /∈ S ∪Q ∪R, Then, forg lifts to a smooth b-map

forg : A`,m,n → A|S|,|Q|,|R|, (2.60)

and given any face F of A|S|,|Q|,|R|, the pullback forg∗xF vanishes to first order at each face F0
satisfying

F0 ⊆ forg−1(F). (2.61)
This is the “universal property” of the A`,m,n. Via the decomposition in eq. (2.59), it follows from
the corresponding universal property of the total boundary blowup of a product, which is essentially
given by Proposition B.2.

Proposition 2.4. Suppose that µ is a strictly positive smooth density on �`,m,n. Then, the lift of
µ to A`,m,n has the form[ ∏

S⊆{1,...,`}
Q⊆{`+m+1,...,N}

x
|S∪Q|−1
FS,Q;∞

][ ∏
S⊆{1,...,`}

Q⊆{`+1,...,`+m}

x
|S∪Q|−1
FS,Q;0

][ ∏
S⊆{`+1,...,`+m}
Q⊆{`+m+1,...,N}

x
|S∪Q|−1
FS,Q;1

]
µ (2.62)

for a strictly positive smooth density µ ∈ C∞(A`,m,n; ΩA`,m,n) on A`,m,n. �

As a notational convenience, we are setting xF∅,∅;x0
= 1 for each x0 ∈ {0, 1,∞}.

Proof. Follows via induction on the number of blowups, as in the proof of Proposition 2.1. �

Proposition 2.5. The Lebesgue measure on RN , which defines a strictly positive smooth density
on �◦`,m,n, has the form [ ∏̀

j=1
(1− xj)2

][ N∏
j=`+m+1

x2
j

]
µ (2.63)

for some strictly positive smooth density µ ∈ C∞(�`,m,n; Ω�`,m,n) on �`,m,n. �

Proof. Follows from the same computation as in Proposition 2.2. �

Proposition 2.6. For each pair of distinct i, j ∈ {1, . . . , N} such that either i, j ∈ {1, . . . , `},
i, j ∈ {`+ 1, . . . , `+m}, or i, j ∈ {`+m+ 1, . . . , N}, the set Hj,k = clA`,m,n{p ∈ �◦`,m,n : xj = xk}
is a p-submanifold of A`,m,n. �

See [MS08, §1.2] for the definition of “p-submanifold.”
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Proof. Consider the neighborhood bd−1(�`,m,n(S, S′, S′′)) ⊆ A`,m,n. If one of j, k is in S ∪ S′ ∪ S′′
and the other is not, then the intersection of Hj,k with bd−1(�`,m,n(S, S′, S′′)) is a submanifold
disjoint from the boundary and therefore a p-submanifold. It therefore suffices to consider the case
when j, k ∈ S ∪ S′ ∪ S′′ (and the case when neither are in S ∪ S′ ∪ S′′ is similar). For notational
simplicity, we only consider the case when j, k ∈ S′. Then,

Hj,k ∩ bd−1(�`,m,n(S, S′, S′′)) =([
0, 2

3
)S
×
(1

3 , 1
](S′′){)

tb
×
(
H̃j,k ∩

([
0, 2

3
)S′
×
(1

3 , 1
]S{)

tb

)
×
([

0, 2
3
)S′′
×
(1

3 , 1
](S′){)

tb
, (2.64)

where H̃j,k is the closure of {xj = xk} in ([0, 2/3)S′ × (1/3, 1]S{)tb, which is a p-submanifold [MS08]
(this also follows from Proposition B.1). Thus, Hj,k ∩ bd−1(�`,m,n(S, S′, S′′)) is a p-submanifold of
bd−1(�`,m,n(S, S′, S′′)). As the neighborhoods bd−1(�`,m,n(S, S′, S′′)) cover A`,m,n, the conclusion
follows. �

This result is illustrated in Figure 9.
We now record the results of lifting xi and 1−xi to A`,m,n, these being derivable via the universal

property.
• If i ∈ {1, . . . , `}, then

−xi ∈
[ ∏

i∈Q⊆{1,...,`}
S⊆{`+m+1,...,N}

x−1
FS,Q;∞

][ ∏
i∈S⊆{1,...,`}

Q⊆{`+1,...,`+m}

xFS,Q;0

]
C∞(A`,m,n;R+), (2.65)

(1− xi) ∈
[ ∏

i∈Q⊆{1,...,`}
S⊆{`+m+1,...,N}

x−1
FS,Q;∞

]
C∞(A`,m,n;R+). (2.66)

• If i ∈ {`+ 1, . . . , `+m}, then

xi ∈
[ ∏

S⊆{1,...,`}
i∈Q⊆{`+1,...,`+m}

xFS,Q;0

]
C∞(A`,m,n;R+), (2.67)

(1− xi) ∈
[ ∏
i∈S⊆{`+1,...,`+m}
Q⊆{`+m+1,...,N}

xFS,Q;1

]
C∞(A`,m,n;R+). (2.68)

• If i ∈ {`+m+ 1, . . . , N}, then

xi ∈
[ ∏
i∈S⊆{`+m+1,...,N}

Q⊆{1,...,`}

x−1
FS,Q;∞

]
C∞(A`,m,n;R+), (2.69)

−(1− xi) ∈
[ ∏

S⊆{`+1,...,`+m}
i∈Q⊆{`+m+1,...,N}

xFS,Q;1

][ ∏
i∈S⊆{`+m+1,...,N}

Q⊆{1,...,`}

x−1
FS,Q;∞

]
C∞(A`,m,n;R+). (2.70)

Let I1 = {1, . . . , `}, I2 = {`+ 1, . . . , `+m}, and I3 = {`+m+ 1, . . . , N}. For j, k ∈ I• for the
same • ∈ {1, 2, 3}, let yj,k denote a defining function of Hj,k, with the sign chosen so as to have the
same sign as xj − xk. Then, for all distinct j, k ∈ {1, . . . , N},

(xj − xk) ∈ Yj,kXj,kC
∞(A`,m,n;R+), (2.71)
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where Xj,k = Xk,j is given by

Xj,k =



[∏
S⊆I3

j∈Q⊆I1 or k∈Q⊆I1
x−1

FS,Q;∞

][∏
j,k∈S⊆I1
Q⊆I2

xFS,Q;0

]
(j, k ∈ I1),[∏

S⊆I1
j,k∈Q⊆I2

xFS,Q;0

][∏
j,k∈S⊆I2
Q⊆I3

xFS,Q;1

]
(j, k ∈ I2),[∏

S⊆I2
j,k∈Q⊆I3

xFS,Q;1

][∏
j∈S⊆I3 or k∈S⊆I3

Q⊆I1
x−1

FS,Q;∞

]
(j, k ∈ I3),[∏

j∈S⊆I1
Q⊆I3

x−1
FS,Q;∞

][∏
j∈S⊆I1
k∈Q⊆I2

xFS,Q;0

]
(j ∈ I1, k ∈ I2),[∏

S⊆I1
k∈Q⊆I3

x−1
FS,Q;∞

][∏
j∈S⊆I2
k∈Q⊆I3

xFS,Q;1

]
(j ∈ I2, k ∈ I3),[∏

S⊆I1,Q⊆I3
{j,k}∩S∪Q 6=∅

x−1
FS,Q;∞

]
(j ∈ I3, k ∈ I1),

(2.72)

and Yj,k = yj,k if, for some • ∈ {1, 2, 3}, we have j, k ∈ I•, and Yj,k = ±1 otherwise.
We associate to each face F• ∈ F(A`,m,n) an affine functional

%• : C2N+N(N−1)/2 3 (α,β,γ) 7→ %F•(α,β,γ) ∈ C. (2.73)

Suppose that we are given some α,β ∈ CN and γ = {γj,k = γk,j}1≤j<k≤N ∈ CN(N−1)/2. Then,
%•(α,β,γ) is defined as follows:

• For S ⊆ {1, . . . , `} and Q ⊆ {`+ 1, . . . , `+m},

%S,Q;0 = |S|+ |Q| − 1 +
∑

j∈S∪Q
αj + 2

∑
j,k∈S∪Q
j>k

γj,k. (2.74)

• For S ⊆ {`+ 1, . . . , `+m} and Q ⊆ {`+m+ 1, . . . , N},

%S,Q;1 = |S|+ |Q| − 1 +
∑

j∈S∪Q
βj + 2

∑
j,k∈S∪Q
j>k

γj,k. (2.75)

• For S ⊆ {`+m+ 1, . . . , N} and Q ⊆ {1, . . . , `},

%S,Q;∞ = −|S| − |Q| − 1−
∑

j∈S∪Q
αj −

∑
j∈S∪Q

βj − 2
∑
j>k

j∈S∪Q or k∈S∪Q

γj,k. (2.76)

Then, letting ∆ ⊂ �`,m,n be defined by ∆ = ∪3
•=1 ∪j 6=k,j,k∈I• {xj = xk}:

Proposition 2.7. Given any α,β ∈ CN and γ = {γj,k = γk,j}1≤j<k≤N ∈ CN(N−1)/2,
N∏
i=1
|xi|αi |1−xi|βi

∏
1≤j<k≤N

(xk−xj+i0)2γj,k |dx1 · · · dxN | ∈ C∞(�◦`,m,n\∆;C⊗Ω(�◦`,m,n\∆)) (2.77)

lifts, via the blowdown map bd : A`,m,n → �`,m,n, to[ ∏
S⊆{1,...,`}

Q⊆{`+1,...,`+m}

x
%S,Q;0
FS,Q;0

][ ∏
S⊆{`+1,...,`+m}
Q⊆{`+m+1,...,N}

x
%S,Q;1
FS,Q;1

][ ∏
S⊆{`+m+1,...,N}

Q⊆{1,...,`}

x
%S,Q;∞
FS,Q;∞

][ ∏
1≤j<k≤`

(yk,j + i0)2γj,k
]

×
[ ∏
`+1≤j<k≤`+m

(yk,j + i0)2γj,k
][ ∏

`+m+1≤j<k≤N
(yk,j + i0)2γj,k

]
µ`,m,n (2.78)

for some strictly positive smooth density µ`,m,n ∈ C∞(A`,m,n; ΩA`,m,n) on A`,m,n, depending entirely
on α,β,γ. �

Proof. Follows from the preceding computations, along with Proposition 2.5. �
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A1,2,0 A0,3,0

Figure 9. The sets Hj,k ∈ P in A1,2,0 and A0,3,0. Pictured are H1,2, H1,3, and H2,3,
where the axes are oriented as in Figure 7. In A0,3,0, the intersection H1,2∩H1,3∩H2,3
has been indicated with an extra dashed line.

IfM is an orientable mwc, we say that a collection P of interior p-submanifolds each of codimension
one is consistently orientable if we can choose an orientation on each such that, for any p ∈M , the
subset ∑

P∈P,p∈P

++N∗pP ⊂ T ∗pM (2.79)

does not contain zero, where ++N∗P ⊂ +N∗P ⊂ T ∗M is the induced positively oriented conormal
bundle, sans the zero section, and T ∗M is the extendable cotangent bundle of M . Whether or
not this holds does not depend on the choice of orientation of M . Choosing defining functions
{yP }P∈P ⊂ C∞(M ;R) for the P ∈ P such that

dyP (p) ∈ +N∗pP (2.80)

for each p ∈ P , we say that the {yP }P∈P are consistently oriented defining functions.

Example. In �◦0,3,0 = (0, 1)3, consider P = {H◦1,2, H◦2,3, H◦3,1}. The functions x2−x1, x3−x2, x1−x3
are not consistently oriented defining functions, as

0 = d(x2 − x1) + d(x3 − x2) + d(x1 − x3), (2.81)

but x2 − x1, x3 − x2, and x3 − x1 are. �

Let
P = {Hj,k}j,k∈I1,j 6=k ∪ {Hj,k}j,k∈I2,j 6=k ∪ {Hj,k}j,k∈I3,j 6=k. (2.82)

Proposition 2.8. The collection P defined by eq. (2.82) is consistently orientable, and {yk,j}j<k is
a set of consistently oriented defining functions. �

Proof. We will show that, for any p ∈ A`,m,n and {λj,k}p∈Hj,k∈P ∈ [0,∞), if the 1-form∑
Hj,k∈P s.t. p∈Hj,k

λj,kdyk,j ∈ Ω1(A`,m,n) (2.83)

vanishes at p, then λj,k = 0 for all Hj,k ∈ P such that p ∈ Hj,k. Put differently, we want to
show that if P is any partition of {1, . . . , N} into nonempty subsets S ⊂ I1, I2, I3, then, given any
{λj,k}j,k∈S∈P,j<k ⊂ R≥0 not all zero, then ∑

j,k∈S∈P
j<k

λj,k dyk,j (2.84)
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is nonvanishing on ∩j,k∈S∈P,j<kHj,k. If P consists only of singletons, then this is vacuously true, so
it suffices to consider the case when at least one member of P has cardinality > 1.

This is certainly true for p ∈ �◦`,m,n, as dyk,j ∝ dxk − dxj on �◦`,m,n ∩Hj,k, where the coefficient
of proportionality is positive. Indeed, by the results above,

xk − xj = fj,kyk.j (2.85)

for some fj,k ∈ C∞(A`,m,n;R≥0) that is nonvanishing in the interior, so

dyk,j = f−1
j,k (dxk − dxj)− f−1

j,k yk,j dfj,k (2.86)

in �◦`,m,n, which is equal to f−1
j,k (dxk − dxj) on Hj,k ∩�◦`,m,n, as claimed. This argument does not

work for p ∈ ∂A`,m,n, as fj,k may vanish there.
A homogeneity argument can be used to show that, for any p ∈ ∂A`,m,n, there exists a tubular

neighborhood T : U → U0 of a neighborhood U0 ⊂ F0 of p in F0, where F0 is the smallest facet
containing p, such that the intersections U ∩ P of this neighborhood with the P ∈ P are all vertical
subsets, meaning of the form T−1(B) for some B ⊂ U0. This implies that if the 1-form above
vanishes at p, then it also vanishes on the fiber of the tubular neighborhood over p and hence
somewhere in �◦`,m,n ∩ (

⋂
Hj,k3pHj,k).

�

We illustrate the preceding argument with an example. Consider the case when the only one
of `,m, n that is nonzero is m, and consider p ∈ ∩Hj,k∈PHj,k. The set ∩Hj,k∈PHj,k ⊂ A0,N,0 (the
“small diagonal”) is a p-submanifold located away from all but the very first two blowups involved
in the construction of A0,N,0. Near this p-submanifold, A0,N,0 is canonically diffeomorphic to
[�0,N,0, {0}, {1}], the result of blowing up two opposite corners of the N -cube. We consider the
situation near the blowup of

{0} = F∅,∅,{1,...,N},∅,∅,∅, (2.87)
and the situation near the opposite corner is similar. In the interior of the front face of that blowup,
we can use % = x1 as a bdf and coordinates x̂j = xj/x1 for j = 2, . . . , N as parametrizing the face
itself. In terms of these coordinates,

∩Hj,k∈P Hj,k = {x̂2, · · · , x̂N = 1} (2.88)

locally, and, for 1 ≤ j < k ≤ N , we can write yk,j = ỹk,jC
∞(A0,N,0;R+) for ỹk,j given locally by

ỹk,j = %−1(xk − xj) = x̂k − x̂j , where x̂1 = 1. This satisfies

dỹk,j =
{

dx̂k (j = 1),
dx̂k − dx̂j (j 6= 1).

(2.89)

So, if λk,j ≥ 0, then
∑

1≤j<k≤N λj,kdỹk,j = 0⇒ λj,k = 0 for all k, j. Since the yk,j differ from the
ỹk,j by a (smooth) positive factor, the yk,j have the same property on ∩Hj,k∈PHj,k.

There is a more direct argument using the coordinates in Proposition B.1 (with the decomposition
eq. (2.59)). Namely, using eq. (2.59), the result follows from the analogous result for [0, 1)Ntb. Given
any σ ∈ SN , consider the coordinates %, x̂σ(2), · · · , x̂σ(N) defined in Proposition B.1, these giving a
C∞-atlas as σ varies over all permutations. In these coordinate systems, the relevant p-submanifolds
are, locally,

Hj,k = {x̂j+1 · · · x̂k = 1} ⊂ [0, 1)Ntb, (2.90)
so have defining functions yk,j = −1 + x̂j+1 · · · x̂k. This satisfies

dyk,j =
k∑

i=j+1

dx̂i
x̂i

(2.91)
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on Hj,k. The 1-forms, ωj,k =
∑k
i=j+1 x̂

−1
i dx̂i, defined by the right-hand side of eq. (2.91) satisfy

{λj,k}1≤j<k≤N and j,k∈S∈P ⊂ [0,∞) and
∑

1≤j<k≤N and j,k∈S∈P

λj,kωj,k = 0

⇒ λj,k = 0 for all j < k in S ∈ P, (2.92)

from which the result follows.
Let ΣT(`,m, n) denote the collection of maximal families I of pairs (x0, S) of x0 ∈ {0, 1,∞} and

nonempty S ⊆ {1, . . . , N} such that
• if (x0, S), (x0, Q) ∈ I, either S ⊆ Q or Q ⊆ S,
•

(x0, S) ∈ I⇒


S ∩ I3 = ∅ (x0 = 0),
S ∩ I1 = ∅ (x0 = 1),
S ∩ I2 = ∅ (x0 =∞).

(2.93)

The minimal facets of A`,m,n are in bijective correspondence with the elements of ΣT(`,m, n), with

fI =
⋂

(x0,S)∈I, S∪Q⊆S
FS,Q;x0 (2.94)

the facet corresponding to I.

3. Meromorphic continuation

We now turn to the analytic extension of Selberg-like integrals to dense, open subsets of the space
of possible exponents. As discussed in the introduction, the results in this section are apparently
sharp for generic Selberg-like integrals, but for e.g. symmetric Selberg-like integrals they are only
preliminary. Nevertheless, the results we prove here will be useful in establishing the sharp results
later. For our discussion of the symmetric and DF-symmetric cases, it is useful to consider somewhat
more general integrals than eq. (1.2). Let `,m, n ∈ N satisfy ` + m + n = N ∈ N+. Fix a finite
collection D of indexed sets

{dF}F∈F(K`,m,n) ⊆ R. (3.1)

Define

S`,m,n[F ](α,β,γ) =
∫
4`,m,n

[ N∏
i=1
|xi|αi |1− xi|βi

][ ∏
1≤j<k≤N

(xk − xj)2γj,k
]
F dx1 · · · dxN , (3.2)

for (α,β,γ) ∈ Ω`,m,n[D], where

• Ω`,m,n[D] denotes the set of (α,β,γ) ∈ CNα × CNβ × CN(N−1)/2
γ such that

[ N∏
i=1
|xi|αi |1− xi|βi

][ ∏
1≤j<k≤N

(xk − xj)2γj,k
][ ∏

F∈F(K`,m,n)
xdF

F

]
∈ L1(4`,m,n, dx1 · · · dxN ) (3.3)

for all {dF}F∈F(K`,m,n) ∈ D, and
• F has the form

F =
∑

{dF}F∈F(K`,m,n)

[ ∏
F∈F(K`,m,n)

xdF
F

]
F{dF}F∈F(K`,m,n) (3.4)

for some F{dF}F∈F(K`,m,n) ∈ C
∞(K`,m,n).
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We denote the set of such F by AD(K`,m,n). From the definition eq. (2.6) of 4`,m,n, the integrand
is nonvanishing there, so the the absolute values in eq. (3.2) amount to a choice of branch.

Observe that Ω`,m,n[D] is a nonempty, open, and connected subset of C2N+N(N−1)/2. In the case
N = 1, we consider Ω`,m,n[D] as a subset of C2

α,β.
We write Ω[F ] to denote Ω`,m,n[D] for arbitrary D such that F ∈ AD(K`,m,n). Let

Ω`,m,n = Ω`,m,n[{{0}F∈F(K`,m,n)}]. (3.5)

If ϕ ∈ C∞(4`,m,n), then we can consider ϕ as an element of C∞(K`,m,n), so S`,m,n[ϕ] : Ω`,m,n → C
is well-defined, and Ω`,m,n[ϕ] ⊇ Ω`,m,n. If f ∈ C[x1, . . . , xN ], then the lift of fϕ is also a classical
symbol on K`,m,n (it is smooth if `, n = 0, but not necessarily otherwise), so

S`,m,n[fϕ] : Ω`,m,n[f ]→ C (3.6)
is well-defined, except now we may have Ω`,m,n[fϕ] 6⊆ Ω`,m,n if ` 6= 0 or n 6= 0.

In the special case when `, n = 0 and m = N , we use the abbreviations Ω0,N,0 = ΩN , Ω0,N,0[•] =
ΩN [•], and

S0,N,0[F ](α,β,γ) = SN [F ](α,β,γ), (3.7)
this being consistent with our earlier notation.

As in the introduction, when α,β,γ are constant, we just write ‘α’ in place of ‘α,’ ‘β’ in place of
‘β,’ and ‘γ’ in place of ‘γ.’ Let U`,m,n[•] denote the set of (α, β, γ) ∈ C3 such that (α,β,γ) ∈ Ω`,m,n[•]
holds when α = α, β = β, and γ = γ.

Similar abbreviations will be used throughout the rest of this paper.
In addition to the general Selberg-like integral above, we have the following general integral of

Dotsenko–Fateev type:

I`,m,n[F ](α,β,γ) =
∫
�`,m,n

[ N∏
i=1
|xi|αi |1− xi|βi

][ ∏
1≤j<k≤N

(xk − xj + i0)2γj,k
]
F dx1 · · · dxN (3.8)

for (α,β,γ) ∈ V`,m,n[D], where now D denotes a finite collection of indexed sets {dF}F∈F(A`,m,n) ⊆ C,
• V`,m,n[D] denotes the set of (α,β,γ) ∈ C2N+N(N−1)/2 for which the integrand in eq. (3.8)
lies in L1(�`,m,n, dx1 · · · dxN ) – that is the set of (α,β,γ) such that[ N∏

i=1
|xi|αi |1− xi|βi

][ ∏
1≤j<k≤N

|xk − xj |2γj,k
][ ∏

F∈F(K`,m,n)
xdF

F

]
∈ L1(�`,m,n, dx1 · · · dxN ) (3.9)

for all {dF}F∈F(A`,m,n) ∈ D, and
• F has the form eq. (3.4) for F{dF}F∈F(A`,m,n) ∈ C

∞(A`,m,n).

In eq. (3.8), xγ = eπiγeγ log |x| if x < 0 and xγ = eγ log x if x > 0. We apply abbreviations for
Dotsenko–Fateev-like integrals that are analogous to those used for Selberg-like integrals.

Let W`,m,n[•] denote the set of (α, β, γ) ∈ C3 such that (α,β,γ) ∈ V`,m,n[•] holds when α = α,
β = β, and γ = γ. Let WDF0

`,m,n[F ] denote the set of (α−, α+, β−, β+, γ−, γ0, γ+) ∈ C7 such that
(αDF0,βDF0,γDF0) ∈ V`,m,n[F ]. Let

IDF0;S
`,m,n [F ](α−, α+, β−, β+, γ−, γ0, γ+) = I`,m,n[F ](αDF0,βDF0,γDF0). (3.10)

This section is split into many short subsections. The general analytic framework in which the
extension is performed is discussed in §3.1, and the specific application to Selberg-like integrals
is contained in §3.2. We prove a family of identities relating I`,m,n, I`,n,m, In,`,m, · · · in §3.3. As
preparation for our discussion of singularity removal in the DF-symmetric case, we discuss in §3.4 an
alternative regularization procedure suggested by Dotsenko–Fateev that works for some suboptimal
range of parameters (in particular allowing γ0 = −1, but not allowing the real parts of α−, α+, β−, β+
to be too negative). It should be remarked that this regularization technique can be combined with
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that in §3.1 to yield proofs of the main theorems without the technicalities associated with needing
to understand the analyticity of products of distributions like (y± i0)λ in λ. As this lacks the purely
analytic flavor of the proof in §3.1, it is not the approach we follow here. The I`,m,n are related to
the Selberg-like integrals S`,m,n in §3.5. A key lemma used in the removal of singularities is in §3.6.
This lemma is a generalization of a result proven by Aomoto [Aom87] and discussed heuristically by
Dotsenko–Fateev [DF85a]. For completeness and later convenience, we record in §3.7 the symmetric
and DF-symmetric cases of the results in §3.2 regarding the Dotsenko–Fateev integrals.

Let S`,m,n = S` ×Sm ×Sn, which we consider as the subgroup of SN leaving each of I1, I2, I3
invariant, where I1, I2, I3 are as in the previous section, a.k.a. the Young subgroup associated with
the partition {1, . . . , n} = I1 t I2 t I3. Given a permutation σ ∈ S`,m,n, let

I`,m,n[F ](α,β,γ)σ =
∫
�`,m,n

[ N∏
i=1
|xi|αi |1−xi|βi

][ ∏
1≤j<k≤N

(xσ(k)−xσ(j)+i0)2γσ(j),σ(k)
]
F dx1 · · · dxN ,

(3.11)
defined for (α,β,γ) ∈ V`,m,n[F ]. If we define ασ,βσ,γσ by ασj = ασ(j), βσj = βσ(j), and γσj,k =
γσ(j),σ(k), and

F σ(y1, . . . , yN ) = F (yσ−1(1), . . . , yσ−1(N)), (3.12)
then I`,m,n[F ](α,β,γ)σ = I`,m,n[F σ](ασ,βσ,γσ). This relation will be very useful below. More
generally, for any σ ∈ SN , let

I`,m,n[F ](α,β,γ)σ = I`,m,n[F σ](ασ,βσ,γσ) (3.13)
S`,m,n[F ](α,β,γ)σ = S`,m,n[F σ](ασ,βσ,γσ), (3.14)

defined for (α,β,γ) ∈ V`,m,n[F ] in the former case or for

(α,β,γ) ∈ Ω`,m,n[F ]σ = {(α,β,γ) ∈ C2N+N(N−1)/2 : (ασ,βσ,γσ) ∈ Ω`,m,n[F σ]} (3.15)

in the latter case. We will use similar notation for other subsets of C2N+N(N−1)/2 below, as well as
for the meromorphic extensions of S`,m,n[F ] and I`,m,n[F ].

3.1. Some generalities. Let N ∈ N be arbitrary. For a Fréchet space X , let O(CN ;X ) denote the
Fréchet space of entire X -valued functions on CN , where the topology is that of uniform convergence
in compact subsets, as measured with respect to each Fréchet seminorm on X , and similarly for X
an LF-space. Let E ′(RN ) denote the LCTVS of compactly supported distributions on RN . By the
Schwartz representation theorem,

E ′(RN ) = ∪m∈RHm,s
c (RN ), (3.16)

where Hm
c (RN ) is the set of compactly supported elements of Hm(RN ).

Let N ∈ N+, k ∈ {0, . . . , N}, and κ ∈ N. For any

ψ ∈ C∞c (Rkt1,··· ,tk ; E ′(RN−ktk+1,··· ,tN )) =
⋃

m,s∈R
C∞c (Rkt1,··· ,tk ;Hm,s

sc,c (RN−k)) (3.17)

let, for ρ = (ρ1, . . . , ρk),

IN,k,κ[ψ](ρ) =
∫ ∞

0
· · ·
∫ ∞

0
tρ1
1 · · · t

ρk
k 〈1, ψ(t1, . . . , tk,−)〉 dt1 · · · dtk, (3.18)

which we abbreviate as
IN,k,κ[ψ](ρ) =

∫
RN
k

tρ1
1 · · · t

ρk
k ψ(t) dN t. (3.19)

Here, RNk = [0,∞)kt1,··· ,tk × Rn−ktk+1,··· ,tN , and IN,k,κ[ψ](ρ) is defined initially for <ρ1, · · · ,<ρk > −1,
for which the right-hand side of eq. (3.18) is a well-defined integral.
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Let Hm,s
sc,c (RN ) denote the set of compactly supported elements of Hm,s

sc (RN ) = 〈r〉−sHm(RN ).
Let

O(Ck × Cκ;C∞c (Rkt1,··· ,tk ; E ′(RN−ktk+1,··· ,tN ))) =
⋂
Ω

⋃
m,s∈R

O(Ω;C∞c (Rkt1,··· ,tk ;Hm,s
sc,c (RN−k))), (3.20)

endowed with the strongest topology such that the inclusions⋂
Ω

O(Ω;C∞c (Rkt1,··· ,tk ;Hm,s
sc,c (RN−k))) ↪→ O(Ck × Cκ;C∞c (Rkt1,··· ,tk ; E ′(RN−ktk+1,··· ,tN ))) (3.21)

are all continuous, where the left-hand side is an LF space. Here, Ω is varying over bounded domains
in Ck ×Cκ. We are identifying functions on Ck ×Cκ with their restrictions to subdomains. In other
words, an element of the space defined by eq. (3.20) is locally an analytic family of elements of
C∞c (Rkt1,··· ,tk ;Hm,s

sc,c (RN−k)) for some m, s ∈ R which are allowed to depend on Ω.

Proposition 3.1. Suppose that, for each ρ ∈ Ck and δ ∈ Cκ, we are given some ψ(−;ρ, δ) as in
eq. (3.17), depending entirely on ρ, δ in the sense that the map

Ck × Cκ 3 (ρ, δ) 7→ ψ ∈ C∞c (Rk; E ′(RN−k)) (3.22)

is entire, i.e. lies in O(Ck × Cκ;C∞c (Rkt1,··· ,tk ; E ′(RN−ktk+1,··· ,tN ))). Define

IN,k,κ[ψ](ρ, δ) = IN,k,κ[ψ(ρ, δ)](ρ). (3.23)
Then, the function JN,k,κ[ψ] defined by

IN,k,κ[ψ](ρ, δ) =
[ k∏
j=1

Γ(ρj + 1)
]
JN,k,κ[ψ](ρ, δ) (3.24)

extends to an entire function on Ckρ × Cκδ. Moreover, the function

JN,k,κ[−] : O(Ck × Cκ;C∞c (Rkt1,...,tk ; E ′(RN−ktk+1,...,tN
))) 3 ψ 7→ JN,k,κ[ψ] ∈ O(Ck × Cκ) (3.25)

is continuous. �

Cf. [GS64][Var95, Lemma 10.7.9].

Proof. The k = 0 case is essentially tautologous.
We now proceed inductively on k. Let k ≥ 1, and assume that we have proven the result for

smaller k. Expanding ψ in Taylor series around t1 = 0, there exist

ψ(j) ∈ O
(
Ck × Cκ;C∞c

(
Rk−1
t2,...,tk

; E ′(RN−ktk+1,...,tN
)
))

(3.26)

E(j) ∈ O
(
Ck × Cκ;C∞

(
Rt1 ;C∞c (Rk−1

t2,...,tk
; E ′(RN−ktk+1,...,tN

))
))
, (3.27)

which can be regarded as smooth functions (or generalized functions) of t1, . . . , tN , depending
analytically on parameters ρ ∈ Ck and δ ∈ Cκ. such that

ψ(t1, · · · , tN ;ρ, δ) =
J∑
j=0

tj1ψ
(j)(t2, · · · , tN ;ρ, δ) + tJ+1

1 E(J+1)(t1, · · · , tN ;ρ, δ) (3.28)

for all J ∈ N. Let K ⊂ Ck+κ be an arbitrary nonempty compact set. There exists some T > 0
such that suppψ(−;ρ, δ) ⊆ {−T ≤ t1 ≤ T} for all (ρ, δ) ∈ K. Then, if <ρ1, · · · ,<ρk > −1 and
(ρ, δ) ∈ K,

IN,k,κ[ψ](ρ, δ) =
J∑
j=0

IN−1,k−1,κ[ψ(j)](ρ̂, δ)
ρ1 + j + 1 T ρ1+j+1 +

∫ T

0
tρ1+J+1
1 IN−1,k−1[E(J+1)(t1,−)](ρ̂, δ) dt1,

(3.29)



THE SINGULARITIES OF SELBERG- AND DOTSENKO–FATEEV-LIKE INTEGRALS 31

where ρ̂ = (ρ2, · · · , ρk). We now define JN,k,κ[ψ](ρ, δ) : {<ρ1 > −2− J} × Cκδ → C by

JN,k,κ[ψ](ρ, δ) = 1
Γ(ρ1 + 1)

J∑
j=0

JN−1,k−1,κ[ψ(j)](ρ̂, δ)
ρ1 + j + 1 T ρ1+j+1

+ 1
Γ(ρ1 + 1)

∫ T

0
tρ1+J+1
1 JN−1,k−1[E(J+1)(t1,−)](ρ̂, δ) dt1. (3.30)

By construction, eq. (3.24) holds when <ρ1, · · · ,<ρk > −1. By the continuity clause of the
inductive hypothesis, the integral in eq. (3.29) is a well-defined Bochner integral, for each individual
(ρ, δ) ∈ {<ρ1 > −2− J} × Cκ. Moreover, the right-hand side of eq. (3.30) depends analytically on
(ρ, δ) ∈ {<ρ1 > −1− J}×Cκ. By the inductive hypothesis, this is true for the sum on the first line
(multiplied by Γ(ρ1 + 1)−1), as the simple poles due to the factors of 1/(ρ1 + j+ 1) cancel with those
of Γ(ρ1 + 1). So, in order to show that the whole right-hand side of eq. (3.30) depends analytically
on (ρ, δ) in this domain, we can show it for∫ T

0
tρ1+J+1
1 JN−1,k−1[E(J+1)(t1,−)](ρ̂, δ) dt1. (3.31)

Justifying differentiation under the integral sign, this is a C1-function of (<ρ1,=ρ1) ∈ {(u, v) ∈
R2, u > −1− J}, and it satisfies the Cauchy-Riemann equations, so it follows that the integral in
eq. (3.31) is analytic as a function of ρ1 ∈ {<ρ1 > −1 − J}, for each fixed ρ̂ ∈ Ck−1 and δ ∈ Cκ.
Adding ρ̂, δ-dependence does not change the argument.

So, the formula eq. (3.29) yields an analytic extension of IN,k,κ, and we can take a union over all
J ∈ N, the various partial extensions agreeing with each other via analyticity. The continuity clause
is evident from the formula eq. (3.30) and the inductive hypothesis. �

Consequently, IN,k,κ[ψ] admits an analytic continuation İN,k,κ[ψ] : Ω → C to the set Ω =
(Ckρ\

⋃
j∈{1,...,k}{ρj ∈ Z≤−1})× Cκδ , and the map

İN,k,κ[−] : O(Ck × Cκ;C∞c (Rkt1,...,tk ; E ′(RN−ktk+1,...,tN
))) 3 ψ 7→ İN,k,κ[ψ] ∈ O(Ω) (3.32)

is continuous.
If P is a consistently orientable collection of codimension-1 interior p-submanifolds on a mwc M ,

then, letting xF for F ∈ F(M) denote a bdf of the face F, it is the case that, for any δ ∈ CP and
ρ ∈ CF(M), the product

ω(ρ, δ) =
∏

F∈F(M)
xρF

F
∏
P∈P

(yP + i0)δP : Ċ∞c (M ; ΩM) 3 µ 7→ lim
ε→0+

∫
M

∏
F∈F(M)

∏
P∈P

xρF
F (yP + iε)δPµ

(3.33)
is a well-defined classical distribution on M , where {yP }P∈P are consistently oriented defining
functions. (Here, Ċ∞c (M ; ΩM) is the set of compactly supported smooth densities on M that are
Schwartz at each boundary hypersurface.) That is, ω is an extendable distribution on M and defines,
for small ε > 0, an element of C∞([0, ε)xF ;D′(F)) for each face F. We write the right-hand side of
eq. (3.33) as

∫
M ω(ρ, δ)µ. More generally, if µ ∈ C∞c (M ; ΩM), then

lim
ε→0+

∫
M

∏
F∈F(M)

∏
P∈P

xρF
F (yP + iε)δPµ =

∫
M
ω(ρ, δ)µ (3.34)

exists whenever ρF > −1 for all F ∈ F(M).
Let κ ∈ N. Suppose that we are given some entire family

µ : CF(M) × CP × Cκ → C∞c (M ; ΩM) (3.35)
of compactly supported smooth densities µ(ρ, δ,λ) ∈ C∞c (M ; ΩM) on M . Consider the function

I[M,µ](ρ, δ,λ) : {(ρ, δ,λ) ∈ CF(M) × CP × Cκ : ρF > −1 for all F ∈ F(M)} → C (3.36)
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defined by

I[M,µ](ρ, δ,λ) =
∫
M
ω(ρ, δ)µ(ρ, δ,λ). (3.37)

Proposition 3.2. Suppose that, for some N0 ∈ N+, we are given an affine map L = (L1, L2, L3) :
CN0
% → CF(M)

ρ × CPδ × Cκ
λ such that, for each F ∈ F(M), the affine functional

(L•)F : CN0 3 % 7→ (L1%)F ∈ C (3.38)

is nonconstant. Then, there exist entire functions Ireg,f [M,µ](L•) : CN0
% → C associated to the

minimal facets f of M such that

I[M,µ](L%) =
∑

f

[ ∏
F∈F(M),F⊇f

Γ(1 + (L%)F)
]
Ireg,f [M,µ](L%) (3.39)

for all % ∈ CN0 for which the left-hand side is defined by eq. (3.37). �

Proof. Pass to a partition of unity subordinate to a system of coordinate charts on M and apply
Proposition 3.1 locally. �

Then, letting L = {(L•)F : F ∈ F(M)},[ ∏
Λ∈L

1
Γ(1 + Λ(%))#Λ

]
I[M,µ](L%) (3.40)

extends to an entire function CN0
% → C, where #Λ ∈ N+ is the maximum size of any set S ⊆ F(M)

of faces such that ∩F∈SF 6= ∅ and (L•)F = Λ for all F ∈ S. Indeed, this follows from the proposition
above since, for each facet f,[ ∏

Λ∈L

1
Γ(1 + Λ(%))#Λ

] ∏
F∈F(M),F⊇f

Γ(1 + (L%)F) (3.41)

is entire.

3.2. Specialization to generic Selberg- and DF-like integrals. We now apply the results of
the previous section to the specific case of the integrals eq. (3.2) and eq. (3.8). Fix `,m, n ∈ N
satisfying `+m+ n = N , N ∈ N+.

3.2.1. The Selberg case. Fix F ∈ AD(K`,m,n). Let ρj,k = ρj,k(α,β,γ) be defined by eq. (2.41),
eq. (2.42), eq. (2.43), and eq. (2.44). Recalling the definition of T(`,m, n) given in §2.1:

Proposition 3.3. There exist entire functions

S`,m,n;reg,I,{dF}F∈F(K`,m,n) [F ] : C2N+N(N−1)/2
α,β,γ → C, (3.42)

associated to pairs of minimal facets f of K`,m,n and collections {dF}F∈F(`,m,n) ∈ D of weights such
that

S`,m,n[F ](α,β,γ) =
∑

I∈T(`,m,n)

∑
{dF}F∈F(K`,m,n)∈D

[ ∏
I(j,k)∈I

Γ(1 + ρj,k + dFj,k)
]

× S`,m,n;reg,I,{dF}F∈F(K`,m,n)[F ](α,β,γ) (3.43)

for all (α,β,γ) ∈ Ω`,m,n[D]. �

Proof. This is a corollary of Proposition 2.3 and Proposition 3.2, using the fact that the minimal
facets of K`,m,n are in correspondence with the elements of T(`,m, n) via eq. (2.50). �
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Consequently, there exists an analytic extension Ṡ`,m,n[F ] : Ω̇`,m,n[D] → C of S`,m,n[F ] :
Ω`,m,n[D]→ C, where

Ω̇`,m,n[D] = C2N+N(N−1)/2
α,β,γ

∖[ ⋃
{dF}F∈F(K`,m,n)∈D

( ⋃
{j,k}∈J`,m,n

{ρj,k + dFj,k ∈ Z≤−1}
)]
. (3.44)

This is an open and connected subset of full measure; namely, it is the complement of a locally finite
collection of complex (affine) hyperplanes in C2N+N(N−1)/2. In the case m = N , this agrees with
eq. (1.13).

As a corollary of the previous proposition, there exists an entire function

S`,m,n;reg[F ] : C2N+N(N−1)/2
α,β,γ → C (3.45)

such that

S`,m,n[F ](α,β,γ) =
[ ∏
{j,k}∈J`,m,n

Γ(1 + ρj,k + dmin
Fj,k)

]
S`,m,n;reg[F ](α,β,γ) (3.46)

holds for all (α,β,γ) ∈ Ω`,m,n[D], where dmin
F = min{dF : {dF0}F0∈F(K`,m,n) ∈ D}.

The case of the proposition above where m = N gives Theorem 1.1. Indeed, if F ∈ C∞(4N ), F
lifts to an element of C∞(K0,N,0), and the orders of vanishing of F at the relevant facets of 4N

imply the same order of vanishing at the lift in K0,N,0.

3.2.2. The Dotsenko–Fateev case. Fix F ∈ AD(A`,m,n), where D is now a collection of orders for
the faces of A`,m,n. Recalling the definition of ΣT(`,m, n) given in §2.2:

Proposition 3.4. There exist entire functions

I`,m,n;reg,I,{dF}F∈F(A`,m,n) [F ] : C2N+N(N−1)/2
α,β,γ → C (3.47)

associated to the I ∈ ΣT(`,m, n) such that

I`,m,n[F ](α,β,γ) =
∑

I∈ΣT(`,m,n)

∑
{dF}F∈F(A`,m,n)∈D

([ ∏
(x0,S)∈I

Γ(1 + %S,Q;x0 + dFS,Q;x0
)
]

× I`,m,n;reg,I{dF}F∈F(A`,m,n) [F ](α,β,γ)
)

(3.48)

for all (α,β,γ) ∈ V`,m,n[D], where we have abbreviated I1 ∩ S, I2 ∩ S, and I3 ∩ S as S or Q as
appropriate. �

Proof. Follows from Proposition 2.7 and Proposition 3.2. �

Consequently, I`,m,n[F ] : V`,m,n[D]→ C admits an analytic continuation İ`,m,n[F ] : V̇`,m,n[D]→ C,
where

V̇`,m,n[D] = C2N+N(N−1)/2
α,β,γ

∖ ⋃
{dF}F∈F(A`,m,n)

⋃
x0∈{0,1,∞}

⋃
S,Q

{%S,Q;x0 + dFS,Q;x0
∈ Z≤−1}. (3.49)

Note that V̇`,m,n[F ] ⊇ ∩σ∈S`,m,nΩ̇`,m,n[F ]σ, as every functional (α,β,γ) 7→ %S,Q;x0(α,β,γ) has the
form ρj,k(ασ,βσ,γσ) for some σ ∈ S`,m,n and {j, k} ∈ J`,m,n.

As a corollary of the previous proposition, there exists a function

I`,m,n;reg[F ] : C2N+N(N−1)/2
α,β,γ → C (3.50)

such that, for all (α,β,γ) ∈ V`,m,n[D],

I`,m,n[F ](α,β,γ) =
[ ∏
x0∈{0,1,∞}

∏
S,Q

Γ(1 + %S,Q;x0 + dmin
FS,Q;x0

)
]
I`,m,n;reg[F ](α,β,γ), (3.51)
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where S,Q vary over subsets of I1 = {1, . . . , `}, I2 = {`+1, . . . , `+m}, and I3 = {`+m+1, . . . , N},
depending on x0.

The m = N case of the previous proposition is Theorem 1.3.

3.3. A simple identity. For each permutation σ of {0, 1,∞}. Let

(`′,m′, n′) =



(`,m, n) (σ = 1),
(n,m, `) (σ = (0 1)),
(`, n,m) (σ = (0∞)),
(m, `, n) (σ = (1∞)),
(n, `,m) (σ = (0 1∞)),
(m,n, `) (σ = (1 0∞)).

(3.52)

In other words, if the elements of {0, 1,∞} label the vertices of a triangle and the edges are labeled
accordingly – that is, ‘`’ labels the edge between 0 and ∞, ‘m’ labels the edge between 0 and 1, and
‘n’ labels the edge between 1 and ∞ – then (`′,m′, n′) is the permutation of (`,m, n) resulting from
applying σ to the triangle and reading off the new labels.

Let Tσ : CP 1 → CP 1 denote the unique automorphism acting on {0, 1,∞} via σ. These are

T1(z) = z, T(0 1)(z) = 1− z, T(0∞)(z) = 1
z
, T(1∞)(z) = − z

1− z , (3.53)

T(0 1∞)(z) = 1
1− z , T(0∞ 1)(z) = z − 1

z
. (3.54)

Let σparam : C2N+N(N−1)/2 → C2N+N(N−1)/2 denote the affine map

σparam(α,β,γ) =



(α,β,γ) (σ = 1),
(β,α,γ) (σ = (0 1)),
(−2−α− β − 2γy1,β,γ) (σ = (0∞)),
(α,−2−α− β − 2γy1,γ) (σ = (1∞)),
(−2−α− β − 2γy1,α,γ) (σ = (0 1∞)),
(β,−2−α− β − 2γy1,γ) (σ = (1 0∞)),

(3.55)

where γy1 ∈ CN has jth component
∑
k 6=j γj,k. Let rev ∈ S`′,m′,n′ denote the permutation

that reverses the order of the elements in each of the sets {1, . . . , `′}, {`′ + 1, . . . , `′ + m′}, and
{`′ +m′ + 1, . . . , N}. Let |σ| denote the order of σ.

Proposition 3.5. If (α,β,γ) ∈ V̇`,m,n, then σparam(α,β,γ) ∈ V̇`′,m′,n′, and if (α,β,γ) ∈ Ω̇`,m,n,
then σparam(α,β,γ) ∈ Ω̇rev|σ|

`′,m′,n′, and

İ`,m,n[1](α,β,γ) = İ`′,m′,n′ [1](σparam(α,β,γ))rev|σ| ,

Ṡ`,m,n[1](α,β,γ) = Ṡ`′,m′,n′ [1](σparam(α,β,γ))rev|σ|
(3.56)

for all (α,β,γ) ∈ Ω̇`,m,n. �

Proof. It can be checked case-by-case that
{%S,Q;• ◦ σparam : • ∈ {0, 1,∞}, S,Q as above} = {%S,Q;• : • ∈ {0, 1,∞}, S,Q as above}, (3.57)

where on the left-hand side (S,Q) varies over appropriate pairs of subsets of {1, . . . , `′}, {`′ +
1, . . . , `′ +m′}, and {`′ +m′ + 1, . . . , N} and on the right-hand side (S,Q) varies over appropriate
pairs of subsets {1, . . . , `}, {`+ 1, . . . , `+m}, and {`+m+ 1, . . . , N}, depending on •. It can be
seen from eq. (3.57) that

V̇`,m,n = (σparam)−1(V̇`′,m′,n′). (3.58)
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The case of Ω̇`,m,n is similar but more complicated.
Equation (3.56) can be proven for (α,β,γ) ∈ Ω`,m,n by way of a change-of-variables by substituting

x = Tσ−1(y). The full result follows via analytic continuation. �

3.4. An imperfect alternative. For I ∈ {(−∞, 0], [0, 1], [1,∞)} and r > 0, let ΓI,±,r : (0, 1)→ C
be defined by

Γ[0,1],±,r(t) =


t± irt (t ∈ (0, 1/3)),
t± ir/3 (t ∈ [1/3, 2/3]),
t± ir/3∓ ir(t− 2/3) (t ∈ (2/3, 1)),

(3.59)

Γ[1,∞),±,r(t) = Γ[0,1],∓,r(1− t)−1, and Γ(−∞,0],±,r(t) = 1− Γ[1,∞),∓,r(1− t). Note that the images of
these contours are permuted amongst themselves by the transformations Tσ above.

=z

<z

Γ[0,1],+,1

Γ[0,1],+,4

0 1

Γ[1,∞),+,1
Γ(−∞,0],+,1

Figure 10. The contours Γ(−∞,0],+,1, Γ[0,1],+,1, Γ[0,1],+,4, Γ[1,∞),+,1. Cf. [DF85a,
Figure 16]. (For our purposes, the contours drawn by Dotsenko & Fateev approach
±∞ with imaginary part too small. This is why our ΓI,±,r look different for I 6= [0, 1].

Suppose that F ∈ C[x1, x
−1
1 , . . . , xN , x

−1
N ]. For any compact K b C with nonempty interior, let

O = O[F,K] denote the set, which depends on `,m, n ∈ N, though we suppress this dependence
notationally, of (α,β) ∈ C2N such that∫

Γ(−∞,0],+,0

· · ·
∫

Γ(−∞,0],+,`−1

[ ∫
Γ[0,1],+,0

· · ·
∫

Γ[0,1],+,m−1

[ ∫
Γ[1,∞),+,0

· · ·
∫

Γ[1,∞),+,n−1( N∏
j=1

z
αj
j (1− zj)βj

) ∏
1≤j<k≤N

(zk − zj)2γj,kF0 dzN · · · dz`+m+1
]

dz`+m · · · dz`+1
]

dz` · · · dz1 (3.60)

is an absolutely convergent Lebesgue integral whenever γj,k ∈ K for all j, k ∈ {1, . . . , N} with j < k,
for every monomial F0 in F . In the definition of the integral above we are defining the integrand
such that the branch cuts are not encountered. For such (α,β,γ),

(α,β,γ) ∈ V̇`,m,n[F ], (3.61)

and the integral in eq. (3.60) is equal to İ`,m,n(α,β,γ)[F ], assuming that we choose our branches
appropriately. The latter part of this statement can be proven by checking that the integral defined
above depends analytically on its parameters and agrees with I`,m,n(α,β,γ)[F ] for (α,β,γ) ∈
V`,m,n[F ], which in turn is proven via a contour deformation argument.

The set O is nonempty, open, and contains an affine cone. If
• αj has sufficiently large real part for j ∈ I1 ∪I2 and sufficiently negative real part for j ∈ I3,
and
• βj has sufficiently large real part for j ∈ I2 ∪I3 and sufficiently negative real part for j ∈ I1,
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then (α,β) ∈ O[F,K], where what “sufficiently large” means depends on K. Consequently, given
any subset S ⊆ S` ×Sm ×Sn, the set OS∩ defined by

OS∩ = {(α,β) ∈ C2N : (ασ,βσ) ∈ O[F σ,Kσ] for all σ ∈ S} (3.62)

is open and nonempty. If K contains e.g. −1, then O[F,K] contains some (α,β) such that (α,β,γ) /∈
V`,m,n[F ]. So, eq. (3.60) gives us an alternative definition of İ`,m,n(α,β,γ)[F ] for some range of
parameters.

Proposition 3.6. Consider • ∈ {1, 2, 3} and j, k ∈ I• with j < k and |j − k| = 1. Suppose that
γj,k ∈ Z. Let τ ∈ S`,m,n denote the transposition swapping j, k. Then,

I`,m,n[F ](α,β,γ)− I`,m,n[F ](α,β,γ)τ =
∫

Γ(−∞,0],+,0;1

· · ·
∫

Γ(−∞,0],+,`−1;`

[
∫

Γ[0,1],+,0;`+1

· · ·
∫

Γ[0,1],+,m−1;`+m

[ ∫
Γ[1,∞),+,0;`+m+1

· · ·
∫

Γ[1,∞),+,n−1;N

( N∏
j0=1

z
αj0
j0

(1− zj0)βj0
)

×
( ∏

1≤j0<k0≤N
(zk0 − zj0)2γj0,k0

)
F dzN · · · dz`+m+1

]
dz`+m · · · dz`+1

]
dz` · · · dz1, (3.63)

whenever (α,β,γ) ∈ O∩{1,τ}, where ΓI,+,r;i = ΓI,+,r;i unless i = j, in which case ΓI,+,r;i =
ΓI,+,r;i({zi0}i0 6=j) is a small counterclockwise circle around zk not winding around any of the other
z’s or 0, 1. �

Proof. It suffices to consider the case F = 1. Indeed, if F is a monomial, then we can simply absorb
it into a redefinition of α. The set O∩{1,τ} is decreasing with the set of monomials in F , so once the
result has been proven for monomials, it follows for all Laurent polynomials.

For • = 2, the proposition follows via a straightforward countour deformation argument. The
case • ∈ {1, 3} can be reduced to • = 3 via Proposition 3.5. �

3.5. Symmetrization. Let F ∈ AD(A`,m,n).

Proposition 3.7. For any (α,β,γ) ∈ ∩σ∈S`,m,nΩ̇`,m,n[F ]σ,

İ`,m,n[F ](α,β,γ) =
∑

σ∈S`,m,n

eiΘ(σ−1)Ṡ`,m,n[F ](α,β,γ)σ, (3.64)

where Θ(σ) = 2π
∑

1≤j<k≤N 1σ(j)>σ(k)γj,k. �

Proof. By analyticity, it suffices to prove the result when the quantities above are well-defined
Lebesgue integrals. Decomposing �`,m,n into `!m!n! copies of 4`,m,n,

I`,m,n[F ](α,β,γ) =
∑

σ∈S`,m,n

∫
4`,m,n

N∏
j=1
|xj |ασ(j) |1− xj |βσ(j)

∏
1≤j<k≤N

(xσ−1(k) − xσ−1(j) + i0)2γj,k

× F (xσ−1(1), · · · , xσ−1(N)) dNx. (3.65)

The right-hand side is

∑
σ∈S`,m,n

eiΘ(σ−1)
∫
4`,m,n

N∏
j=1
|xj |ασ(j) |1− xj |βσ(j)

∏
1≤j<k≤N

(xk − xj)2γσ(j),σ(k)(F σ) dNx, (3.66)

which is the right-hand side of eq. (3.64). �
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Proposition 3.8. Suppose that α,β,γ are invariant under all σ ∈ S`,m,n, and suppose now that
F ∈ C[x1, . . . , xN ]S`,m,n. Then, for all (α,β,γ) ∈ Ω̇`,m,n[F ],

İ`,m,n[F ](α,β,γ) =
[ ∏̀
k=1

1− e2πikγ1

1− e2πiγ1

][ m∏
k=1

1− e2πikγ2

1− e2πiγ2

][ n∏
k=1

1− e2πikγ3

1− e2πiγ3

]
Ṡ`,m,n[F ](α,β,γ), (3.67)

where, for each • ∈ {1, 2, 3}, γ• = γj,k for all distinct j, k ∈ I•. �

Here, we are treating (1− e2πiγ)−1(1− e2πikγ) as an entire function.

Proof. Applying the previous proposition,

I`,m,n[F ](α,β,γ) =
[ ∑
σ∈S`

eπi o.o.(σ)γ
][ ∑

σ∈Sm
eπi o.o.(σ)γ

][ ∑
σ∈Sn

eπi o.o.(σ)γ
]
S`,m,n[F ](α,β,γ), (3.68)

where o. o.(σ) is the number of out-of-order pairs in σ. We appeal to the algebraic identity

Z[ζ] 3
∑
σ∈SN

ζo.o.(σ) =
N−1∏
n=0

n∑
m=0

ζm =
N∏
n=1

1− ζn

1− ζ , (3.69)

which holds for all N ∈ N and encodes the bijection between SN and the set of possible runs of the
bubble sort algorithm. Plugging in ζ = eπiγ , eq. (3.68) becomes eq. (3.67). �

3.6. The Aomoto-Dotsenko–Fateev relations. Fix N ∈ N+ and F ∈ C[x1, x
−1
1 , . . . , xN , x

−1
N ].

For each j ∈ {1, . . . , N}, let σj ∈ SN be the permutation that takes 1 and inserts it in the jth
position while maintaining the relative order of the other terms. That is, σj = (1 j j − 1 · · · 2).

For any ` ∈ N+ and m,n ∈ N with `+m+ n = N , let
Λ̇`,m,n[F ] = V̇`,m,n[F ] ∩ V̇`−1,m+1,n[F ]σ` ∩ V̇`−1,m,n+1[F ]σ`+m

= V̇`,m,n[F ] ∩ V̇`−1,m+1,n[F ]σ`+m ∩ V̇`−1,m,n+1[F ]σN ,
(3.70)

ḟ`,m,n[F ] = (∩`j=1Ω̇`,m,n[F ]σj ) ∩ (∩`+mj=` Ω̇`−1,m+1,n[F ]σj ) ∩ (∩Nj=`+mΩ̇`−1,m,n+1[F ]σj ). (3.71)
Note that ḟ`,m,n[F ], Λ̇`,m,n[F ] are open, dense, and connected subsets of C2N+N(N−1)/2, being the
complements of locally finite unions of complex affine hyperplanes.

Proposition 3.9. For any (α,β,γ) ∈ ḟ`,m,n[F ],

0 =
∑̀
j=1

e±iθj Ṡ`,m,n[F ](α,β,γ)σj +
`+m∑
j=`

e±iϑj Ṡ`−1,m+1,n[F ](α,β,γ)σj

+
N∑

j=`+m
e±iϕj Ṡ`−1,m,n+1[F ](α,β,γ)σj (3.72)

holds for each choice of sign, where θj = 2π
∑

2≤j0≤j γ1,j0, ϑj = πα + 2π
∑

2≤j0≤j γ1,j0, and ϕj =
πα+ πβ + 2π

∑
2≤j0≤j γ1,j0. �

Proof. Without loss of generality, we may assume F = 1. Let f`,m,n denote the subset of (α,β,γ) ∈
C2N+N(N−1)/2 defined by

f`,m,n =


(α,β,γ) : (ασj ,βσj ,γσj ) ∈



Ω`,m,n (j ∈ {1, . . . , `− 1})
Ω`−1,m+1,n (j ∈ {`+ 1, . . . , `+m− 1})
Ω`−1,m,n+1 (j ∈ {`+m+ 1, . . . , N})
Ω`,m,n ∩ Ω`−1,m+1,n (j = `)
Ω`−1,m+1,n ∩ Ω`−1,m,n+1 (j = `+m)


.

(3.73)
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Let ε > 0. For each z1,z2,z3 > 0 and γ, γ ∈ (−(N−1)−1, 0) with γ < γ, let f0,z,γ,γ (suppressing
the `,m, n dependence for brevity) denote the set of (α,β,γ) ∈ C2N+N(N−1)/2 such that

• γ < <γj,k < γ for all j, k ∈ {1, . . . , N} with j 6= k,
• z1 < <αj < z2 for each j ∈ {2, . . . , `}, <αj > z1 for each j ∈ {` + 1, . . . , ` + m}, and
<αj < −z3 for each j ∈ {`+m+ 1, . . . , N},
• z1 < <βj < z2 for each j ∈ {`+m+ 1, . . . , N}, <βj > z1 for each j ∈ {`+ 1, . . . , `+m},
and <βj < −z3 for j ∈ {2, . . . , `},

where z = (z1,z2,z3). The set f0,z,γ,γ is open and nonempty. By eq. (1.7) and the analogue of
eq. (1.7) for the m < N case, there exist z00,z0,z01 > 0 (depending on `,m, n, γ, γ) such that

fz,γ,γ
def= {(α,β,γ) ∈ f0,z,γ,γ and (α1, β1) ∈ Ω1,0,0 ∩ Ω0,1,0 ∩ Ω0,0,1} ⊂ f`,m,n (3.74)

whenever z2 > z1 > z0 and z3 > z01z2 + z00. Observe that Ω1,0,0 ∩ Ω0,1,0 ∩ Ω0,0,1 is the subset
of C2

α,β defined by the inequalities −1 < <α,<β and <α+ <β < −1. The set

{(r1, r2) ∈ R2 : −1 < r1, r2 and r1 + r2 < −1} (3.75)

is a nonempty triangle. So, fz,γ,γ is an open and nonempty subset of C2N+N(N−1)/2 and moreover
of ḟ`,m,n.

For such z and (α,β,γ) ∈ fz,γ,γ , eq. (3.72) (with F = 1) just reads

0 =
∑̀
j=1

e±iθjS`,m,n[1](α,β,γ)σj +
`+m∑
j=`

e±iϑjS`−1,m+1,n[1](α,β,γ)σj

+
N∑

j=`+m
e±iϕjS`−1,m,n+1[1](α,β,γ)σj (3.76)

(note the absence of the dots over the S’s). By the analyticity of all of the functions in eq. (3.72) on
ḟ`,m,n, it suffices to prove that eq. (3.76) holds for such (α,β,γ).

By Fubini’s theorem, the right-hand side of eq. (3.76) is∫
4`−1,m,n

ω(x2, . . . , xN )
[ ∫ +∞

−∞
(−x1 ± i0)α1(1− x1 ± i0)β1

( N∏
j=2

(xj − x± i0)2γ1,j
)

dx
]

dx2 · · · dxN ,

(3.77)
where ω(x2, . . . , xN ) = [

∏N
j=2 |xj |αj |1− xj |βj ]

∏
2≤j<k≤N (xk − xj)2γj,k . The claim then follows from

0 =
∫ +∞

−∞
(−x± i0)α(1− x± i0)β

( N∏
j=2

(xj − x± i0)2γj
)

dx, (3.78)

which holds for every (x2, . . . , xN ) ∈ (R\{0, 1})N−1 such that x2, . . . , xN are pairwise distinct and
all α, β, γ2, . . . , γN ∈ C for which

• the integrand of eq. (3.78) lies in L1(R) and
• <γj ∈ (−1, 0) for all j ∈ {2, . . . , N}.

Denote the right-hand side of eq. (3.78) by I± = I±(x2, . . . , xN ;α, β, γ2, . . . , γN ). For R >
max{|x1|, . . . , |xN−1|},

0 =
∫

Γ∓(R)
(−z ± i0)α(1− z ± i0)β

N∏
j=2

(xj − z ± i0)2γj dz, (3.79)

where Γ±(R) = Γ±(R)(x2, . . . , xN ) ⊂ C is the semicircular contour (with N + 1 semicircular insets
placed so that the contour avoids x2, . . . , xN ) connecting −R and +R, with the arc and semicircular
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=z

<z0 1x2x1 x3−R R

Figure 11. The contour Γ+(R) in the case ` = 2,m = 1, n = 0.

insets in the half-plane {z ∈ C : ±=z ≥ 0}. See Figure 11. In eq. (3.79), the integrand is defined
taking the branch cut along the negative real axis, so

(x− z ± i0)2γj =
{

exp(2γj(log |x− z|+ i arg(x− z))) (+ case,=z ≤ 0),
exp(2γj(log |x− z| − 2πi+ i arg(x− z))) (− case,=z ≥ 0),

(3.80)

for any x ∈ R, where arg(x− z) ∈ [0, 2π). We orient Γ+ counter-clockwise and Γ− clockwise.
Let Γ++(R) denote the large arc of Γ+(R) and Γ+0(R) denote the rest, and likewise let Γ−−(R)

denote the large arc of Γ−(R) and Γ−0(R) denote the rest. Then,

I± = lim
R→∞

∫
Γ∓0(R)

(−z ± i0)α(1− z ± i0)β
N∏
j=2

(xj − z ± i0)2γj dz. (3.81)

On the other hand, for R sufficiently large,∣∣∣ ∫
Γ∓∓(R)

(−z ± i0)α(1− z ± i0)β
N∏
j=2

(xj − z ± i0)2γj dx
∣∣∣ ≤ π(2R)1+<α+<β = O(R−ε) (3.82)

for some ε > 0 depending on (α, β) ∈ Ω1,0,0 ∩ Ω0,1,0 ∩ Ω0,0,1. Combining eq. (3.79), eq. (3.81), and
eq. (3.82), we get I± = 0. �

Proposition 3.10. For any F ∈ C[x1, x
−1
1 , . . . , xN , x

−1
N ],

0 = İ`,m,n[F ](α,β,γ) + e
+πi(α+2

∑`

j=2 γ1,j)İ`−1,m+1,n[F ](α,β,γ)σ`

+ e
+πi(α+β+2

∑`+m
j=2 γ1,j)İ`−1,m,n+1[F ](α,β,γ)σ`+m (3.83)

0 = İ`,m,n[F ](α,β,γ)σ` + e
−πi(α+2

∑`

j=2 γ1,j)İ`−1,m+1,n[F ](α,β,γ)σ`+m

+ e
−πi(α+β+2

∑`+m
j=2 γ1,j)İ`−1,m,n+1[F ](α,β,γ)σN (3.84)

both hold, for all (α,β,γ) ∈ Λ̇`,m,n[F ]. �

Proof. Let S′`,m,n denote the Young subgroup of S`,m,n consisting of permutations which fix 1, i.e.

S′`,m,n = {σ ∈ S`,m,n s.t. σ(1) = 1}. (3.85)

Via analyticity, it suffices to prove this for all (α,β,γ) ∈ ∩σ∈S′
`,m,n

ḟ`,m,n[F ]σ.
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For such (α,β,γ), we can cite the previous proposition to get

0 =
∑

σ∈S′
`,m,n

eπiΘ(σ−1)
[ ∑̀
j=1

e±iθ
σ
j Ṡ`,m,n[F ](α,β,γ)σjσ

+
`+m∑
j=`

e±iϑ
σ
j Ṡ`−1,m+1,n[F ](α,β,γ)σjσ +

N∑
j=`+m

e±iϕ
σ
j Ṡ`−1,m,n+1[F ](α,β,γ)σjσ

]
, (3.86)

where θσj = 2π
∑

2≤j0≤j γ1,σ(j0), ϑσj = πα+2π
∑

2≤j0≤j γ1,σ(j0), and ϕσj = πα+πβ+2π
∑

2≤j0≤j γ1,σ(j0).
The order of multiplication is such that σjσ is a permutation satisfying (σjσ)(1) = j. In eq. (3.86),
Θ is defined as in Proposition 3.7.

Every σ0 ∈ S`,m,n has the form σ0 = σjσ for some j ∈ {1, . . . , N} and σ ∈ S`,m,n satisfying
σ(1) = 1. It can be seen that

Θ(σ−1
0 ) = Θ(σ−1) + θσj . (3.87)

Using Proposition 3.7, we check that the two cases of eq. (3.86) yield the two results, eq. (3.83) and
eq. (3.84). For instance,

∑
σ∈S′

`,m,n

eπiΘ(σ−1) ∑̀
j=1

e+iθσj Ṡ`,m,n[F ](α,β,γ)σjσ =
∑

σ∈S`,m,n

eπiΘ(σ−1)Ṡ`,m,n[F ](α,β,γ)σ

= İ`,m,n[F ](α,β,γ).

(3.88)

Similar statements apply to the other two sums in eq. (3.86) in the ‘+’ case, thus yielding eq. (3.83).
Similar computations apply to the ‘−’ case. �

3.7. The symmetric and DF-symmetric cases. Fix F ∈ AD(A`,m,n), not necessarily symmetric.
We assume that dFS,Q;• ∈ Z for all FS,Q;• ∈ F(A`,m,n). Let

δk = min{dFS,Q;0 : S ⊆ I1, Q ⊆ I2, |S ∪Q| = k} (3.89)

for each k ∈ {1, . . . , `+m},

δk = min{dFS,Q;1 : S ⊆ I2, Q ⊆ I3, |S ∪Q| = k} (3.90)

for each k ∈ {1, . . . ,m+ n}, and

dk = −min{dFS,Q;∞ : S ⊆ I3, Q ⊆ I1, |S ∪Q| = k} (3.91)

for each k ∈ {1, . . . , `+ n}. Here, we are ranging over all {dF}F∈F(A`,m,n) ∈ D.
Let Ẇ`,m,n[D] denote the set of (α, β, γ) ∈ C3 such that (α,β,γ) ∈ V̇`,m,n[D] whenever α,β,γ

have components given by αj = α and βj = β for all indices j ∈ {1, . . . , N} and γj,k = γ for all
j, k ∈ {1, . . . , N} with j < k.

Proposition 3.11. There exists an entire function I`,m,n;Reg[F ] : C3 → C such that

İ`,m,n[F ](α, β, γ) =
[ `+m∏
k=1

Γ(δk + k(1 + α+ (k − 1)γ))
][m+n∏

k=1
Γ( δk + k(1 + β + (k − 1)γ))

]

×
[ `+n∏
k=1

Γ(−dk − k(1 + α+ β + (2N − k − 1)γ))
]
I`,m,n;Reg[F ](α, β, γ) (3.92)

for all (α, β, γ) ∈ Ẇ`,m,n[D]. �

Proof. Follows from Proposition 3.4. �
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For later reference, consider the special case F ∈ C[x1, . . . , xN ]SN . Referring to eq. (1.14),
eq. (1.15), and eq. (1.28), set dFS,Q;0 = δj [F ], dFS,Q;1 = δj [F ], and dFS,Q;∞ = degj [F ], for S,Q ⊆
{1, . . . , N} as usual, where, for each S and Q, j = |S ∪Q|. Then, as follows straightforwardly from
eq. (2.23), eq. (2.25), eq. (2.27),

F ∈
∏

F∈F(A`,m,n)
xdF

F C∞(A`,m,n). (3.93)

Thus, letting D denote the collection of the integers above, F ∈ AD(A`,m,n). We can therefore apply
the results above, with δj = δj [F ], δj = δj [F ], and dj = −degj [F ].

We now turn to the “DF0-symmetric” case. For any S ⊆ {1, . . . , N}, let

ẆDF0,S
`,m,n [F ] = {(α−, α+, β−, β+, γ−, γ0, γ+) ∈ C7 : (αDF0,βDF0,γDF0) ∈ V̇`,m,n[F ]}. (3.94)

This is a dense, open, and connected subset of C7 and depends on S only through the numbers
|S ∩ Ij |. Actually, we need a slightly refined version of this later; let

ẆDF1,S
`,m,n [F ] = {(α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ−, γ0, γ+) ∈ C9

: (αDF1,βDF1,γDF0) ∈ V̇`,m,n[F ]}, (3.95)

where αDF1,βDF1 are defined as their DF0-counterparts, but defining the jth component using
α+,ν in place of α+ and β+,ν in place of β+ for ν ∈ Iν .

For (α−, α+, β−, β+, γ−, γ0, γ+) ∈ ẆDF0,S
`,m,n [F ], let

İDF0;S
`,m,n [F ](α−, α+, β−, β+, γ−, γ0, γ+) = İ`,m,n[F ](αDF0,βDF0,γDF0). (3.96)

Let `+ = S ∩ I1, `− = ` − `+, m+ = S ∩ I2, m− = m −m+, n+ = S ∩ I3, and n− = n − n+. Set
N+ = |S| and N− = N −N+.

Suppose now that F ∈ AD(A`,m,n) is symmetric in the variables {xi}i∈S and {xi}i/∈S separately.
Let

δj−,j+ = min{dFS,Q;0 : S ⊆ I1, Q ⊆ I2, |(S ∪Q)\S| = j−, |(S ∪Q) ∩ S| = j+} (3.97)

for j− ∈ {1, . . . , `− +m−} and j+ ∈ {1, . . . , `+ +m+},

δj−,j+ = min{dFS,Q;1 : S ⊆ I2, Q ⊆ I3, |(S ∪Q)\S| = j−, |(S ∪Q) ∩ S| = j+} (3.98)

for j− ∈ {1, . . . ,m− + n−} and j+ ∈ {1, . . . ,m+ + n+}, and

dj−,j+ = −min{dFS,Q;∞ : S ⊆ I3, Q ⊆ I1, |(S ∪Q)\S| = j−, |(S ∪Q) ∩ S| = j+} (3.99)

for j− ∈ {1, . . . , `− + n−} and j+ ∈ {1, . . . , `+ + n+}. A similar argument to that above yields:
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Proposition 3.12. There exists an entire function IDF0;S
`,m,n;Reg[F ] : C7 → C such that

İDF0
`,m,n[F ](α−, α+, β−, β+, γ−, γ0, γ+) = IDF0

`,m,n;Reg[F ](α−, α+, β−, β+, γ−, γ0, γ+)

×
[ `−+m−∏

j−=1

`++m+∏
j+=1

Γ(δj−,j+ + j−(1 + α− + (j− − 1)γ−) + j+(1 + α+ + (j+ − 1)γ+) + 2γ0j−j+)
]

×
[m−+n−∏

j−=1

m++n+∏
j+=1

Γ( δj−,j+ + j−(1 + β− + (j− − 1)γ−) + j+(1 + β+ + (j+ − 1)γ+) + 2γ0j−j+)
]

×
[ `−+n−∏
j−=1

`++n+∏
j+=1

Γ(−dj−,j+ − j−(1 + α− + β− + (2N− − j− − 1)γ−)

− j+(1 + α+ + β+ + (2N+ − j+ − 1)γ+)− 2γ0j−j+)
]

(3.100)

holds whenever (α−, α+, β−, β+, γ−, γ0, γ+) ∈ ẆDF0
`,m,n[F ]. ��

4. Removing singularities

As in previous sections, fix `,m, n ∈ N not all zero, and let N = `+m+ n and I1 = {1, . . . , `},
I2 = {`+ 1, . . . , `+m}, and I3 = {`+m+ 1, . . . , N}. For k ∈ N, let

zk : Cγ\{kγ ∈ Z≤−1 and γ /∈ Z} → C (4.1)

denote the analytic function given by zk(γ) = Γ(1 + γ)−1Γ(1 + kγ) for kγ /∈ Z≤−1. We can consider
z−1
k as an entire function.

4.1. The symmetric case. Fix F ∈ C[x1, . . . , xN ]SN , and let δj , δj , dj ∈ N be as above.
Let U̇`,m,n[F ] denote the set of (α, β, γ) ∈ C3 such that (α,β,γ) ∈ Ω̇`,m,n[F ] whenever α,β,γ

have components given by αj = α and βj = β for all indices j ∈ {1, . . . , N} and γj,k = γ for all
j < k. Thus, we can define

Ṡ`,m,n[F ](α, β, γ) = Ṡ`,m,n[F ](α,β,γ) (4.2)

for any (α, β, γ) ∈ U̇`,m,n[F ].

Proposition 4.1. The function Sreg
`,m,n[F ] : U̇`,m,n[F ]→ C defined by

Sreg
`,m,n[F ](α, β, γ) =

[ `+m∏
k=1

Γ(δk + k(1 + α+ (k − 1)γ))
]−1

×
[m+n∏
k=1

Γ( δk + k(1 + β + (k − 1)γ))
]−1[ `+n∏

k=1
Γ(−dk − k(1 + α+ β + (N + k − 2)γ))

]−1

×
[ ∏̀
k=1

1
zk(γ)

][ m∏
k=1

1
zk(γ)

][ n∏
k=1

1
zk(γ)

]
Ṡ`,m,n[F ](α, β, γ) (4.3)

extends to an entire function C3
α,β,γ → C. �

Proof. • Since the prefactor on the right-hand side of eq. (4.3) consisting of all of the Γ-function
reciprocals is entire, Sreg

`,m,n[F ] extends to an analytic function on U̇`,m,n[F ], the domain of
Ṡ`,m,n[F ](α, β, γ).
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• For all (α, β, γ) ∈ U̇`,m,n[F ], we have

[ ∏̀
k=1

1− e2πikγ

1− e2πiγ zk(γ)
][ m∏

k=1

1− e2πikγ

1− e2πiγ zk(γ)
][ n∏

k=1

1− e2πikγ

1− e2πiγ zk(γ)
]
Sreg
`,m,n[F ](α, β, γ)

= I`,m,n;Reg[F ](α, β, γ) (4.4)

by Proposition 3.8. By Proposition 3.11, this extends to an entire function C3
α,β,γ → C.

The product zk(γ)(1 − e2πikγ)(1 − e2πiγ)−1, with its removable singularities removed,
vanishes if and only if kγ ∈ N and γ /∈ N. Thus, Sreg

`,m,n[F ] extends to an analytic function on

C3
α,β,γ\ ∪Mk=2 {kγ ∈ N, γ /∈ N}, (4.5)

where M = max{`,m, n}.
Combining these two observations, Sreg

`,m,n[F ] extends to an analytic function on U̇`,m,n[F ] ∪
(C3

α,β,γ\ ∪Mk=2 {kγ ∈ N, γ /∈ N}).
The set ∪Mk=2{kγ ∈ N, γ /∈ N} is a union of hyperplanes, and it is disjoint from

N⋃
k=1
{k(k + 1)γ ∈ Z≤−k}, (4.6)

so U̇`,m,n[F ]∪(C3
α,β,γ\∪Mk=2 {kγ ∈ N, γ /∈ N}) is the complement in C3

α,β,γ of a locally finite collection
of complex codimension-2 affine subspaces of C3. The result therefore follows from Hartog’s extension
theorem. �

For any ` ∈ N+ and m,n ∈ N,

{(α, β, γ) ∈ C3 : (α,β,γ) ∈ ḟ`,m,n[F ]} = U̇`,m,n[F ] ∩ U̇`−1,m+1,n[F ] ∩ U̇`−1,m,n+1[F ]. (4.7)

The symmetric case of Proposition 3.9 reads, after multiplying through by 1− e±2iγ ,

0 = (1− e±2πi`γ)Ṡ`,m,n[F ](α, β, γ) + e±πi(α+2(`−1)γ)(1− e±2πi(m+1)γ)Ṡ`−1,m+1,n[F ](α, β, γ)

+ e±πi(α+β+2(`−1+m)γ)(1− e±2πi(n+1)γ)Ṡ`−1,m,n+1[F ](α, β, γ) (4.8)

for all (α, β, γ) in the set defined by eq. (4.7). Define

ON ;0 = {(α, β, γ) ∈ C3 : α+ jγ /∈ Z for any j ∈ {0, . . . , N − 1}}, (4.9)
ON ;1 = {(α, β, γ) ∈ C3 : β + jγ /∈ Z for any j ∈ {0, . . . , N − 1}}. (4.10)

Proposition 4.2 (Cf. [DF85a][Aom87][FW08]).
• For all (α, β, γ) ∈ U̇N,0,0[F ] ∩ U̇0,N,0[F ] ∩ON ;1,

Ṡ0,N,0[F ](α, β, γ) = (−1)N
[N−1∏
m=0

sin(π(α+ β + (N +m− 1)γ))
sin(π(β +mγ))

]
ṠN,0,0[F ](α, β, γ). (4.11)

• For all (α, β, γ) ∈ U̇0,N,0[F ] ∩ U̇0,0,N [F ] ∩ON ;0,

Ṡ0,N,0[F ](α, β, γ) = (−1)N
[N−1∏
m=0

sin(π(α+ β + (N +m− 1)γ))
sin(π(α+mγ))

]
Ṡ0,0,N [F ](α, β, γ). (4.12)

�
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Proof. We prove the second claim, and the proof of the first is similar. Suppose that

(α, β, γ) ∈
N⋂
n=0

U̇0,N−n,n[F ] ∩
N−1⋂
n=0

U̇1,N−1−n,n[F ]. (4.13)

We can apply eq. (4.8) for ` = 1 and all pairs of m,n ∈ {0, . . . , N − 1} such that m+ n = N − 1.
Combining the plus and minus cases of eq. (4.8) to eliminate the Ṡ1,N−n−1,n[F ] term,

1
2i
[
e+πiα 1− e+2πi(m+1)γ

1− e+2πiγ − e−πiα 1− e−2πi(m+1)γ

1− e−2πiγ

]
Ṡ0,N−n,n[F ](α, β, γ)

= − 1
2i
[
e+πi(α+β+2(N−n−1)γ) 1− e+2πi(n+1)γ

1− e+2πiγ − e−πi(α+β+2(N−n−1)γ) 1− e−2πi(n+1)γ

1− e−2πiγ

]
× Ṡ0,N−n−1,n+1[F ](α, β, γ) (4.14)

if γ /∈ Z. We calculate:
1
2i
[
e+πiα 1− e+2πi(N−n)γ

1− e+2πiγ − e−πiα 1− e−2πi(N−n)γ

1− e−2πiγ

]
= 2s(γ)s(α+ (N − n− 1)γ)s((N − n)γ)

1− cos(2πγ)
(4.15)

and
1
2i
[
e+πi(α+β+2(N−n−1)γ) 1− e+2πi(n+1)γ

1− e+2πiγ − e−πi(α+β+2(N−n−1)γ) 1− e−2πi(n+1)γ

1− e−2πiγ

]
= 2s(γ)

1− cos(2πγ)s(α+ β + (2N − n− 2)γ)s((n+ 1)γ), (4.16)

where s(t) = sin(πt). So, for (α, β, γ) as above such that none of the trigonometric factors on the
right-hand side of eq. (4.15) vanish,

Ṡ0,N−n,n[F ](α, β, γ) = −s(α+ β + (2N − n− 2)γ)s((n+ 1)γ)
s(α+ (N − n− 1)γ)s((N − n)γ) Ṡ0,N−1−n,n+1[F ](α, β, γ). (4.17)

Applying this recursively for n = 0, . . . , N − 1, we end up with eq. (4.12).
In summary, eq. (4.12) holds for a nonempty, open subset of (α, β, γ) ∈ U̇0,N,0[F ]∩U̇0,0,N [F ]∩ON ;0.

By analyticity, the result follows. �

Proposition 4.3. The function SN ;Reg[F ](α, β, γ) defined by

SN ;Reg[F ](α, β, γ) =
[ N∏
j=1

Γ(2 + d̄j + α+ β + (N + j − 2)γ)
Γ(1 + δ̄j + α+ (j − 1)γ)Γ(1 + ¯δj + β + (j − 1)γ)zj(γ)

]
SN [F ](α, β, γ)

(4.18)
extends to an entire function SN ;Reg[F ] : C3

α,β,γ → C. �

Proof. We begin by defining the following open (and dense) subsets of C3:
QN ;0 = {(α, β, γ) ∈ C3 : δ̄j + α+ (j − 1)γ /∈ N for any j ∈ {1, . . . , N}},
QN ;1 = {(α, β, γ) ∈ C3 : ¯δj + β + (j − 1)γ /∈ N for any j ∈ {1, . . . , N}},
QN ;∞ = {(α, β, γ) ∈ C3 : d̄j + α+ β + (N + j − 2)γ /∈ Z≤−2 for any j ∈ {1, . . . , N}},
UN ;0 = {(α, β, γ) ∈ C3 : δj + j(α+ (j − 1)γ) /∈ Z≤−j for any j ∈ {1, . . . , N}},
UN ;1 = {(α, β, γ) ∈ C3 : δj + j(β + (j − 1)γ) /∈ Z≤−j for any j ∈ {1, . . . , N}},
UN ;∞ = {(α, β, γ) ∈ C3 : −dj − j(1 + α+ β + (N + j − 2)γ) /∈ Z≤0 for any j ∈ {1, . . . , N}}

= {(α, β, γ) ∈ C3 : dj + j(1 + α+ β + (N + j − 2)γ) /∈ N for any j ∈ {1, . . . , N}}.
(4.19)
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Figure 12. The sets in S1,S2,S3 in R3
α,β,γ ∩ {β = 1/5} in the case N = 2.

We write

SN ;Reg[F ](α, β, γ) = Υ0(α, β, γ)Υ1(α, β, γ)

×
[ N∏
j=1

Γ(δj + j(1 + α+ (j − 1)γ))Γ( δj + j(1 + β + (j − 1)γ))zj(γ)
]−1

SN [F ](α, β, γ) (4.20)

for

Υ0(α, β, γ) =
N∏
j=1

Γ(δj + j(1 + α+ (j − 1)γ))Γ( δj + j(1 + β + (j − 1)γ))
Γ(1 + δ̄j + α+ (j − 1)γ)Γ(1 + ¯δj + β + (j − 1)γ)

, (4.21)

Υ1(α, β, γ) =
N∏
j=1

Γ(2 + d̄j + α+ β + (N + j − 2)γ). (4.22)

By Proposition 4.1, the second line on the right-hand side of eq. (4.20) defines an entire function.
Since Υ0 extends to an analytic function on UN ;0 ∩ UN ;1 and Υ1 extends to an analytic function on
QN ;∞, SN ;Reg[F ] extends to an analytic function on UN ;0 ∩ UN ;1 ∩QN ;∞.

In ON ;0 ∩ U̇0,N,0 ∩ U̇0,0,N , Proposition 4.2 gives

SN ;Reg[F ](α, β, γ) = (−1)NΥ2(α, β, γ)Υ3(α, β, γ)

×
[ N∏
j=1

Γ(−dj − j(1 +α+β+ (N + j− 2)γ))Γ( δj + j(1 +β+ (j− 1)γ))zj(γ)
]−1

Ṡ0,0,N [F ](α, β, γ),

(4.23)

where

Υ2 =
N∏
j=1

Γ( δj + j(1 + β + (j − 1)γ))
s(α+ (j − 1)γ)Γ(1 + δ̄j + α+ (j − 1)γ)Γ(1 + ¯δj + β + (j − 1)γ)

(4.24)

Υ3 =
N∏
j=1

s(α+ β + (N + j − 2)γ)Γ(2 + d̄j + α+ β + (N + j − 2)γ)

× Γ(−dj − j(1 + α+ β + (N + j − 2)γ)). (4.25)

By Proposition 4.1, the function on the second line of eq. (4.23) extends to an entire function of
α, β, γ. On the other hand, Υ2 extends to an analytic function on QN ;0 ∩ UN ;1, and Υ3 extends to
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an analytic function on UN ;∞. Combining these observations, SN ;Reg[F ] analytically continues to
QN ;0 ∩ UN ;1 ∩ UN ;∞.

Likewise, SN ;Reg[F ] extends analytically to UN ;0 ∩QN ;1 ∩UN ;∞, using ON ;1 in place of ON ;0 and
the other part of Proposition 4.2.

So, SN ;Reg[F ](α, β, γ) analytically continues to

U = (UN ;0 ∩ UN ;1 ∩QN ;∞) ∪ (UN ;0 ∩QN ;1 ∩ UN ;∞) ∪ (QN ;0 ∩ UN ;1 ∩ UN ;∞). (4.26)

This is
U = C3

∖[( ⋃
H1∈S1,H2∈S2,H3∈S3

H1 ∩H2 ∩H3)
]
, (4.27)

where
• S1 is the set of hyperplanes that are contained in the complement of one of UN ;0, UN ;1, QN ;∞,
• S2 is the set of hyperplanes that are contained in the complement of one of UN ;0, QN ;1, UN ;∞,
and
• S3 is the set of hyperplanes that are contained in the complement of one of QN ;0, UN ;1, UN ;∞.

Let
H = {H1 ∩H2 ∩H3 6= ∅ : H1 ∈ S1, H2 ∈ S2, H3 ∈ S3}, (4.28)

so that SN ;Reg[F ] defines an analytic function on U = C3\∪H∈HH. Observe that every H ∈ H is
an affine subspace of C3 of complex codimension two or three (since S1 ∩ S2 ∩ S3 = ∅), and the
collection H is locally finite.

Hartog’s theorem therefore implies that SN ;Reg[F ] analytically continues to the entirety of C3. �

This completes the proof of Theorem 1.2.

4.2. The DF-symmetric case. Given γ+ ∈ C\{0, 1} and α+, β+ ∈ C, let γ− = γ−1
+ , α− = −γ−α+,

and β− = −γ−β+ as in the introduction. Fix S ⊆ {1, . . . , N}.
Given γ+ 6= 0, 1 and F ∈ DFSym(N ; S, λ) for λ = γ−1

+ (γ+ − 1), let ẆDF,S
`,m,n[F ; γ+] denote the set

of (α+, β+) ∈ C2 such that

(α−, α+, β−, β+, γ−,−1, γ+) ∈ ẆDF0,S
`,m,n [F ]. (4.29)

For (α+, β+) ∈ ẆDF,S
`,m,n[F ; γ+], let

İDF;S
`,m,n[F ](α+, β+, γ+) = IDF0;S

`,m,n [F ](α−, α+, β−, β+, γ−,−1, γ+). (4.30)

Then, as adumbrated by Dotsenko and Fateev:

Proposition 4.4. For any σ ∈ S`,m,n,

İDF;S
`,m,n[F ](α+, β+, γ+) = İDF;S

`,m,n[F ](α+, β+, γ+)σ (4.31)

for all (α+, β+) ∈ ẆDF,S
`,m,n[F ; γ+]. �

Since ẆDF,S
`,m,n[F ] depends only on S through |S ∩ I1|, |S ∩ I2|, |S ∩ I3|,

ẆDF,S
`,m,n[F ; γ+] = ẆDF,S

`,m,n[F ; γ+]σ, (4.32)

so the right-hand side of eq. (4.31) is defined for any (α+, β+) ∈ ẆDF,S
`,m,n[F ; γ+].

Proof. Since S`,m,n is generated by transpositions τ of adjacent elements of I1, I2, I3, it suffices to
consider the case when σ is such a transposition, τ . For notational simplicity, we consider the case
when τ is a transposition of some j, j + 1 ∈ I2 and j ∈ S. The other cases are similar but involve
some notational changes.
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Let ẆDF,1,S
`,m,n [F ; γ+] ⊆ C6 denote the set of (α1,+, α2,+, α3,+, β1,+, β2,+, β3,+) ∈ C6 such that

(α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ−,−1, γ+) ∈ ẆDF1,S
`,m,n [F ], (4.33)

where α−,ν = −γ−α+,ν and β−,ν = −γ−β+,ν . It suffices to prove that, for any σ ∈ S`,m,n,

İDF,1,;S
`,m,n [F ](α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ+)

= İDF,1;S
`,m,n [F ](α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ+)σ (4.34)

for all (α1,+, α2,+, α3,+, β1,+, β2,+, β3,+) ∈ ẆDF,1,S
`,m,n [F ; γ+], where

İDF,1;S
`,m,n [F ](α−,1, α−,2, α−,3, α+,1, α+,2, α+,3, β−,1, β−,2, β−,3, β+,1, β+,2, β+,3, γ+) =

İ`,m,n[F ](αDF,1,βDF,1,γDF), (4.35)

where αDF,1,βDF,1 are defined as αDF1,βDF1, using α−,ν = −γ−α+,ν and β−,ν = −γ−β+,ν .
First observe that there exists a nonempty, open subset

O ⊂ ẆDF,1,S
`,m,n [F ; γ+] (4.36)

(containing an affine cone) such that (αDF,1,βDF,1,γDF) ∈ O{1,τ} whenever (α+,1, . . . , β+,3) ∈ O,
where O{1,τ} is defined as in §3.4. We can choose O such that <α±,2,<β±,2 > 0 everywhere in O.

Since ẆDF,S
`,m,n[F ; γ+] is connected, it suffices via analyticity to prove the result for

(α1,+, α2,+, α3,+, β1,+, β2,+, β3,+) ∈ O. (4.37)

We write α± in place of α±,2 and β± in place of β±,2 below.
We can apply Proposition 3.6 for (α+,1, . . . , β+,3) ∈ O. By Proposition 3.6, it suffices to check

that, whenever all of the zk’s besides zj and zj+1 are somewhere in the interior of the corresponding
contour in eq. (3.63),∫

Γ[0,1],+,j−`

∮
z
α+
j (1− zj)β+z

α−
j+1(1− zj+1)β−

( ∏
1≤j0<k0≤N

{j0,k0}∩{j,j+1}6=∅

(zk0 − zj0)2γj0,k0
)
F dzj dzj+1 = 0,

(4.38)
where the inner integral is taken over a small circle around zj+1, for each zj+1 ∈ Γ[0,1],+,j−`\{0, 1}.

Since the integrand is holomorphic in zj in a punctured neighborhood of zj+1, we apply the
Cauchy residue theorem to deduce that the left-hand side is proportional to∫

Γ[0,1],+,j−`

G0
∂G

∂zj

∣∣∣
zj=zj+1

dzj+1, (4.39)

where

G0(z1, . . . , zN ) = z
α−
j+1(1− zj+1)β−

[ ∏
j0∈([N ]\S)\{j+1}

(zj+1 − zj0)2γ−
][ ∏

j0∈S\{j}
(zj+1 − zj0)−2

]
, (4.40)

G(z1, . . . , zN ) = z
α+
j (1− zj)β+

[ ∏
j0∈([N ]\S)\{j+1}

(zj − zj0)−2
][ ∏

j0∈S\{j}
(zj − zj0)2γ+

]
F. (4.41)

We are choosing branch cuts such that we do not encounter any as zj , zj+1 are integrated along
Γ[0,1],+,j−` (except at the endpoints). Other than that, it is not important what the precise choice
of branch cuts are.
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The integrand in eq. (4.39) is computed to be

G0
∂G

∂zj

∣∣∣
zj=zj+1

=
[ α+
zj+1

− β+
1− zj+1

+ 2γ+
∑

j0∈S\{j}

1
zj+1 − zj0

− 2
∑

j0∈([N ]\S)\{j+1}

1
zj+1 − zj0

+
∂zjF

F

∣∣∣
zj=zj+1

]
H, (4.42)

where H = G0G|zj=zj+1 . On the other hand,

∂H

∂zj+1
=
[α− + α+

zj+1
− β− + β+

1− zj+1
+(2γ+−2)

∑
j0∈S\{j}

1
zj+1 − zj0

+(2γ−−2)
∑

j0∈([N ]\S)\{j+1}

1
zj+1 − zj0

+
∂zj+1(F |zj=zj+1)

F |zj=zj+1

]
H. (4.43)

Since 1− γ− = α−1
+ (α− + α+) = β−1

+ (β− + β+) = γ−1
+ (γ+ − 1) = λ, and since F ∈ DFSym(N, S, λ),

G0
∂G

∂zj

∣∣∣
zj=zj+1

= 1
λ

∂H

∂zj+1
. (4.44)

Consequently, ∫
Γ[0,1],+,j−`

G0
∂G

∂zj

∣∣∣
zj=zj+1

dzj+1 = 1
λ

∫
Γ[0,1],+,j−`

∂H

∂zj+1
dzj+1. (4.45)

The right-hand side is proportional to ∫
p

∂H

∂zj+1
dzj+1 (4.46)

if α+, β+ /∈ Z, where p is a Pochhammer contour in C2\{0, 1} staying sufficiently close to Γ[0,1],+,j−`.
Lifting to a cover of a neighborhood of Γ[0,1],+,j−` on which H lifts to a single-valued analytic
function, we can conclude (using analyticity) that the integral in eq. (4.46) is zero. By analyticity,
we can remove the nonintegrality constraint on α+, β+ to conclude that∫

Γ[0,1],+,j−`

∂H

∂zj+1
dzj+1 = 0 (4.47)

for all (α+,1, . . . , β+,3) ∈ O.
�

Proposition 4.5 (Cf. [DF85a]). Given the setup above, for arbitrary S:

• For all (α+, β+) ∈ ẆDF,S
N,0,0[F ; γ+] ∩ ẆDF,S

0,N,0[F ; γ+] such that β± +m±γ± /∈ Z for any m± ∈
{0, . . . , N± − 1}

İDF,S
0,N,0[F ](α+, β+, γ+) = (−1)N İDF,S

N,0,0[F ](α+, β+, γ+)

×
[ N+−1∏
m+=0

sin(π(α+ + β+ + (N+ +m+ − 1)γ+))
sin(π(β+ +m+γ+))

][ N−−1∏
m−=0

sin(π(α− + β− + (N− +m− − 1)γ−))
sin(π(β− +m−γ−))

]
.

(4.48)
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• For all (α+, β+) ∈ ẆDF,S
0,N,0[F ; γ+] ∩ ẆDF,S

0,0,N [F ; γ+] such that α± +m±γ± /∈ Z for any m± ∈
{0, . . . , N± − 1},

İDF,S
0,N,0[F ](α+, β+, γ+) = (−1)N İDF,S

0,0,N [F ](α+, β+, γ+)

×
[ N+−1∏
m+=0

sin(π(α+ + β+ + (N+ +m+ − 1)γ+))
sin(π(α+ +m+γ+))

][ N−−1∏
m−=0

sin(π(α− + β− + (N− +m− − 1)γ−))
sin(π(α− +m−γ−))

]
.

(4.49)
For S = {1, . . . , N+}, we also have:

• For all (α+, β+) ∈ ẆDF,S
N+,N−,0[F ; γ+] ∩ ẆDF,S

0,N,0[F ; γ+] such that β+ + m+γ+ /∈ Z for any
m+ ∈ {0, . . . , N+ − 1}

İDF,S
0,N,0[F ](α+, β+, γ+) = (−1)N+ İDF,S

N+,N−,0[F ](α+, β+, γ+)

×
[ N+−1∏
m+=0

sin(π(α+ + β+ + (N+ +m+ − 1)γ+))
sin(π(β+ +m+γ+))

]
. (4.50)

• For all (α+, β+) ∈ ẆDF,S
0,N,0[F ; γ+] ∩ ẆDF,S

0,N+,N−
[F ; γ+] such that α− + m−γ− /∈ Z for any

m− ∈ {0, . . . , N− − 1},

İDF,S
0,N,0[F ](α+, β+, γ+) = (−1)N− İDF,S

0,N+,N−
[F ](α+, β+, γ+)

×
[ N−−1∏
m−=0

sin(π(α− + β− + (N− +m− − 1)γ−))
sin(π(α− +m−γ−))

]
. (4.51)

Similarly, for S = {N −N+ + 1, . . . , N}, we have:
• For all (α+, β+) ∈ ẆDF,S

N−,N+,0[F ; γ+] ∩ ẆDF,S
0,N,0[F ; γ+] such that β− + m−γ− /∈ Z for any

m− ∈ {0, . . . , N− − 1}

İDF,S
0,N,0[F ](α+, β+, γ+) = (−1)N− İDF,S

N−,N+,0[F ](α+, β+, γ+)

×
[ N−−1∏
m−=0

sin(π(α− + β− + (N− +m− − 1)γ−))
sin(π(β− +m−γ−))

]
. (4.52)

• For all (α+, β+) ∈ ẆDF,S
0,N,0[F ; γ+] ∩ ẆDF,S

0,N−,N+
[F ; γ+] such that α+ + m+γ+ /∈ Z for any

m+ ∈ {0, . . . , N+ − 1},

İDF,S
0,N,0[F ](α+, β+, γ+) = (−1)N+ İDF,S

0,N−,N+
[F ](α+, β+, γ+)

×
[ N+−1∏
m+=0

sin(π(α+ + β+ + (N+ +m+ − 1)γ+))
sin(π(α+ +m+γ+))

]
. (4.53)

�

Proof. Follows from a repeated application of Proposition 3.10, as in the proof of Proposition 4.2.
The only difference with the proof of Proposition 4.2 is that we appeal to Proposition 4.4 to show
(instead of it being an automatic consequence of symmetry) that

İ`,m,n[F ](αDF,S,βDF,S,γDF,S) = İ`,m,n[F ](αDF,S,βDF,S,γDF,S)σ` (4.54)
İ`−1,m+1,n[F ](αDF,S,βDF,S,γDF,S)σ` = İ`−1,m+1,n[F ](αDF,S,βDF,S,γDF,S)σ`+m (4.55)

İ`−1,m,n+1[F ](αDF,S,βDF,S,γDF,S)σ`+m = İ`−1,m,n+1[F ](αDF,S,βDF,S,γDF,S)σN . (4.56)
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�

Proposition 4.6. For γ+ ∈ C\{0, 1}, the functions IDF,S
N ;Reg[F ](α+, β+, γ+) defined by

İDF,S
N [F ](α+, β+, γ+) =

[∏
±

N±∏
j=1

sin(π(α± + β± + (N± + j − 2)γ±))
sin(π(α± + (j − 1)γ±)) sin(π(β± + (j − 1)γ±))

]
× IDF,S

N ;Reg[F ](α+, β+, γ+) (4.57)

extend to entire functions IDF,S
N ;Reg[F ] : C2

α+,β+
→ C. ��

Proof. The proof is very similar to that used to prove Proposition 4.3. Using the previous proposition
with Proposition 4.4, it suffices to note that the union of all nine of the sets

Ẇ
DF,S−
N,0,0 [F ; γ+], ẆDF,S−

0,N,0 [F ; γ+], ẆDF,S−
0,0,N [F ; γ+], ẆDF,S−

N−,N+,0[F ; γ+], ẆDF,S−
N−,0,N+

[F ; γ+],

Ẇ
DF,S−
0,N−,N+

[F ; γ+], ẆDF,S+
N+,N−,0[F ; γ+], ẆDF,S+

N+,0,N− [F ; γ+], ẆDF,S+
0,N+,N−

[F ; γ+] ⊂ C2
α+,β+ , (4.58)

where S+ = {1, . . . , N+} and S− = S{, is the complement of locally finite set of points, and then the
result follows via Hartog’s theorem.

�

Appendix A. The N = 2 case

We now consider the N = 2 case in some detail, beginning with the formula

S2(α,β,γ) = Γ(1 + α1)Γ(1 + β2)Γ(2 + 2γ1,2 + α1 + α2)Γ(1 + 2γ1,2)
Γ(2 + α1 + 2γ1,2)Γ(3 + α1 + α2 + β2 + 2γ1,2) · 3F2(a, b; 1), (A.1)

a = (a1, a2, a3) = (1 + α1,−β1, 2 + 2γ1,2 + α1 + α2) and b = (b1, b2) = (2 + α1 + 2γ1,2, 3 + α1 + α2 +
β2 + 2γ1,2). This is asymmetric in the role of the α’s and β’s, but there is an analogous formula
with the α’s and β’s on the right-hand side switched. Some of the singularities of S2 are manifest in
this formula, but others are hidden in the 3F2 factor.

Consider now the Dotsenko–Fateev-like integral

IDF0
2 (α1, α2, β1, β2, γ) =

∫ 1

0

∫ 1

0
xα1

1 xα2
2 (1− x1)β1(1− x2)β2(x2 − x1 + i0)2γ dx1 dx2. (A.2)

By the previous proposition:

Corollary A.0.1.

İDF0
2 (α1, α2, β1, β2, γ) = Γ(2 + 2γ + α1 + α2)Γ(1 + 2γ)

[ Γ(1 + α1)Γ(1 + β2)3F2(a, b; 1)
Γ(2 + α1 + 2γ)Γ(3 + α1 + α2 + β2 + 2γ)

+ e2πiγ Γ(1 + α2)Γ(1 + β1)3F2(a′, b′; 1)
Γ(2 + α2 + 2γ)Γ(3 + α1 + α2 + β1 + 2γ)

]
, (A.3)

where a′ = (a′1, a′2, a′3) = (1 + α2,−β2, 2 + 2γ + α1 + α2) and b′ = (b′1, b′2) = (2 + α2 + 2γ, 3 + α1 +
α2 + β1 + 2γ). ��

The formula eq. (A.3) is not suitable for analytic continuation to γ = −1, for which we instead
use the method described in §3.4. That yields

İ2(α1, α2, β1, β2, γ) = Γ(1 + α1)Γ(1 + β1)
Γ(2 + α1 + β1)

∫
Γ

[
zα2+2γ(1− z)β2

× 2F1
(
− 2γ, 1 + α1, 2 + α1 + β1; 1

z

)]
dz, (A.4)
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where the Γ is a trapezoidal contour in the upper-half of the complex plane. This formula can be
used to numerically compute İDF0

2 (α1, α2, β1, β2, γ) for γ with large negative real part, as long as
α1, α2, β1, β2 have sufficiently large positive real part relative to γ.

We illustrate the method of proof of Theorem 1.1 with the computation of the residues associated
with α− + α+ + 2γ ∈ Z−2−d. Introducing coordinates % = x2 and λ = x1/x2,

S2(α1, α2, β1, β2, γ) =
∫ 1

0

∫ x2

0
xα1

1 xα2
2 (1− x1)β1(1− x2)β2(x2 − x1)2γ dx1 dx2

=
∫ 1

0

∫ 1

0
%1+α1+α2+2γλα1(1− λ%)β1(1− %)β2(1− λ)2γ dλd%.

(A.5)

Expanding (1− λ%)β1(1− %)β2 in Taylor series around % = 0, we have

(1− λ%)β1(1− %)β2 =
∞∑
k=0

k∑
κ=0

(
β1
κ

)(
β2

k − κ

)
λκ(−%)k. (A.6)

Then, computing the outer integral term by term and using the formula for the β-function for the
inner integral,

S2(α1, α2, β1, β2, γ) ∼
∞∑
k=0

(−1)k

2 + α1 + α2 + 2γ + k

k∑
κ=0

(
β1
κ

)(
β2

k − κ

)
Γ(1 + α1 + κ)Γ(1 + 2γ)

Γ(2 + α1 + 2γ + κ) (A.7)

where the ‘∼’ means modulo an error which is not singular at (all but a positive codimension subset
of) the hyperplane under investigation. The right-hand side of this has an apparent pole whenever
α1 + α2 + 2γ ∈ Z≤−2.

We now examine some special cases. Fix d ∈ N. First consider

S2[xd](α, β, γ) = S2(α, α+d, β, β, γ) =
∫ 1

0

∫ x2

0
xα1x

d+α
2 (1−x1)β(1−x2)β(x2−x1)2γ dx1 dx2. (A.8)

By eq. (A.1),

S2[xd](α, β, γ) = Γ(1 + α)Γ(1 + β)Γ(1 + 2γ)Γ(2 + 2α+ 2γ + d)
Γ(2 + α+ 2γ)Γ(3 + 2α+ β + 2γ + d) · 3F2(a, b; 1), (A.9)

where now a = (a1, a2, a3) = (1+α,−β, 2+2α+2γ+d) and b = (b1, b2) = (2+α+2γ, 3+2α+β+2γ+d).
A numerically generated plot of the absolute value of the right-hand side is given in the case d = 2
in Figure 13. Applying Theorem 1.1, in which α1,∗ = α, α2,∗ = d+ 2α+ 2γ, β1,∗ = β, β2,∗ = 2β+ 2γ,
and γ1,2,∗ = 2γ, we deduce that S2[xd](α, β, γ) extends to an analytic function on

C3
α,β,γ

∖[
{α ∈ Z≤−1}∪{α+γ ∈ 2−1Z≤−2−d}∪{β ∈ Z≤−1}∪{β+γ ∈ 2−1Z≤−2}∪{γ ∈ 2−1Z≤−1}

]
.

(A.10)
In the d = 2 case, this can be seen in Figure 13.

On the other hand, consider

S2[yd](α, β, γ) = S2(α+d, α, β, β, γ) =
∫ 1

0

∫ x2

0
xd+α

1 xα2 (1−x1)β(1−x2)β(x2−x1)2γ dx1 dx2. (A.11)

By Equation (1.20),

S2[yd](α, β, γ) = Γ(1 + α+ d)Γ(1 + β)Γ(1 + 2γ)Γ(2 + 2α+ 2γ + d)
Γ(2 + α+ 2γ + d)Γ(3 + 2α+ β + 2γ + d) · 3F2(a′, b′; 1), (A.12)

where a′ = (a′1, a2, a3) = (1 + d+ α,−β, 2 + d+ 2α+ 2γ) and b′ = (b′1, b2) = (2 + d+ α+ 2γ, 3 + d+
2α+ β + 2γ). We again apply Theorem 1.1, but now α1,∗ = d+ α, α2,∗ = d+ 2α+ 2γ, in order to
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Figure 13. The absolute values of the right-hand sides of eq. (A.9) (left) and
eq. (A.12) (right) plotted against α, for β = 1/2 and γ = 1/3 fixed. The singularities
predicted in eq. (A.10), eq. (A.13) have been drawn as dotted vertical lines, those
associated with {α ∈ Z} in blue and those associated with {α+ γ ∈ 2−1Z} in red.
It appears that all of the poles that could be present are present. The apparent
zeroes of S2[F ](α, 1/2, 1/3) in the depicted range of α have been marked with dotted
black lines and numerically computed to be ≈ −2.48503 for F = x2 and ≈ −3.06833,
−3.57013, and −4.08562 for F = y2.

deduce that S2[yd](α, β, γ) extends analytically to

C3
α,β,γ

∖[
{α ∈ Z≤−1−d}∪{α+γ ∈ 2−1Z≤−2−d}∪{β ∈ Z≤−1}∪{β+γ ∈ 2−1Z≤−2}∪{γ ∈ 2−1Z≤−1}

]
.

(A.13)
See Figure 13 for a numerically generated plot.

If we instead pick F (x, y) = xd + yd, which is in some sense the symmetrization of the previous
two examples, the situation looks very different. Combining the formulas above yields

S2[xd + yd](α, β, γ) = (S2[xd] + S2[yd])(α, β, γ) = Γ(1 + α)Γ(1 + β)Γ(1 + 2γ)Γ(2 + 2α+ 2γ + d)
Γ(2 + α+ 2γ)Γ(3 + 2α+ β + 2γ + d)

×
[
3F2(a, b; 1) + Γ(1 + α+ d)Γ(2 + α+ 2γ)

Γ(1 + α)Γ(2 + α+ 2γ + d) · 3F2(a′, b′; 1)
]
. (A.14)

On the other hand, by Theorem 1.2, we know that S2[xd + yd] extends analytically to

C3
α,β,γ

∖[
{α ∈ Z≤−1−δ̄1} ∪ {α+ γ ∈ Z≤−2−δ̄2} ∪ {β ∈ Z≤−1−¯δ1} ∪ {β + γ ∈ Z≤−1−¯δ2}

∪ {γ ∈ 2−1Z≤−1, γ /∈ Z}
]
, (A.15)

where δ̄1, ¯δ1, δ̄2, ¯δ2 are as in the theorem. In this example, δ̄1, ¯δ1, ¯δ2 = 0, δ̄2 = dd/2e, d̄2 = d, and
d̄1 = bd/2c. See Figure 14, in which d = 2.

In the sum eq. (A.14), the poles of the individual summands at such 2α+ 2γ ∈ Z≤−2−d ∩ (2Z+ 1)
(which we can see from Figure 13 exist) must cancel. By eq. (A.7), the residue of S2[xd + yd](α, β, γ)
at such a point is proportional to

k∑
κ=0

(
β

κ

)(
β

k − κ

)[ Γ(1 + α+ κ)
Γ(2 + α+ 2γ + κ) + Γ(1 + α+ κ+ d)

Γ(2 + α+ 2γ + κ+ d)
]
. (A.16)
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Figure 14. The absolute value of the right side of eq. (A.14), plotted against
α ∈ (−6, 0) (left) and α ∈ (−6.1,−4.75) (right), for β = 1/2 and γ = 1/3 fixed.
Singularities associated with {α ∈ Z} are marked with blue lines and those with
{α+ γ ∈ Z} with red. The zeroes associated with {α+ β + γ ∈ Z} are marked in
green and those with {α+ β + 2γ ∈ Z} in orange. The location of the second plot is
marked as an inset on the left plot (not to scale).

This therefore has to vanish whenever −2−d−k is odd and (α, γ) ∈ {2α+ 2γ = −2−d−k} ⊂ C2
α,γ

is such that the functions in eq. (A.16) are well-defined. A direct algebraic proof of this fact is not
entirely trivial, but it is straightforward to check case-by-case.

The function S2;Reg[xd + yd](α, β, γ) is plotted as a function of α ∈ C in Figure 15, still in the
case d = 2 – for fixed β, γ. As expected, it appears to have no singularities, in accordance with
Theorem 1.2. Unlike in the case F = 1, where Selberg’s formula shows that S2;Reg[1](α, β, γ) is
constant, S2;Reg[xd + yd] is nonconstant.

Figure 15. The function S2;Reg[x2 + y2](α, 1/2, 1/3) defined by eq. (1.29), plotted
as a function of α ∈ C.
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Consider now İDF
2 (α+, β+) = İDF0

2 (α+,−α+, β+,−β+, 1), which is a DF-symmetric integral with
γ± = −1. This is given concretely by

İDF
2 (α+, β+) = Γ(1 + α+)Γ(1 + β+)

Γ(2 + α+ + β+)

∫
Γ

[
zα++2γ(1− z)β+

× 2F1
(
− 2γ, 1 + α+, 2 + α+ + β+; 1

z

)]
dz (A.17)

when the real parts of α+, β+ are sufficiently large. The Dotsenko–Fateev claim, eq. (1.49), is, up to
a sign, that

İDF
2 (α+, β+) = −Γ(1 + α+)Γ(1 + β+)Γ(α+)Γ(β+)

2Γ(1 + α+ + β+)Γ(α+ + β+) . (A.18)

Appendix B. Explicit coordinates on [0, 1)Ntb
In this appendix, we discuss the total boundary (tb) blowup [0, 1)Ntb, the mwc constructed by

blowing up all of the facets of [0, 1)N , starting with those of the lowest dimension.
For each nonempty subset S ⊆ {1, . . . , N}, let FS denote the face of [0, 1)Ntb corresponding to the

facet {j ∈ S ⇒ xj = 0} of [0, 1)Nx . Tracing through the construction of the total boundary blowup,
we have the following explicit choice of boundary-defining-functions (bdfs) of the various faces. If
N ≥ 3, these are different from the recursively defined boundary-defining-functions discussed in the
introduction to §2.

It is possible to prove:

Proposition B.1. The function

xFS = xFS ,N =
∏
S0⊇S

[ ∑
j∈S0

xj
](−1)|S|−|S0|

(B.1)

serves as a bdf of FS.
Suppose that I is a (possibly empty) set of nested nonempty subsets of {1, . . . , N}. Then,

fI = {xFS = 0 for all S ∈ I} (B.2)
is a codimension |I| facet of [0, 1)Ntb. This defines a bijective correspondence between the set of nested
nonempty subsets of {1, . . . , N} and the set of facets of [0, 1)Ntb.

If p lies in the interior of fI, then, letting σ ∈ SN denote any permutation consistent with I,
% = xσ(1), x̂σ(2) = xσ(2)/xσ(1), · · · , x̂σ(N) = xσ(N)/xσ(N−1) (B.3)

give a local set of coordinates near p. ��

Here, we say that σ ∈ SN is consistent with I if, whenever j < k, σ(j) ∈ S ∈ I⇒ σ(k) ∈ S.
We can cover [0, 1)Ntb with the N ! coordinate charts whose restrictions to the interior are of the

form

{0 < xσ(N) < 2xσ(N−1) < · · · < 2Nxσ(1) < 2N} ∩ (0, 1)N

→ [0, 1)xσ(1) × [0, 2)xσ(2)/xσ(1) × · · · × [0, 2)xσ(N)/xσ(N−1) , (B.4)

for σ ∈ SN .
The preceding proposition is used to prove:

Proposition B.2. For any M ∈ {1, . . . , N − 1} and nonempty Q ⊆ {1, . . . ,M},

xFQ,M =
∏

Q0⊆{M+1,...,N}
xFQ∪Q0 ,N

(B.5)

in (0, 1)Nx . �
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Proof. A factor of
∑
j∈Q∪Q0 xj appears on the right-hand side of eq. (B.5) to the power∑

Q1⊆Q0

(−1)|Q0|, (B.6)

which is, by the binomial theorem, +1 if Q0 = ∅ and 0 otherwise. Thus,
∏
Q0⊆{M+1,...,N} xFQ∪Q0 ,N

=∑
j∈Q xj . �

The full proof of Proposition B.1 is somewhat incidental to the rest of the paper, so we merely
illustrate the argument in the case N = 3. This generalizes to the N ≥ 3 case, and applies in an
even simpler form to the N = 2 case.

The total boundary blowup [0, 1)Ntb is defined as

[[0, 1)3; {x, y, z = 0}; {y, z = 0}; {x, z = 0}, {x, y = 0}], (B.7)

where the first blowup is that of {x, y, z = 0} and must be performed first. The other three blowups
can be performed in any order, and each order yields a canonically diffeomorphic mwc. The input
and output of the first blowup, yielding [[0, 1)3; {x, y, z = 0}], are

y

z

x

y/(x+ y + z)

z/(x+ y + z)

x/(x+ y + z)

x+ y + z

respectively, where we are marking the faces with boundary-defining-functions (using the Cartesian
coordinates x, y, z in place of x1, x2, x3). The choice of bdfs on the blowup are in accordance with
the prescription in the introduction of §2.

The next blowup, yielding

[[0, 1)3; {x, y, z = 0}; {y, z = 0}], (B.8)

has input and output

y/(x+ y + z)

z/(x+ y + z)

x/(x+ y + z)

x+ y + z

y/(y + z)

z/(y + z)

x/(x+ y + z)

x+ y + z (y + z)/(x+ y + z)

Again, the choices of bdfs are in accordance with §2.
Next, we blow up the facet of [[0, 1)3; {x, y, z = 0}; {y, z = 0}] corresponding to the y-axis.

Because the previous blowup was located away from the facet being blown up now, we can use the
sum

x

x+ y + z
+ z

x+ y + z
= x+ z

x+ y + z
(B.9)
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of the bdfs of the adjacent faces in [[0, 1)3; {x, y, z = 0}] as a bdf of the front face of the current
blowup rather than

x

x+ y + z
+ z

y + z
= xy + 2xz + yz + z2

(y + z)(x+ y + z) , (B.10)

which would be the prescription in §2. The choices in eq. (B.9), eq. (B.10) are equivalent, in the sense
that their quotient is a smooth, nonvanishing function on [[0, 1)3; {x, y, z = 0}; {y, z = 0}; {x, z = 0}].
Given that eq. (B.9) serves as a bdf of the front face of the latest blowup, the quotient

x/(x+ y + z)
(x+ z)/(x+ y + z) = x

x+ z
(B.11)

serves as a bdf in [[0, 1)3; {x, y, z = 0}; {y, z = 0}; {x, z = 0}] for the lift of the yz-plane, and
z/(y + z)

(x+ z)/(x+ y + z) = z(x+ y + z)
(x+ z)(y + z) (B.12)

serves as a bdf for the lift of the xy-plane. In summary, the third blowup has input and output

y/(y + z)

z/(y + z)

x/(x+ y + z)

x+ y + z (y + z)/(x+ y + z)

y/(y + z)

z(x+ y + z)(x+ z)−1(y + z)−1

x/(x+ z)

x+ y + z (y + z)/(x+ y + z)

(x+ z)/(x+ y + z)

The final blowup, yielding [0, 1)3
tb = [[0, 1)3; {x, y, z = 0}; {y, z = 0}; {x, z = 0}, {x, y = 0}], is

similar. We use (x+ y)/(x+ y + z) as a bdf of the blowup of the face corresponding to the z-axis,
and we can then use

x/(x+ z)
(x+ y)/(x+ y + z) = x(x+ y + z)

(x+ y)(x+ z)
y/(y + z)

(x+ y)/(x+ y + z) = y(x+ y + z)
(x+ y)(y + z)

(B.13)

as bdfs of the faces corresponding to the yz- and xz-planes, respectively. Thus, we end up with

y(x+ y + z)(x+ y)−1(y + z)−1

z(x+ y + z)(x+ z)−1(y + z)−1

x(x+ y + z)(x+ y)−1(x+ z)−1

x+ y + z (y + z)/(x+ y + z)

(x+ z)/(x+ y + z)

(x+ y)/(x+ y + z)

as our final result.
This establishes the first part of Proposition B.1, at least in the N = 3 case.
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The rest can be deduced. For example, consider the upper-left corner of the hexagonal face
f{{1,2,3}} in [0, 1)3

tb. This is f{{1},{1,2},{1,2,3}}. Nearby, z � y � x, so, in some neighborhood U of
that corner, and

x+ y + z ∈ zC∞(U ;R+), x+ z ∈ zC∞(U ;R+), x+ y ∈ yC∞(U ;R+). (B.14)
Thus, the chosen bdfs depicted above are x + y + z ∈ zC∞(U ;R+), (x + y)/(x + y + z) ∈
(y/z)C∞(U ;R+), and

x(x+ y + z)(x+ y)−1(x+ z)−1 ∈ (x/y)C∞(U ;R+). (B.15)
This shows that z, y/z, x/y serve as a valid coordinate system within U . The only permutation
σ ∈ S3 consistent with I = {{1}, {1, 2}, {1, 2, 3}} is σ = (1, 3), which reverses the order of 1, 2, 3.
That is, σ(1) = 3, σ(2) = 2, and σ(3) = 1. The coordinates %, x̂j defined in eq. (B.3) are

% = x3 = z, x̂2 = x2/x3 = y/z, (B.16)
and x̂1 = x1/x2 = x/y. It can be seen that U can be taken to be any open set not containing any
of the other corners of f{{1,2,3}}. Each corner is analogous, so the final clause of Proposition B.1
follows, at least in the considered N = 3 case, from the computations above.
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