
RADEMACHER SERIES FOR η-QUOTIENTS
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Abstract. We apply Rademacher’s method in order to compute the Fourier coefficients of a large
class of η-quotients.
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1. Background

A partition of an integer n is a multiset of positive integers whose sum is n. Let p(n) denote the
number of partitions of n. The value of p(n) may be computed by brute force for sufficiently small
n by simply enumerating all possible partitions and then counting. However, p(n) grows rapidly
and brute force computation rapidly becomes intractible. Another technique, pioneered by Euler
[Eul48], is to study the properties of the generating function

(1) Z(q) =
∞∑
n=0

p(n)qn = 1∏∞
n=1(1− qn) .

He showed that

(2) 1
Z(q) =

∞∏
n=1

(1− qn) =
∑
k∈Z

(−1)kqk(3k−1)/2.

This is a result regarding formal series. However, we can interpret these series as complex valued
functions in some appropriate domain. Viewed as complex functions, Z(q) and 1/Z(q) are both
nonvanishing and holomorphic on the open unit disk D ⊂ C and cannot be analytically continued
beyond D. One naturally asks (i) what are the analytic properties of these generating functions,
and (ii) what properties of p(n) may be deduced from these analytic properties. With regards to
(ii), if we know sufficiently many details regarding the analytic properties of Z(q), p(n) may simply
be extracted by performing a Fourier-Laplace transform:

(3) p(n) = 1
2πi

∫
γ

Z(q)
qn+1 dq

for some suitably chosen contour γ. The difficulty lies in computing this contour integral.
Before continuing, a word on notation: Given a function f(q) : D→ C, we may pull back f(q) by

the map q = e2πiτ to get a new function f(e2πiτ ) : H→ C, where H is the open upper-half of the
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complex plane. We will often denote f(e2πiτ ) as simply f(τ) when no confusion should arise. In
order to keep track of which variable we are working with, we will often refer to two copies of C as
the q-plane and the τ -plane.

The first progress with regards to (i) was due to Dedekind. Dedekind considered the eponymous
function η : D→ C,

(4) η(q) = q1/24
∞∏
n=1

(1− qn),

where q = e2πiτ [Apo76]. (This product is convergent.) This is simply 1/Z(q) with a (somewhat
mysterious) additional factor of q1/24. Dedekind showed that η(τ) is a modular form of weight 1/2
(with a nontrivial multiplier system). That is, for any matrix

(5) M =
(
a b
c d

)
∈ SL2(Z),

where SL2(Z) is the group of integral matrices with determinant +1,

(6) η

(
aτ + b

cτ + d

)
= ε(a, b, c, d)

√
cτ + d · η(τ),

where ε(a, b, c, d) = ε(M) : SL2(Z) → S1 ⊂ C is a (nontrivial) homomorphism. (Throughout this
paper, when we write square roots or half-integral powers, we mean to refer to the branch of the
logarithm with branch cut along the negative real axis.) This phase factor is called a multiplier
system. Dedekind computed ε(M). It is given by

(7) ε(a, b, c, d) =



exp
(
+πib

12

)
(c = 0, d = 1),

exp
(
−πib

12 + πi
4

)
(c = 0, d = −1),

exp
(
πi
[
a+d
12c − s(d, c)−

1
4

])
(c > 0),

exp
(
πi
[
a+d
12c − s(−d,−c)

])
(c < 0).

Here,

(8) s(h, k) =
k−1∑
n=1

n

k

(
hn

k
−
⌊
hn

k

⌋
− 1

2

)
is known as a Dedekind sum. In retrospect, eq. 6 is rather remarkable and allows us to extract
asymptotics of η(τ) for τ near a given rational q ∈ Q ⊂ C in terms of the asymptotics of η(τ) near
+i∞, asymptotics which are incredibly simple: as τ → +i∞, that is as q → 0, η(q) ∼ q1/24. Hardy
and Ramanujan [HR18] followed by Rademacher [Rad38a][Rad43] used this in order to explicitly
carry out the Fourier transform in eq. 3 and therefore compute p(n). This idea is rather general
and can be used to compute the Fourier coefficients of a wide variety of automorphic forms [RZ38].
Modifications can be used in order to compute the Fourier coefficients of modular forms which are
modular under a congruence subgroup of SL2(Z). This idea was pioneered by Zuckerman [Zuc39].
In this paper we will use such a modification in order to compute the Fourier coefficients of a
finite product of modular forms precomposed with multiplication by different scalar factorsM⊂ N.
These forms are modular forms under a congruence subgroup of the modular group, specifically

(9) Γ0(lcm(M)) =
{(

a b
c d

)
∈ SL2(Z) : c ≡ 0 mod lcm(M)

}
.

So, our result can be obtained using Zuckerman’s method applied to Γ0(lcm(M)). We instead
modify Rademacher’s original method in a slightly different – but ultimately equivalent – way so
that the calculation may be done for many η-quotients simultaneously. Our result is also closely
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related to a special case of recent work by Bringmann and Ono [BO12], but it is arguably easier to
simply derive our expressions from scratch rather than appeal to this more general theory.

Specifically: we consider η-quotients, functions Z(q) of the form

(10) Z(τ) =
∞∏
m=1

η(mτ)δm ,

where {δm}∞m=1 is a sequence of integers of which only finitely many are nonzero. Those with δm ≥ 0
for all m are often called η-products, and we will have little to say about them. These functions,
η-quotients, have appeared in several different contexts. One context, into which Rademacher’s
original paper fits, is being related to the generating functions for the counting function for some
partition-like combinatorial quantity, e.g. partitions. Rademacher’s method has been applied
successfully to a wide variety of counting problems. See the work of Grosswald [Gro58][Gro+60],
Haberzetle [Hab41], Hagis [Hag62][Hag63][Hag64][Hag65][Hag66], Hua [Hua42], Iseki [Ise60][Ise61],
Livingood [Liv45], Niven [Niv40], as well as more recent work by Sills [Sil13][Sil10] and others
[Kir11][MP12] for examples. Some of the results in these papers are in accord with the main result
in this paper, but the proof presented in this paper does not work for many of them; it breaks
down when the modular form of interest has zero (or positive) weight, which is the case in some of
the applications above. The proof presented here does work for some of them (namely the ones
regarding modular forms of negative weight), for example the result of Sills in [Sil13].

A second context is as the partition functions for 1/2-BPS black holes in CHL models of string
theory, defined originally in [CHL95], where the frame shape of the η-quotient corresponds to the
frame shape of the associated K3 symplectic automorphism [HM14][GG10]. The constants d(n) then
have physical interpretation as the exponential of the entropy of a black hole with a given charge.
See [Dab05][Dab+05b][Dab+05a][Sen08] for computations of black hole entropy in non-reduced rank
models using Rademacher series. See [GG10][JS06][Gov11] for derivations of CHL 1/2-BPS black
hole partition functions. A classification of all CHL models was recently completed [PV15][PVZ17],
and the latter work includes a list of all CHL frame shapes. For Type IIB string theory on K3× T 2

or dual models, the Rademacher series coefficients may be computed by a gravity path “integral.”
See [Boe+06][MM10][MP09][DGM15][MR15][Gom17a][Gom17b] for some recent work in this regard.
η-products have also been of interest in Mathieu moonshine [HM14][PVZ17]. Just as Rademacher
series were used to compute exact black hole entropy from microscopic partition functions for
non-CHL models, the original motivation for this work was to compute exact black hole entropy
from microscopic partition functions for CHL models.

In order to present our main formula, we need a few preliminary definitions. Let

(11) n0 = − 1
24

∞∑
m=1

m · δm.

The function Z(q) · qn0 is holomorphic in the open unit disk D, and so we may write

(12) Z(q) = q−n0
∞∑
n=0

d(n)qn.

for some coefficients d(n). From the product formula for η(q) in eq. 4, each d(n) is an integer. The
main result of this paper is an explicit formula for d(n) for a large class of sequences {δm}∞m=1. Let

(13) c1 = −1
2

∞∑
m=1

δm, c2(k) =
∞∏
m=1

[gcd(m, k)
m

]δm/2
, c3(k) = −

∞∑
m=1

δm
gcd(m, k)2

m
,

(14) Ak(n) =
∑

0≤h<k
gcd(h,k)=1

exp
[
−2πi

(
h

k
· n+ 1

2

∞∑
m=1

δm · s
(

mh

gcd(m, k) ,
k

gcd(m, k)

) )]
.
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Finally letM be the set of m for which δm is nonzero. The quantities c1, c2(k), c3(k) are coefficients
which appear in our calculation and formula. The coefficient c1 is the negative of the weight of
Z(τ) as a Γ0(lcm(M))-modular form. The sums Ak(n) closely resemble – and in some cases are –
Kloosterman sums. We will call them Kloosterman-like sums. It can be shown that Ak(n) is real
for all k and n. With these definitions in hand, we may state:

Theorem 1.1. If c1 > 0 and the periodic function g(k) : N→ R given by

(15) g(k) = min
m∈M

{
gcd(m, k)2

m

}
− c3(k)

24
is non-negative, then for n ∈ {1, 2, . . .} such that n > n0,

(16) d(n) = 2π
( 1

24(n− n0)

) c1+1
2

∞∑
k=1

c3(k)>0

c2(k)c3(k)
c1+1

2 Ak(n)k−1I1+c1

[
π

k

√
2
3c3(k)(n− n0)

]
,

where I1+c1 is the (1 + c1)th modified Bessel function of the first kind. �

It is worth spending a moment to comment on the hypotheses of Theorem 1.1. Rademacher’s
proof in [RZ38] works only for modular forms of positive “dimension,” that is negative weight. Since
c1, as defined by eq. 13, is the dimension of our modular form under the congruence subgroup
for which it transforms modularly (i.e. (9)), our constraint c1 > 0 in Theorem 1.1 is analogous to
the weight constraint of Rademacher. Rademacher noted that his formula held for other modular
forms, including many of weight zero. The various methods of proof for these extreme cases seem to
be substantially more delicate, relying on detailed computations involving Kloosterman-like sums.
Rademacher’s computation of the Fourier coefficients of J(τ) in [Rad38b][Rad39] is an example. The
story for η-quotients is expected to be analogous. As a matter of empirical fact, eq. 16 seems to work
for many η-quotients with c1 = 0, assuming that the second hypothesis regarding g(k) is satisfied.
This is not entirely surprising given recent work by Duncan and others [DF11][CD12][DGO15], and
we expect that their results could be used to extend Theorem 1.1 to the c1 = 0 case.

Rademacher’s formula in [RZ38] includes a sum over the polar part of the relevant modular
form. For each k, each polar term gives rise to a distinct Bessel function in the Rademacher series.
We only get a single Bessel function for each k – as in eq. 16 – when the polar part contains one
term. Analogously, the condition that g(k) ≥ 0 implies that the polar part of Z(τ) at each cusp
of H/Γ0(lcm(M)) contains at most one term. (We also allow the polar part to be zero for some
k.) If the polar part of Z(τ) at some cusp of H/Γ0(lcm(M)) contains more than one term, the
following computation can easily be modified to yield a Rademacher-type formula for the Fourier
coefficients of the η-quotient under consideration. The resultant formula will look like eq. 16 but
with additional Bessel functions, one for each additional term in the polar part. The existence of
only at most a single term in the polar parts entails a simplification of the formulas — since this
case seems sufficient for the application to black hole microstate counting (the original motivation
for this work), we do not belabor full generality.

An outline of this short paper is as follows: the proof of Theorem 1.1 is contained in §2, we check
that eq. 16 has the expected asymptotics in §3, and in §4 we present some numerics serving to
illustrate the main result.

2. Proof of main theorem

We will use Rademacher’s modification of the Hardy-Ramanujan-Littlewood circle method to
compute d(n). We present a couple of lemmas (labeled as such or not) which are contained in
the original papers [Rad38a][Rad43] without proof. The reader can find proofs of these lemmas in
these papers or in many expositions (such as [Hsu11]). Our notation mostly follows Rademacher,
with a few modifications. We will continue working in the setup of the introduction, and unless
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stated otherwise, we will be working under the assumption that the hypotheses of of the claim,
Theorem 1.1, hold.

As in Rademacher’s computation of the Fourier coefficients of 1/η(τ), we extract d(n) (for integral
n) by performing a Fourier-Laplace transform:

(17) d(n) = 1
2πi

∫
γ

Z(q) · qn0

qn+1 dq,

where γ ⊂ D is a closed (toy) contour winding once around the origin, contained entirely within
the unit disk in the q-plane. The rest of the proof is simply computing this integral. Following
Rademacher, we will define a sequence of suitable contours {γN}∞N=1, compute the integral in eq. 17
for γ = γN up to an error term, take N →∞ and show that the error term converges to zero. As
it turns out, it is more convenient to define the contours in the τ -plane and then map them into
the q-plane. We will denote a pullback of some contour γ in the q-plane to the τ -plane as τ(γ).
(Note that τ(γ) is not uniquely defined, but this is of no consequence below.) Our departure from
Rademacher occurs only in the details of the computation of each contour integral.

Some preliminary definitions are in order. By “irreducible fraction h/k ∈ [0, 1]” we mean a pair
(h, k) of coprime integers with k > 0 and 0 ≤ h ≤ k. (We do not use the parenthetical notation
for these ordered pairs as it coincides with our abbreviation for greatest common divisors.) For
N ∈ N+, the Nth Farey sequence FN ⊂ Q is the finite sequence containing all irreducible fractions
in [0, 1] of denominator at most N in increasing order. The Ford circle C(h/k) associated with an
irreducible fraction h/k is the circle in the (closed upper-half of the) τ -plane with center h/k+ i/2k2

and radius 1/2k2. See Figure 1. We denote by q(C(h/k)) the image of C(h/k) in the q-plane,

(18) q(C(h/k)) = {e2πiτ : τ ∈ C(h/k)}.
Note that q(C(0/1)) = q(C(1/1)). It can be shown that the Ford circles corresponding to consecutive
fractions h1/k2 and h2/k2 in some Farey sequence are tangent at the point

(19) τ̃(h1/k1, h2/k2) = h1k1 + h2k2 + i

k2
1 + k2

2
.

For irreducible fractions h0/h0 < h1/k1 < h2/k2 with C(h0/k0) and C(h2/k2) tangent to C(h1/k1),
let τ(γh0/k0,h1/k1,h2/k2) be the arc on C(h1/k1) from the point of tangency with C(h0/k0) to the
point of tangency with C(h2/k2) parametrized by arc length. We choose the contour to proceed
around the Ford circle clockwise so that the arc does not touch the real line. Likewise, for h2/k2
such that C(h2/k2) is tangent to C(0/1), let τ(γ0/1,h2/k2) be the arc on C(0/1) from the point +i
to the point of tangency with C(h2/k2) parametrized by arc length. Likewise, for h0/k0 such that
C(h0/k0) is tangent to C(1/1), let τ(γh0/k0,1/1) be the arc on C(0/1) from the point of tangency
with C(h0/k0) to the point 1 + i parametrized by arc length. If we specify an N ∈ {1, 2, . . .}, then
we may define τ(γN,h/k) for h/k ∈ FN to be

(20) τ(γN,h/k) =


τ(γ0/1,h2/k2) (h/k = 0/1),
τ(γh0/k0,h/k,h2/k2) (k 6= 1),
τ(γh0/k0,1/1) (h/k = 1/1),

where h0/k0 is the element in FN immediately before h/k if such an element exists and h2/k2 is
the element in FN immediately after h/k if such an element exists.

We define τ(γN ) to be the concatenation in order of each τ(γN,h/k) for h/k ∈ FN . The contour
γN is then the mapping of τ(γN ) into the q-plane. This is a concatenation of the contours γN,h/k
for h/k ∈ FN . We redefine γN,0/1 to be the concatenation of what we used to call γN,0/1 and
γN,1/1. These contours meet in the q-plane at the appropriate endpoints. The full contour γN is
piecewise smooth and has winding number one about the origin. See Fig. 2 for visualizations of the
Rademacher contour γN and τ(γN ) for various values of N .
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Figure 1. The first few Ford circles in the τ and q planes, colored according to
various color schemes.

We now split up the contour integral in eq. 17 into a sum of integrals over subcontours:

(21) d(n) = 1
2πi

N∑
k=1

∑
1≤h<k
(h,k)=1

∫
γN,h/k

Z(q)
q(n−n0)+1 dq,

where (h, k) is shorthand for gcd(h, k). It is convenient to change coordinates within each subcontour
integral in order to write them as integrals over similar contours. Note that, for irreducible h/k, the
coordinate transformation

(22) z = −ik2
(
τ − h

k

)
or equivalently τ = i · z

k2 + h

k

maps the Ford circle C(h/k) in the τ -plane to the circle B1/2(1/2) in the z-plane with center 1/2
and radius 1/2. See Fig. 3. The point τ̃(h/k, h2/k2) is mapped to the point

(23) z̃h/k(h2/k2) = k2

k2 + k2
2

+ i

(
hk − k2

k2 + k2
2

(hk + h2k2)
)
.

We moved the h/k into the subscript of z̃ to emphasize that the coordinate transformation depends
on h/k and that – for this reason – unlike τ̃ , z̃ is not symmetric under interchanging its arguments.
The contour τ(γN,h/k) = τ(γh0/k0,h/k,h2/k2) is mapped to an arc along B1/2(1/2) from z̃h/k(h0/k0)
to z̃h/k(h2/k2), specifically the arc which does not contain the origin. Likewise, the contours
τ(γ0/1,h2/k2) and τ(γh0/k0,1/1) are mapped together to an arc along B1/2(1/2) from z̃1/1(h0/k0) to
z̃0/1(h2/k2), also the arc which does not contain the origin. Let

• z̃1,N,h/k be z̃h/k(h0/k0), where h0/k0 is the element of FN immediately before h/k if k 6= 1,
and
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Figure 2. The Rademacher contour γN for several different values of N , in the τ
and q planes.

• z̃1/1(h0/k0), where h0/k0 is the element of FN immediately before 1/1 if k = 1.
For irreducible h/k except 1/1, let z̃2,N,h/k be z̃h/k(h2/k2), where h2/k2 is the element of FN
immediately after h/k. It can be checked that

(24) z̃1,N,h/k = k

k2 + k2
0

(k + ik0),

(25) z̃2,N,h/k = k

k2 + k2
2

(k − ik2),

where h0/k0 < h/k < h2/k2 are consecutive fractions in FN or if h/k = 0/1 and h0/k0 is immediately
preceding 1/1 or if h/k = 1/1 and h2/k2 is immediately following 0/1. See Fig. 3.

Rewriting eq. 21 in terms of z,
(26)

d(n) = i
N∑
k=1

k−2 ∑
0≤h<k
(h,k)=1

∫
z(γN,h/k)

Z

(
exp

(
2π
[
i · h
k
− z

k2

]))
exp

(
2π(n− n0)

(
z

k2 − i ·
h

k

))
dz.

Here z(γN,h/k) is the mapping of τ(γN,h/k) into the z-plane. That is, z(γN,h/k) is the arc of
B1/2(1/2) which avoids the origin and is from z̃1,N,h/k to z̃2,N,h/k. Tracing through the definitions of
z and Z(q), the integrands above are holomorphic in the right-half of the z-plane. We may therefore
deform our subcontours from arcs on B1/2(1/2) to chords through B1/2(1/2). These chords begin at
z̃1,N,h/k and end at z̃2,N,h/k. We denote these chords as z1z2(N,h/k). See Fig. 3. So,
(27)

d(n) = i
N∑
k=1

k−2 ∑
0≤h<k
(h,k)=1

∫
z1z2(N,h/k)

Z

(
exp

(
2π
[
i · h
k
− z

k2

]))
exp

(
2π(n− n0)

(
z

k2 − i ·
h

k

))
dz.

Before we proceed, we state two geometric lemmas. The first concerns the properties of the
chords z1z2(N,h/k), and the second concerns the properties of arcs on B1/2(1/2). Proofs of these
are contained in [Hsu11].

Lemma 2.1. The chord z1z2(N,h/k) has length at most 2
√

2k/N and on this chord |z| ≤
√

2k/N .
�



8 ETHAN SUSSMAN

Figure 3. The first few Ford circles in the z-plane using the transformation in
eq. 22 for h/k = 1/2 (left), h/k = 1/3 (center), and h/k = 1/4 (right). The
chords z1z2(N,h/k) for various N are denoted by gray dashed lines. (The cases
h/k = 1/2, 1/4 look similar but do differ on close examination.)

Lemma 2.2. In the disk bounded by B1/2(1/2), Re(z) ≤ 1 and Re(1/z) ≥ 1, with Re(1/z) = 1 on
the circle itself.

On the arcs from 0 to z̃1,N,h/k and z̃2,N,h/k to 0, |z| ≤
√

2k/N . The length of these arcs is at
most π

√
2k/N . �

By the previous two lemmas, if we fix h/k and send N → ∞, the chords z1z2(N,h/k) get
shorter and nearer to the origin. As z approaches the origin, τ = (h/k) + i(z/k2) approaches h/k.
So, asymptotics for τ → h/k + i0 correspond to asymptotics for z → 0+, for the h/k-dependent
coordinate transformation above. We can calculate the rather manifest asymptotics of η(τ) as τ
approaches +i∞ from the definition of η(τ). We can then calculate the asymptotics of Z(τ) near
h/k in terms of the asymptotics of each η(mτ) near +i∞ using the modularity properties of η(τ).
These asymptotics are sufficiently simple to be integrated in terms of some special functions. This
is the key insight in the Hardy-Littlewood-Ramanujan circle method, and Rademacher’s innovation
consists of doing this precisely. We now turn to expressing η(mτ) for m ∈ {1, 2, . . .} near h/k in
terms of η(τ) near +i∞.

For an irreducible fraction h/k ∈ [0, 1], we may find by the Euclidean algorithm some integer
H(m,h, k) = H such that

(28) mhH ≡ − gcd(m, k) mod k.

It follows that the matrix M =
(
a b
c d

)
is in SL2(Z), where

(29) a = H, b = −1
k

(mhH + gcd(m, k)), c = k

gcd(m, k) , d = − mh

gcd(m, k) .



RADEMACHER SERIES FOR η-QUOTIENTS 9

As a member of the modular group, this matrix defines a linear fractional transformation of the
upper-half of the complex plane; this is given by the map M(τ) = aτ+b

cτ+d , τ ∈ H. Under this action,
the image of mτ is

(30) M(mτ) = M

(
m

[
h

k
+ i · z

k2

])
= gcd(m, k)

k

(
H + i · k

mz
gcd(m, k)

)
= amτ + b

cmτ + d
.

As z approaches 0 – and therefore τ approaches h/k – the right hand side converges (in an appropriate
sense) to positive imaginary infinity. Using the modular transformation properties of η(τ),

(31) η(mτ) = [ε(a, b, c, d)(cmτ + d)1/2]−1 η

(
amτ + b

cmτ + d

)
.

In this case, cmτ + d = imz/k gcd(m, k), and by eq. 7,

(32) ε(a, b, c, d) = exp
(
πi

(
H

12k gcd(m, k)− mh

12k + s

(
mh

gcd(m, k) ,
k

gcd(m, k)

)
− 1

4

))
,

so that

(33) η

(
m

(
h

k
+ i · z

k2

))
= exp

(
πi

(
− H

12k gcd(m, k) + mh

12k − s
(

mh

gcd(m, k) ,
k

gcd(m, k)

)))

×

√
k gcd(m, k)

mz
η

(gcd(m, k)
k

(
H + i · k

mz
gcd(m, k)

))
.

The constant H = H(m,h, k) depends implicitly on m, h, and k. Combining eq. 33 for all values of
m:

(34) Z

(
h

k
+ i · z

k2

)
= ξ(h, k)ω(h, k) · zc1

∞∏
m=1

η

(gcd(m, k)
k

(
H + i · k

mz
gcd(m, k)

))δm

,

where c1 was defined in eq. 13 and we defined

(35) ξ(h, k) =
∞∏
m=1

√k gcd(m, k)
m

exp
(
πi

(
mh

12k − s
(

mh

gcd(m, k) ,
k

gcd(m, k)

)))δm

and

(36) ω(h, k) =
∞∏
m=1

exp
(
− πi

12kHδm gcd(m, k)
)
.

Plugging in the previous formulas into eq. 27:

(37) d(n) = i
N∑
k=1

k−2 ∑
0≤h<k
(h,k)=1

ξ(h, k)ω(h, k)
∫
z1z2(N,h/k)

zc1

×
[ ∞∏
m=1

η

(gcd(m, k)
k

(
H + i

k

mz
gcd(m, k)

))δm
]

exp
(

2π(n− n0)
(
z

k2 − i ·
h

k

))
dz.

We expect (say, based on Rademacher’s original argument or the rapid convergence of e−1/z to 0 as
z → 0+.) to be able to replace each η(q) in the integrand with q1/24 and accrue a total o(1) error as
N →∞. Defining
(38)

Er(N) = i
N∑
k=1

∑
0≤h<k
(h,k)=1

k−2ξ(h, k)ω(h, k)
∫
z1z2(N,h/k)

zc1 exp
(

2π(n− n0)
(
z

k2 − i
h

k

))
∆h,k(z) dz,
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where ∆h,k(z) is the difference between the η-quotient and its leading order asymptotics,

(39) ∆h,k(z) =
[ ∞∏
m=1

η

(gcd(m, k)
k

(
H + i

k

mz
gcd(m, k)

))δm
]
−[ ∞∏

m=1
exp

(
πi

12
gcd(m, k)

k

(
H + i

k

mz
gcd(m, k)

))δm
]
,

we can write
(40)

d(n) = Er(N)+i
N∑
k=1

1
k2

∑
0≤h<k
(h,k)=1

ξ(h, k)e−2πi(n−n0)·h
k

∫
z1z2(N,h/k)

zc1 exp
[2π(n− n0)

k2 z + π

12
c3(k)
z

]
dz.

The second term is the result of replacing each η-function by the appropriate asymptotics, and the
first term is the accumulated error from doing so. We wish to show that limN→∞ Er(N) = 0.

Our first task is to bound ∆h,k(z). We will show that ∆h,k(z) = O(1) along our contours, where
the bound does not depend on h, k, or z. That is, there exists some constant C = C({δm}∞m=1)
depending only on {δm}∞m=1 such that |∆h,k(z)| ≤ C (for all relevant h, k, z). The fact that ∆h,k(z)
does not blow up at the origin is essentially the assumption that the polar component of Z(τ) near
h/k contains at most one term (that which we are approximating Z by). Let η̃(τ) = η(τ)/q1/24, so
that

(41) ∆h,k(z) =
[ ∞∏
m=1

exp
(
πi

12
gcd(m, k)

k

(
H + i

k

mz
gcd(m, k)

))δm
]

×
[[ ∞∏

m=1
η̃

(gcd(m, k)
k

(
H + i

k

mz
gcd(m, k)

))δm
]
− 1

]
.

Taking the norm,

(42) |∆h,k(z)| = exp
[
π

12c3(k) Re
(1
z

)]
×
∣∣∣∣∣
∞∏
m=1

η̃

(gcd(m, k)
k

(
H + i

k

mz
gcd(m, k)

))δm

− 1
∣∣∣∣∣ .

If c3(k) > 0, the first term on the right hand side can be large for some z along z1z2(N,h/k),
specifically z close to the origin. Compensatingly, we expect – based on the z → 0 asymptotics of
the productand – the second term on the right hand side to be small (hence the claimed uniform
bound on |∆h,k(z)|). This is the content of the following lemma.

Lemma 2.3. For some constant D, which may depend only on {δm}∞m=1: for z in B1/2(1/2)/{0},
(43)∣∣∣∣∣
∞∏
m=1

η̃

(gcd(m, k)
k

(
H + i

k

mz
gcd(m, k)

))δm

− 1
∣∣∣∣∣ ≤ D exp

(
−2πRe

(1
z

)
min
m∈M

{
gcd(m, k)2

m

})
.

Here, B1/2(1/2) denotes the closed disk bounded by B1/2(1/2). �

Proof of Lemma 2.3. First consider

(44) η̃

(gcd(m, k)
k

(
H + i

k

mz
gcd(m, k)

))−1
,

which by definition is

(45)
∞∑
j=0

p(j) exp
(
−2πj · gcd(m, k)2

m
Re
(1
z

))
ω(h,m, k, z)j ,
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where p(j) is Euler’s partition function and ω(h,m, k, z) = ω is a phase factor. Recall the following
upper bound for p(j), which can be derived by purely classical methods, see e.g. [Apo76]:

(46) p(j) = O
(

exp
(
π

√
2
3 · j

))
.

The tail of the series in eq. 45 is therefore bounded above by a convergent geometric series. To be
more precise, consider the sum of all but the first two terms in eq. 45,

(47) exp
(
−2πgcd(m, k)2

m
Re
(1
z

))
ω
∞∑
j=2

p(j) exp
(
−2π(j − 1)gcd(m, k)2

m
Re
(1
z

))
ωj−1.

Using the triangle inequality and Lemma 2.2,

(48)
∣∣∣ ∞∑
j=2

p(j) exp
(
−2π(j − 1)gcd(m, k)2

m
Re
(1
z

))
ωj−1

∣∣∣ ≤ ∞∑
j=2

p(j) exp
(
−2π(j−1)gcd(m, k)2

m

)
,

which, using the classical bound on p(j) in eq. 46, is bounded above by

(49) C
∞∑
j=2

exp
(
π

√
2
3 · j − 2π(j − 1) · gcd(m, k)2

m

)
for some absolute constant C. Therefore, since gcd(m, k)/m ≥ 1/m, the right-hand side above is
bounded by

(50) C
∞∑
j=2

exp
(
π

√
2
3 · j −

2π
m

(j − 1)
)
.

This is bounded above by a convergent geometric series, so that for some constant Cm > 0 which
is dependent only on m, |

∑∞
j=2 p(j) exp

(
−2π(j − 1)m−1 gcd(m, k)2 Re(1/z)

)
ωj−1| ≤ Cm. It follows

that eq. 47 is bounded above in magnitude by Cm exp(−2πm−1 gcd(m, k)2 Re(1/z)). Therefore,
replacing the tail in eq. 45 with this bound,

(51) η̃

(gcd(m, k)
k

(
H + i

k

mz
gcd(m, k)

))−1
= 1 +O(1) exp

(
−2πgcd(m, k)2

m
Re
(1
z

))
,

where the O(1) term satisfies |O(1)| ≤ Cm + 1. Taking the reciprocal of eq. 51 – and using that
Re(1/z) ≥ 1 within B1/2(1/2) – yields

(52) η̃

(gcd(m, k)
k

(
H + i

k

mz
gcd(m, k)

))
= 1 +O(1) exp

(
−2πgcd(m, k)2

m
Re
(1
z

))
for some other O(1) term which can be bounded in magnitude depending only on m.

Taking the appropriate product of eq. 51 and eq. 52 for all m yields
(53)
∞∏
m=1

η̃

(gcd(m, k)
k

(
H + i

k

mz
gcd(m, k)

))δm

= 1 +O(1) exp
(
−2π min

m∈M

{
gcd(m, k)2

m

}
Re
(1
z

))
,

whereM is the (finite) set of all m ∈ N such that δm is nonzero, and the O(1) term is bounded in
magnitude depending only on {δm}∞m=1. Consequently, for some constant D > 0 depending only on
{δm}∞m=1,
(54)∣∣∣∣∣∏

m

η̃

(gcd(m, k)
k

(
H + i

k

mz
gcd(m, k)

))δm

− 1
∣∣∣∣∣ ≤ D exp

(
−2π min

m∈M

{
gcd(m, k)2

m

}
Re
(1
z

))
.

�
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Using Lemma 2.3,
(55)

|∆h,k(z)| ≤ D exp
[
−2πRe

(1
z

)(
min
m∈M

{
gcd(m, k)2

m

}
− c3(k)

24

)]
= D exp

[
−2πRe

(1
z

)
g(k)

]
.

One of the hypotheses of Theorem 1.1 is that the function g(k) is non-negative. Then, using Lemma
2.2, we can bound
(56) |∆h,k(z)| ≤ De−2πmin{g(k):k=1,...,lcm(M)},

and the right hand side depends only on {δm}∞m=1. We redefine D to be this constant (absorbing the
exponential). Using eq. 56 and Lemma 2.1, the integral in eq. 38 is bounded above in magnitude:

(57)
∣∣∣∣∣
∫
z1z2(N,h/k)

zc1 exp
(

2π(n− n0)
(
z

k2 − i
h

k

))
∆h,k(z) dz

∣∣∣∣∣
≤ 2D

(√
2 · k

N

)c1+1
exp

(
2
√

2π(n− n0) · k
N

)
.

Substituting this into the definition of Er(N) in eq. 38: for some constant C depending only on
{δm}∞m=1,

|Er(N)| ≤ Ce2
√

2πnN−(c1+1)
N∑
k=1

∑
0≤h<k
(h,k)=1

k−1.

Since there are at most k terms in the inner sum and N terms in the outer sum, we can bound this
as follows:
(58) |Er(N)| ≤ Ce2

√
2πnN−c1 .

Since c1 > 0, this shows that limN→∞ Er(N) = 0, as desired. Referring back to eq. 40, we have
shown that
(59)

d(n) = o(1) + i
N∑
k=1

k−2 ∑
0≤h<k
(h,k)=1

ξ(h, k)e−2πi(n−n0)h/k
∫
z1z2(N,h/k)

zc1 exp
[2π(n− n0)

k2 z + π

12
c3(k)
z

]
dz.

We now deform our contours back to arcs along B1/2(1/2):
(60)

d(n) = o(1) + i
N∑
k=1

k−2 ∑
0≤h<k
(h,k)=1

ξ(h, k)e−2πi(n−n0)h/k
∫
z(γN,h/k)

zc1 exp
[2π(n− n0)

k2 z + π

12
c3(k)
z

]
dz.

Our next goal is to show that the main term on the right hand side above,

i
N∑
k=1

k−2 ∑
0≤h<k
(h,k)=1

ξ(h, k)e−2πi(n−n0)h/k
∫
z(γN,h/k)

zc1 exp
[2π(n− n0)

k2 z + π

12
c3(k)
z

]
dz,(61)

differs from

(62) i
N∑
k=1

k−2 ∑
0≤h<k
(h,k)=1

ξ(h, k)e−2πi(n−n0)h/k
∫
B1/2(1/2)

zc1 exp
[2π(n− n0)

k2 z + π

12
c3(k)
z

]
dz

by an o(1) term as N →∞ (the rate of convergence depending on n). (Lemma 2.2 suffices to show
that the integrals in eq. 62 are well-defined, e.g. as improper integrals. Since c1 > 0, the integrands
are actually continuous at the origin when z is restricted to B1/2(1/2), so we can denote the integrals
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as is – that is as a proper Riemann or Lebesgue integral – as long as we interpret the integrands
appropriately, namely by removing the removable C0-singularity at the origin.) The contour in eq.
62 is traversed clockwise. So, according to the claim: we may replace our integrals over incomplete
arcs of B1/2(1/2) by integrals over the complete circle B1/2(1/2) and only accrue a total o(1) error
as N → ∞. The former, eq. (61), is the latter, eq. (62), minus J1 + J2, where J1 = J1(N) and
J2 = J2(N) are defined by

(63) J1 = i
N∑
k=1

∑
0≤h<k
(h,k)=1

k−2ξ(h, k)e−2πi(n−n0)h/k
∫ z̃1(N,h/k)

0
zc1 exp

[2π(n− n0)
k2 z + π

12
c3(k)
z

]
dz

and

(64) J2 = i
N∑
k=1

∑
0≤h<k
(h,k)=1

k−2ξ(h, k)e−2πi(n−n0)h/k
∫ 0

z̃2(N,h/k)
zc1 exp

[2π(n− n0)
k2 z + π

12
c3(k)
z

]
dz,

where the integrals are on arcs of B1/2(1/2) (hence well-defined). Using the bound |ξ(h, k)| ≤ k−c1 ,

(65) |J1| ≤
N∑
k=1

∑
0≤h<k
(h,k)=1

k−(2+c1)
∣∣∣∣∣
∫ z̃1(N,h/k)

0
zc1 exp

[2π(n− n0)
k2 z + π

12
c3(k)
z

]
dz
∣∣∣∣∣ .

Using Lemma 2.2,

(66) |J1| ≤ π
N∑
k=1

∑
0≤h<k
(h,k)=1

k−(2+c1)
(√

2k
N

)c1+1

exp
[2π(n− n0)

k2 + π

12c3(k)
]
.

So, for some constant C depending only on {δm}∞m=1,

(67) |J1| ≤ C
N∑
k=1

∑
0≤h<k
(h,k)=1

k−1
( 1
N

)c1+1
e2π(n−n0).

Since the outer sum is overN terms and the inner sum is over at most k terms, |J1| ≤ CN−c1e2π(n−n0).
Since c1 > 0, J1 = o(1) as N →∞ (for fixed n), as desired, where the constant depends on n. An
identical argument (mutatis mutandis) yields J2 = o(1). Combining all of the previous results, for
each n > n0,
(68)

d(n) = o(1) + i
N∑
k=1

k−2 ∑
0≤h<k

gcd(h,k)=1

ξ(h, k)e−2πi(n−n0)·h
k

∫
B1/2(1/2)

zc1 exp
[2π(n− n0)

k2 z + π

12
c3(k)
z

]
dz

as N →∞, where the rate of convergence can depend on n (and where the integrand is interpreted
as a continuous function on the contour). Taking N →∞,

(69) d(n) = i
∞∑
k=1

k−2 ∑
0≤h<k

gcd(h,k)=1

ξ(h, k)e−2πi(n−n0)·h
k

∫
B1/2(1/2)

zc1 exp
[2π(n− n0)

k2 z + π

12
c3(k)
z

]
dz

for each n > n0. Referring to the definition of ξ(h, k) in eq. 35 and of the Kloosterman-like sum
Ak(n) in eq. 14, this is exactly

(70) d(n) = i
∞∑
k=1

k−(2+c1)c2(k)Ak(n)
∫
B1/2(1/2)

zc1 exp
[2π(n− n0)

k2 z + π

12
c3(k)
z

]
dz.
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Now we just evaluate the integral I = I(n, k) given by

(71) I =
∫
B1/2(1/2)

zc1 exp
[2π(n− n0)

k2 z + π

12
c3(k)
z

]
dz.

First note that if c3(k) = 0 and c1 ∈ N, then the integrand is entire, so by the Cauchy integral
formula we have I = 0. If c1 /∈ N, then (since we are assuming c1 > 0) c1 ∈ 2−1(1 + 2N). In this
case, if c3(k) = 0, we can deform the contour in the contour integral so as to avoid the origin (this
is easily justified), and conclude (as before) that I = 0. So, as long as c3(k) = 0 and c1 > 0, I = 0.

If c3(k) 6= 0, we can rewrite I as
(72)

I =
∫
B1/2(1/2)

zc1 exp

π
k

√
|c3(k)|

6 (n− n0)

(z
k

√
24(n− n0)
|c3(k)|

)
±
(
z

k

√
24(n− n0)
|c3(k)|

)−1 dz,

where the plus-or-minus is the sign of c3(k). We make the substitution

(73) w =
(
z

k

√
24(n− n0)
|c3(k)|

)−1

, z =
(
w

k

√
24(n− n0)
|c3(k)|

)−1

,

(74) dz = −
(
w2

k

√
24(n− n0)
|c3(k)|

)−1

dw.

In terms of these new coordinates,

I = −
(
k

√
|c3(k)|

24(n− n0)

)c1+1 ∫ 1+i∞

1−i∞
w−(c1+2) exp

π
k

√
|c3(k)|

6 (n− n0)
(
w−1 ± w

) dw.

(75)

(The integral is well-defined as a Lebesgue integral or an improper Riemann integral. The preceding
formula can be proven e.g. by interpreting it as an improper Riemann integral and applying standard
theorems on changes-of-variables in Riemann integrals.) We now split into two cases depending on
the sign of c3(k). If c3(k) < 0, i.e. if the ± in the formulas above is negative, then the integrand
decays sufficiently rapidly in the right-half plane such that I is given by

I = −
(
k

√
|c3(k)|

24(n− n0)

)c1+1

lim
R→∞

∫
S(R)

w−(c1+2) exp

π
k

√
|c3(k)|

6 (n− n0)
(
w−1 − w

) dw,

(76)

where S(R) is the semicircle contour whose curved arc is the right half of the circumference of the
circle of radius R centered at 1 (and traversed clockwise). The integrand is holomorphic in the
region of the complex plane bounded by this contour, since it does not contain the origin, so that,
by Cauchy’s theorem, I = 0. Otherwise, that is if c3(k) > 0 (the one remaining case), then the
integrand decays sufficiently rapidly in the left-half of the complex plane such that

I = −
(
k

√
|c3(k)|

24(n− n0)

)c1+1 ∮
w−(c1+2) exp

π
k

√
|c3(k)|

6 (n− n0)
(
w−1 + w

) dw

(77)
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for any positively oriented closed (toy) contour winding once around the origin, assuming that
c1 is integral. (This formula is fine even if c1 is half-integral, but then we must be careful about
the branch cut.) In order to write this integral in a standard form, we rearrange the terms in the
integral slightly:

I = −2πi
(
k

√
|c3(k)|

24(n− n0)

)c1+1
1

2πi

∮
w−(c1+1)−1 exp

[
1
2
π

k

√
2
3 |c3(k)|(n− n0)

(
w−1 + w

)]
dw.

(78)

This integral (with the factor of 1/2πi out front) is a standard form of the modified Bessel function
of the first kind, which we cite from e.g. [Boa06][Wei06]. So,

I = −2πi
(
k

√
|c3(k)|

24(n− n0)

)c1+1

I1+c1

[
π

k

√
2
3 |c3(k)|(n− n0)

]
,

(79)

where (as usual) Ic1+1 is the modified Bessel function of the first kind of “weight” c1. In fact, this
same formula holds (possibly by definition, depending on choice of definition) for c1 half-integral,
which is a more general integral representation for the modified Bessel function of half-integral order
— cf. [Rad38a], which involves the case c1 = 1/2. To summarize the casework,

(80) I(n, k) =


0 (c3(k) ≤ 0),

−2πi
(
k

√
c3(k)

24(n−n0)

)c1+1
I1+c1

[
π
k

√
2
3c3(k)(n− n0)

]
(c3(k) > 0).

Given any n > n0: substituting I(n, k), as given by eq. 80, into eq. 70 and simplifying, we get

(81) d(n) = 2π
( 1

24(n− n0)

) c1+1
2

∞∑
k=1

c3(k)>0

c2(k)c3(k)
c1+1

2 k−1Ak(n)I1+c1

[
π

k

√
2
3c3(k)(n− n0)

]
.

This completes the proof of Theorem 1.1.

3. Asymptotics

We would like to extract useful asymptotics from eq. 81 (“useful” roughly meaning simple). These
are contained in the following proposition. For this section we (carrying on with the setup in the
introduction) assume that the hypotheses of Theorem 1.1 are satisfied, so that eq. 16 applies.

Proposition 3.1. Let K ⊂ N be the set of k that maximize c3(k)/k2, and let c3 > 0 be the maximum
value. For any ε > 0, there exists some constant C > 0 (which may depend only on {δm}∞m=1) such
that, for all n ∈ N with n > n0 and

(82)

∣∣∣∣∣∣
∑
k∈K

c2(k)kc1Ak(n)

∣∣∣∣∣∣ > ε,

it is the case that

(83) d(n) = (1 +O(e−C
√
n)) · 2π

(
c3

24(n− n0)

) c1+1
2
I1+c1

[
π

√
2
3c3(n− n0)

]∑
k∈K

c2(k)kc1Ak(n).

(Here |O(e−C
√
n)| ≤ Cεe−C

√
n for some constant Cε > 0 depending on ε and {δm}∞m=1 only.) �

The proof of Prop. 3.1 is straightforward and an exercise in using the asymptotics of the modified
Bessel functions.
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Proof. Note that c3(k) is periodic with period lcm(M). So, K ⊆ {1, . . . , lcm(M)}. We first break
up the Rademacher series in eq. 16 into lcm(M) sums, one for each possible value of the sum index
k modulo lcm(M). We then show that each of these subsums is “exponentially” dominated by the
leading term, in a sense which will be made precise by eq. 93. Collecting the leading terms of the
subsums, we have lcm(M) different Bessel functions, one for each k ∈ {1, . . . , lcm(M)}. We then
compare those Bessel functions with k 6∈ K against those with k ∈ K.

So, we first consider (for fixed b ∈ {1, . . . , lcm(M)} with c3(b) > 0)

(84)
∑
k∈[b]
k>0

c2(k)c3(k)(c1+1)/2Ak(n)k−1I1+c1

[
π

k

√
2
3c3(k)(n− n0)

]
,

where [b] is the equivalence class of integers modulo lcm(M) containing b. Because c2(k), c3(k) have
period lcm(M), this is

(85) c2(b)c3(b)(c1+1)/2 ∑
k∈[b]
k>0

Ak(n)k−1I1+c1

[
π

k

√
2
3c3(b)(n− n0)

]
.

Since we wish to show that the sum above is dominated by the first term, consider the rest of the
terms,

(86)
∑
k∈[b]

k>lcm(M)

Ak(n)k−1I1+c1

[
π

k

√
2
3c3(b)(n− n0)

]
,

which is bounded above in absolute value by

(87)
∑
k∈[b]

k>lcm(M)

∣∣∣∣∣I1+c1

[
π

k

√
2
3c3(b)(n− n0)

]∣∣∣∣∣ =
∑
k∈[b]

k>lcm(M)

I1+c1

[
π

k

√
2
3c3(b)(n− n0)

]
.

(Unlike the unmodified Bessel functions of the first kind, the modified Bessel functions of the first
kind are positive on the positive real axis.) Using the series expansion of I1+c1(z) — see e.g. [Wei06]
—

(88) I1+c1

[
π

k

√
2
3c3(b)(n− n0)

]
=
∞∑
j=0

1
Γ(j + c1 + 2)j!

(
π

2k

√
2
3c3(b)(n− n0)

)2j+1+c1

,

where the sum is convergent. Suppose that k0 is a real number satisfying 0 < k0 ≤ k. Then,

I1+c1

[
π

k

√
2
3c3(b)(n− n0)

]
≤
∞∑
j=0

1
Γ(j + c1 + 2)j!

(
π

2k0

√
2
3c3(b)(n− n0)

)2j+1+c1 (
k0
k

)2j+1+c1

(89)

≤
(
k0
k

)1+c1 ∞∑
j=0

1
Γ(j + c1 + 2)j!

(
π

2k0

√
2
3c3(b)(n− n0)

)2j+1+c1

(90)

=
(
k0
k

)1+c1

I1+c1

[
π

k0

√
2
3c3(b)(n− n0)

]
.(91)
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Summing over all relevant k > lcm(M) and setting k0 = b+ 1/2, so that k0 ∈ (0, k),∑
k∈[b]

k>lcm(M)

I1+c1

[
π

k

√
2
3c3(b)(n− n0)

]
≤ k1+c1

0 ζ(1 + c1)I1+c1

[
π

k0

√
2
3c3(b)(n− n0)

]
(92)

= O(e−Cb
√
n)I1+c1

[
π

b

√
2
3c3(b)(n− n0)

]
,(93)

for some constant Cb > 0 depending on b, where ζ denotes the Riemann ζ-function. (The constant
in the big-O can depend on {δm}∞m=1.) Therefore, the expression in eq. 85 is

(94) c2(b)c3(b)(c1+1)/2(Ab(n)b−1 +O(e−Cb
√
n))I1+c1

[
π

k

√
2
3c3(b)(n− n0)

]
.

It follows that

(95)
∑
k∈[b]
k>0

c2(k)c3(k)(c1+1)/2Ak(n)k−1I1+c1

[
π

k

√
2
3c3(k)(n− n0)

]

= c2(b)c3(b)(c1+1)/2(Ab(n)b−1 +O(e−Cb
√
n))I1+c1

[
π

b

√
2
3c3(b)(n− n0)

]
.

We can sum this result over b ∈ {1, . . . , lcm(M)} with c3(b) > 0. After doing so, we can absorb the
terms with b 6∈ K into the error term. So, for some constant C depending only on {δm}∞m=1,
(96)

d(n) = 2π
( 1

24(n− n0)

) c1+1
2 ∑

k∈K
(Ak(n)k−1 +O(e−C

√
n))c2(k)c3(k)

c1+1
2 I1+c1

[
π

k

√
2
3c3(k)(n− n0)

]
.

Since for k ∈ K it is the case that c3(k) = k2c3,

(97) d(n) = 2π
(

c3
24(n− n0)

) c1+1
2
I1+c1

[
π

√
2
3c3(n− n0)

]∑
k∈K

(Ak(n)k−1 +O(e−C
√
n))c2(k)k1+c1 .

Using the assumption in eq. 82,

(98) d(n) = (1 +O(e−C
√
n))2π

(
c3

24(n− n0)

) c1+1
2
I1+c1

[
π

√
2
3c3(n− n0)

]∑
k∈K

Ak(n)kc1c2(k),

as claimed, where now the O(e−C
√
n) term is bounded in terms of {δm}∞m=1 and ε. �

4. Numerics

In this section we numerically test eq. 16 for several η-quotients Z(q).
Here d(n,N) represents the Nth partial sum of the right hand side of eq. 16 and d(n) represents

the Fourier coefficients of Z(q) · qn0 . The following η-quotients all satisfy the hypotheses of Theorem
1.1. The absolute value
(99) |d(n,N)− d(n)|
of the difference between the finite sum d(n,N) and the exact Fourier coefficient d(n) – for
N ∈ {1, . . . , 1000} and n ∈ {1, . . . , 10} with n > n0 – is plotted in Figure 4, as a log-log plot, for

• Z(q) = 1/η(4τ)η(τ)3 in the upper-left,
• Z(q) = η(4τ)/η(τ)3 in the upper-right,
• Z(q) = 1/η(2τ) in the middle-left,
• Z(q) = 1/η(11τ)2η(τ)2 in the middle-right,
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• Z(q) = 1/η(τ)η(22τ) in the bottom-left,
• Z(q) = 1/η(τ)η(23τ) in the bottom-right.

The convergence of d(n,N) to d(n) as N →∞ is clear from the figure, although a few qualitative
trends are worth noting. The first is that the convergence is rather haphazard, especially for the
last couple of the η-quotients above. (At least, the haphazardness is most obvious for those two.)
The second is that the precise rate of convergence of d(n,N) to d(n) may depend on n. Indeed,
for the last couple η-quotients above, there are a few n which seem to lead to significantly delayed
decay, although it is not clear whether or not this delay persists as N → ∞. However, since the
decay rate appears linear in a log-log plot, with slope independent of n, the convergence follows
an approximate power law (in N) whose exponent is independent of n (depending only on the
η-quotient considered).
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Figure 4. Convergence of the Nth partial sums of eq. 16 for the listed η-quotients:
Z(q) = 1/η(4τ)η(τ)3 (upper left), Z(q) = η(4τ)/η(τ)3 (upper right), Z(q) = 1/η(2τ)
(middle left), Z(q) = 1/η(11τ)2η(τ)2 (middle right), Z(q) = 1/η(τ)η(22τ) (bottom
left), Z(q) = 1/η(τ)η(23τ) (bottom right). The vertical axis is |d(n,N)− d(n)| and
the horizontal axis is N . Both axes axes are scaled logarithmically. Each line is a
plot of d(n,N) for fixed n and variable N . The lines are different shades of gray to
help visually distinguish them.
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