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CHAPTER 1

Relativistic symmetry

[S]ome good news: quantum field theory is based on the same quantum mechanics
that was invented by Schrödinger, Heisenberg, Pauli, Born, and others in 1925–26,
and has been used ever since in atomic, molecular, nuclear, and condensed matter
physics. – Steven Weinberg in [Wei05, §2.1]

Physicists often describe quantum field theory as the inevitable consequence of reconciling the
formalism of quantum mechanics with the strictures of special relativity. This applies most clearly
to the description of isolated particles – a kinematical problem whose solution will be covered in
later lectures. Electrons, neutrinos, and quarks have many different properties, from charge to
color, but they are all “spin-1/2.” The force carriers in the standard model of particle physics all
are “spin-1.” The notion of particle spin, which (despite the suggestive terminology) has no true
analogue in classical mechanics, arises naturally from the conjunction of quantum mechanics and a
fragment of relativistic covariance.

For our purposes, the conjunction can be encoded in a single definition:

A relativistic quantum mechanical system consists of a separable Hilbert space H together with a
strongly-continuous projective unitary representation

ρ : P(1, d)→ PU(H) = U(H)/(U(1)I) (1.1)
of the (restricted) Poincaré group

P(1, d) = R1,d o SO(1, d), (1.2)
where d ∈ N+ is the number of spatial dimensions.

Isolated particles (whether elementary or composite) are relativistic quantum mechanical systems
in this sense, as are full-fledged quantum fields.

The goal of this lecture is to unpack the definition above. We do not assume familiarity with
the Poincaré group.

1. The Poincaré group

Special relativity is most easily summarized as the requirement that the laws of physics admit
as a group of symmetries the (restricted) Poincaré group P(1, d). From a modern perspective, the
central insight contained in Einstein’s groundbreaking 1905 paper [Ein05] is that the Poincaré
group is among the symmetries of Maxwellian electrodynamics, and, if the same applies to all other
fundamental laws of physics, then any observer moving at constant velocity (“inertial frame of
reference,” see §A.1) will observe no departure from Maxwell’s theory. In particular, the speed of
light

c ≈ 2.998× 108 m/s (1.3)

will appear the same to all. We will work in units where c = 1.
The Poincaré group is a particular subgroup of the group

Aff(R1,d) = {bijective affine T : R1,d → R1,d} (1.4)
3



4 1. RELATIVISTIC SYMMETRY

of affine transformations of Minkowski spacetime,
R1,d = Rt × Rdx. (1.5)

A spacetime coordinate x = (t,x) ∈ R1,d consists of two components, a “temporal” component
t = x0, saying when some event occurs, and a “spatial” component x ∈ Rd, saying where. On
Minkowski spacetime is defined the Minkowski interval

d : (R1,d)2 → R
d(x, y) = (x− y)2,

(1.6)

where z2 def= −t2 + ‖z‖2 for z = (t, z) ∈ R1,d. The Minkowski interval should be compared with the
Euclidean interval (x,y) 7→ ‖x− y‖2. Note the signs.

Just as the Euclidean group is defined to be the group of isometries of Euclidean space, the
Poincaré group

Pfull(1, d) = {bijections T : R1,d → R1,d s.t. d(T (x), T (y)) = d(x, y)} (1.7)
is defined to be the group of “isometries” of Minkowski spacetime, bijections which preserve the
Minkowski interval. Such T are automatically affine, making the Poincaré group a (Lie) subgroup[Problem 1.2]
of the affine group Aff(R1,d).

This group is not connected. The restricted Poincaré group P = P(1, d) is then defined to be
the connected component of Pfull(1, d) containing the identity.

1.1. Basic Poincaré transformations.
Example 1.1 (Spacetime translation). A spacetime translation Ta : x 7→ x+ a is an example

of an element of the restricted Poincaré group. This is clear from the translation invariance of
the Minkowski interval. The set of translations Ta, a ∈ R1,d is a (Lie) subgroup of the restricted
Poincaré group, forming a copy of the abelian group (R1,d,+). Indeed,

TaTb = Ta+b. (1.8)
�

Recall the orthogonal group O(d) = {R ∈ Rd×d : R−1 = Rᵀ}. The subgroup SO(d) = {R ∈
O(d) : detR = 1} consists of the orientation-preserving orthogonal transformations, i.e. rotations.

Example 1.2 (Spatial rotations). Let R ∈ SO(d). The transformation

TR :
[
t
x

]
7→
[
1 0
0 R

] [
t
x

]
=
[
t
Rx

]
(1.9)

which rotates the spatial coordinate x (but leaves time invariant), is also in the restricted Poincaré
group. This is obvious from the rotation invariance of the Minkowski interval. The TR, R ∈ SO(d)
form a (Lie) subgroup of the Poincaré group, a copy of SO(d). Indeed,

TRTR′ = TRR′ . (1.10)
�

Let Bd = {v ∈ Rd : ‖v‖ < 1} denote the open unit ball.
Example 1.3 (Boosts). A (Lorentz) boost (with velocity v ∈ Bd) is a map TΛ(v) of the form

TΛ(v) :
[
t
x

]
7→ Λ(v)

[
t
x

]
, Λ(v) = 1√

1− ‖v‖2

[
1 −vᵀ
−v γ̂

]
, γ̂ =

√
1− ‖v‖2
Id − vvᵀ . (1.11)

This lies in the restricted Poincaré group, as a short computation reveals. The factor[Exercise 1.2]

γ = 1√
1− ‖v‖2

(1.12)
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(a) The translation Ta
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Figure 1.1

is known as the Lorentz factor. The matrix γ̂ is defined via the functional calculus for symmetric
matrices. It acts as the identity on spanR v and is multiplication by γ−1 on (spanR v)⊥ ⊆ Rd, so its
matrix elements are

γ̂ij = 1
γ

(
δij + (γ − 1)vivj

v2

)
. (1.13)

Thus,

Λ(v) =
[
γ −γvᵀ
−γv I + (γ − 1)v̂v̂ᵀ

]
. (1.14)

When v = (v, 0, · · · , 0),

Λ(v) = Λstd(v) def=

 γ −γv 0
−γv γ 0

0 0 Id−1

 . (1.15)

That is,

Λstd(v) : R× R× Rd−1 3 (t, x,y) 7→
( t− vx√

1− v2
,
x− vt√
1− v2

,y
)
. (1.16)

Restricting attention to Λstd(v) is without essential loss of generality, because any boost Λ(v) has
the form

Λ(v) = TRTΛstd(v)TR−1 (1.17)
for some v ∈ (−1, 1) and R ∈ SO(d). If d ≥ 2, then we can take v ∈ [0, 1). � [Exercise 1.2(b)]

The Lorentz boost Λstd(v) should be contrasted with the Galilei boost:

(t, x,y) 7→ (t, x− vt,y). (1.18)

This is a symmetry of non-relativistic classical and quantum mechanics. Compared to the Galilei
boost, the Lorentz boost has two differences:

(i) the presence of the Lorentz factors γ = 1/
√

1− v2,
(ii) the correction −γvx to the time coordinate.1

1When factors of the speed of light c are restored, this is −γvx/c2, so very small in everyday life.
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The first difference is responsible for length contraction. A moving object will appear to a stationary
observer as squashed along its direction of motion, as compared to its shape at rest, by a factor of
γ. A conceptual consequence of the second difference is the relativity of simultaneity; events which
are simultaneous in one frame need not be simultaneous in other frames. This can be seen by the
tilting of the x′-axis in Section 1.1(b).
Warning: Boosts do not form a subgroup of the Lorentz group (unless d = 1). The product of two[Exercise 1.3]
collinear boosts is a boost, but the product of two non-collinear boosts is a boost times a rotation
(a Wigner–Thomas rotation). At the level of the Lie algebra, this can be seen from the fact that the
commutators of generators of boosts involve the generators of rotations.[Problem 1.3

and Prob-
lem 1.4]

Example 1.4 (Time-reversal). Consider TT : (t,x) 7→ (−t,x). This is an element of the full
Poincaré group but not the restricted group, as we will discuss below. �

Example 1.5 (Parity). Let R ∈ O(d) denote a spatial reflection across an odd number of
Cartesian coordinates, say

R(x) =
{

(−x1, x2, · · · ) (d even),
−x (d odd).

(1.19)

Consider TP : (t,x) 7→ (t,Rx). This is also in the full Poincaré group, but not the restricted
Poincaré group. �

Spacetime translations, spatial rotations, and boosts together generate the restricted Poincaré
group — see the problems at the end of this chapter. Any restricted Poincaré transformation T can
be written uniquely as

T = TaTRTΛ(v) (1.20)

for some a ∈ R1,d, R ∈ SO(3), and v ∈ Bd. Moreover, any Poincaré transformation can be written
uniquely as

T = T ηT T
ξ
PTaTRTΛ(v) (1.21)

for η, ξ ∈ {0, 1}, a ∈ R1,d, R ∈ SO(3), and v ∈ Bd. So the time-reversal and parity transformations,
together with spacetime translations, spatial rotations, and boosts generate the full Poincaré group.
The order in which the operators are listed in the expressions above is not important; they do not
generally commute, but things can still be rearranged, owing to the following computation:

Proposition 1.6. Consider the five types of operator above, TT , TP , Ta for a ∈ R1,d, TR for
R ∈ SO(d), and TΛ(v) for v ∈ Bd. For any A,B of these types, AB = B′A′ for A′ as the same type
as A and B′ as the same type of B. �

Proof. Straightforward casework. �

1.2. Lorentz transformations. Any affine transformation T ∈ Aff(R1,d) can be written
(uniquely) as

T = TaTΛ, (1.22)
where a = T (0) is the image of the spacetime origin under T and TΛ = T−aT is some linear
transformation. When T is a Poincaré transformation, TΛ is known as a Lorentz transformation.
Equation (1.21) shows that any Lorentz transformation has the form

TΛ = T ηT T
ξ
PTRTΛ(v), (1.23)

a product of a pure boost, a spatial rotation, and possibly some reflections. If TΛ is in the restricted
Poincaré group P, then it is a restricted Lorentz transformation. This means that η, ξ = 0 in
eq. (1.23):

TΛ = TRTΛ(v). (1.24)



1. THE POINCARÉ GROUP 7

Remark: Physicists often speak of “Lorentz covariance” instead of Poincaré covariance. Insofar as
these terms are not used interchangeably, the latter means the former together with translation-
invariance.

Being linear, any Lorentz transformation TΛ has the form TΛ : R1+d 3 x 7→ Λx for some (unique)
matrix Λ ∈ R(1+d)×(1+d). Since x 7→ x2 is a quadratic form x2 = xᵀηx represented by the matrix

η =
[
−1 0
0 Id

]
, (1.25)

the requirement that TΛ preserves the Minkowski interval can be rewritten
ΛᵀηΛ = η. (1.26)

A Lorentz matrix is a matrix satisfying this condition. Spatial rotations, R ∈ SO(d),2 and boosts
Λ(v), for v ∈ Bd, are two sorts of Lorentz matrices. Equation (1.24) says that every restricted
Lorentz matrix has the form Λ = RΛ(v) for unique R ∈ SO(d) and v ∈ Bd. The parity and
time-reflection matrices P,T are examples of non-restricted Lorentz transformations.

If Λ is a Lorentz matrix, then taking the determinant of both sides yields (det Λ)2 = 1. So,
det Λ = ±1. (1.27)

In particular, all Lorentz matrices are invertible.
Proposition 1.7. The Lorentz matrices form a subgroup of the group of invertible (1 + d)-by-

(1 + d)-matrices. That is:
(a) I1+d is a Lorentz matrix.
(b) The product of two Lorentz matrices is a Lorentz matrix.
(c) If Λ is a Lorentz matrix, then Λ−1 is a Lorentz matrix.

�

Proof. (a) Obvious.
(b) If Λ, A are both Lorentz, then (ΛA)ᵀη(ΛA) = AᵀΛᵀηΛA = AᵀηA = η.
(c) Multiplying η = ΛᵀηΛ by Λ−1 on the right and (Λᵀ)−1 on the left yields

(Λᵀ)−1ηΛ−1 = η. (1.28)
Since (Λ−1)ᵀ = (Λᵀ)−1, this says

(Λ−1)ᵀηΛ−1 = η. (1.29)
�

The group of Lorentz matrices is denoted
O(1, d) = {Λ ∈ R(1+d)×(1+d) : ΛᵀηΛ = η}. (1.30)

This is a matrix Lie group, as is easily checked. Since
TΛTΛ′ = TΛΛ′ (1.31)

for all Λ,Λ′ ∈ O(1, d), it is canonically isomorphic to the subgroup of the Poincaré group consisting
of Lorentz transformations. Either group is called the Lorentz group, and no confusion will arise
from conflating the two. We will identify T• with •.

We use SO(1, d) ⊆ O(1, d) to denote the subgroup of restricted Lorentz matrices. This is
precisely the connected component of the Lorentz group containing the identity matrix I1+d. (This
is usually how the restricted Lorentz group is defined. We defined it via connectivity in the Poincaré
group P, but this is the same thing — two Lorentz transformations are connected by a path in
O(1, d) if and only if they are connected by a path in the Poincaré group.)

2Strictly speaking, 1⊕R =
(

1 0
0 R

)
is the Lorentz matrix describing a spatial rotation, but we will abuse notation

and just write this as R.
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Warning: This notation is not standard; “O+
↑ (1, d)” is more common, but we will use the less-

decorated notation.
Proposition 1.8. If Λ is a Lorentz matrix, then Λᵀ is a Lorentz matrix. �

Proof. Taking the inverse of both sides of ΛᵀηΛ = η yields Λ−1η(Λᵀ)−1 = η, having used
η−1 = η. Plugging in Λ−1 = (Λᵀ)−1ᵀ, this reads

(Λᵀ)−1ᵀη(Λᵀ)−1 = η. (1.32)
This means that (Λᵀ)−1 is Lorentz; applying Proposition 1.7(c), we deduce that Λᵀ is Lorentz. �

Multiplying both sides of eq. (1.26) by the invertible matrix η on the left yields ηΛᵀηΛ = I1+d,
so

Λ ∈ O(1, d) ⇐⇒ Λ−1 = ηΛᵀη. (1.33)
This is reminiscent of the relationship R−1 = Rᵀ that characterizes orthogonal matrices R ∈ O(d).

1.3. Semidirect product structure. In summary, the Poincaré group consists of all maps
T : R1,d → R1,d of the form

T : R1,d 3 x 7→ a+ Λx (1.34)
for a ∈ R1+d and Λ ∈ O(1, d) a Lorentz matrix.

Proposition 1.9. Let T = TaTΛ and T ′ = Ta′TΛ′. Then, TT ′ = Ta+Λa′TΛΛ′. �

Proof. TT ′(x) = Λ(Λ′x+ a′) + a = ΛΛ′x+ (a+ Λa′) = Ta+Λa′TΛΛ′(x). �

Proposition 1.10. TΛTa = TΛaTΛ. �

Proof. TΛTa(x) = Λ(x+ a) = Λx+ Λa = TΛaTΛ(x). �

Proposition 1.11. The subgroup of P(1, d) consisting of translations is normal. �

Proof. Immediate from above: TΛTa(TΛ)−1 = TΛaTΛ(TΛ)−1 = TΛa. �

This should be “obvious,” because everyone agrees what a translation is — turning your head
upside down or taking two steps back does not make a translation look like something else. It may
change your description of the direction of the translation, but not whether or not it is a translation.
In contrast, two non-collocated observers will not agree about whether an affine transformation of
spacetime is linear; being linear means fixing the origin, but there is no objectively correct choice of
spacetime origin. Mathematically, this means that the Lorentz subgroup O(1, d) ⊂ P(1, d) is not
normal. Indeed, if a ∈ R1,d is not fixed by Λ, then

TaTΛT−a(x) = Λx+ (a− Λa) (1.35)
is affine, but not linear, so not in the Lorentz group.

Proposition 1.12. The Poincaré group is an inner semidirect product of the subgroup of
translations with the subgroup of Lorentz transformations:

Pfull(1, d) = R1,d o O(1, d). (1.36)
The multiplication law is (a,Λ)(a′,Λ′) = (a+ Λa′,ΛΛ′). �

Proof. Immediate from above. �

Consequently, P(1, d) = R1,d o SO(1, d).
Remark: It is easy to forget which of ‘o,’ ‘n’ is correct. You can figure it out if you remember
two things:

• The tip in the triangle points towards the normal subgroup, as it does in “N C G,”
• The subgroup of translations is the normal one, not the Lorentz group (and see above for
the intuition why).
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2. Quantum building blocks

Compared to special relativity, quantum mechanics is a bit harder to define. One can easily
spend an inordinate amount of time debating what its essentials are — wave/particle duality,
superposition, entanglement, or something else? — but that runs orthogonal to our concerns
here. The most philosophically vexing features of quantum mechanics, those having to do with the
wavefunction’s apparent collapse upon measurement by an external observer, are no more vexing
when relativity is in play than when it is not. So, we will focus on what quantum mechanics says
about the state space.

2.1. The state space. Physical theories typically come with a set whose elements are identified
with the states of the system being modeled. This is the state space. In Hamiltonian mechanics,
the state space is some finite-dimensional symplectic manifold. One of the defining features of
quantum mechanics is that states can be superposed. The Schrödinger cat thought experiment
involves a superposition of a state in which the cat lives and a state in which the cat dies. As far as
we are concerned, quantum mechanics consists of the following principle: in order to accommodate
superposition, each quantum mechanical system is associated with a (separable3) Hilbert space H,
and the state space is built from it. More precisely, the distinct (pure) states of the system consist
of different lines

CΨ ⊆ H, Ψ ∈ H\{0} (1.37)

in H (not unit vectors!). Thus, each pure state ω ⊆ H is described – non-uniquely – by a nonzero
vector in H, namely a spanning vector Ψ ∈ ω,

ω = CΨ (1.38)

The ability to add vectors corresponds to the ability to form quantum superpositions. If Φ,Ψ ∈ H
are linearly independent vectors, then their linear combination Φ + Ψ describes the quantum
superposition of the two states described by Φ,Ψ, respectively.

We will also use [Ψ] to denote CΨ.
The set

PH = {CΨ : Ψ ∈ H\{0}} (1.39)

of complex lines in H is known as the projectivization of H. Thus, quantum states are identified
with points in PH. When H = CN is finite-dimensional, then

PH = CPN−1 (1.40)

is a familiar complex manifold, the complex projective space with real dimension 2N − 2. The
infinite-dimensional case can be thought of as a “Hilbert manifold,” a topological space locally
homeomorphic to `2(N), but this is not necessary. We have no need to consider PH as anything
more than a set.

Not all superpositions need be allowed — model builders are allowed to forbid certain superposi-
tions by fiat. (Whether or not nature adheres to that restriction is another matter.) Then, the state
space will be some proper subset of PH. This is the case of superselection rules. Superselection
rules are discussed briefly in §D. For now, the reader may assume the absence of superselection
rules. Then, the state space is the entirety of PH.

3In these notes, all Hilbert spaces are separable, non-trivial (i.e. not zero dimensional), and, unless stated otherwise,
over the complex numbers.
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2.2. Wigner morphisms. Many different lines of reasoning converge as to what the natural
notion of a symmetry of PH is: a permutation [U ] of the state space induced by a unitary operator
U ∈ U(H). In the absence of superselection rules, this means

[U ] = U mod U(1)I
[U ] ∈ PU(H).

(1.41)

One sometimes begins with a more basic notion of symmetry and then proves that all symmetries
are unitarizable in this way (barring special symmetries that invert the arrow of time). This is
called Wigner’s theorem [Wig59]. See [Wei05, §2.A] for an exposition.

The group PU(H) inherits from U(H) a topology which makes it into a topological group.
Specifically, the topology on the former is the quotient of the strong operator topology on the latter.
The strong and weak operator topologies agree on U(H). The uniform (a.k.a. norm) topology is[Exercise 1.4]
too strong to be useful. Whenever we reference topologies on these groups, we are referring to the[Exercise 1.5]
strong/weak operator topology or its quotient.
Remark: When H is finite-dimensional, then PU(H) = PSU(H), where SU(H) = {U ∈ U(H) :
detU = 1} is the special unitary group. However, “detU” does not make sense when H is
infinite-dimensional, except for special classes of unitary operators. So, we refrain from writing
“PSU(H).”

Finally: the natural notion of a (topological) group G of quantum symmetries is a (continuous)
homomorphism

ρ : G→ PU(H). (1.42)

Applied to G = P(1, d), the result is the definition of relativistic quantum mechanical system given
at the beginning of the lecture.

There exist two, dual, ways of interpreting the Poincaré action on the state space PH. Let
Larry be a scientist working in the laboratory frame, and Moe be a scientist working in some other
inertial frame of reference. (Moe for moving.) Let T ∈ P(1, d) denote the Poincaré transformation
such that, if Larry perceives a spacetime event at coordinates x, Moe will perceive the same event
at coordinates T (x). Then:

(i) If Larry perceives some quantum system in state CΨ ∈ PH, Moe will perceive the same
system in state Cρ(T )Ψ.

The dual way of interpreting the Poincaré-action is this:
(ii) Any state of the system can be translated, rotated, and/or boosted.

• Given some state which Larry labels CΨ, there exists another state Cρ(T−a)Ψ which
Larry sees as a translated version of the original state.
• Similarly, if Larry describes the initial state as possessing energy-momentum p =

(E,p) ∈ R1,d, there exists another state Cρ(T−1
Λ )Ψ which Larry perceives as possessing

energy-momentum Λ−1p.
This distinction is sometimes referred to as that between the passive and active interpretations
of group elements. More colorful phraseology is “alias versus alibi” — if a crime was committed
at what Larry describes as x ∈ R1,d, but Larry saw me at T (x), then I am exonerated (assuming
T (x) 6= x), for I have an alibi. But if Moe takes the witness stand and says that he saw me at T (x),
and T relates Moe’s coordinates to Larry’s, then I am in trouble.

2.3. Anti-unitary maps and Wigner representations (?). An anti-unitary operator on
H is a complex anti-linear bijection V : H → H such that

〈φ, ψ〉 = 〈V ψ, V φ〉 (1.43)
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for all φ, ψ ∈ H. This is equivalent to being of the form V = C ◦ U (or equivalently U ◦C, for some
other U), where U ∈ U(H) is unitary and C : H → H is a map that conjugates the coefficients of
vectors when expanded in some fixed orthonormal basis.

Together, the unitary and anti-unitary operators form a group UaU(H) ∼= C2 n U(H).
If V is anti-unitary, then

[V ] : PH → PH
[Ψ] 7→ [VΨ]

(1.44)

is a well-defined permutation of PH. Together with the unitarizable automorphisms [U ] ∈ PU(H),
these form a group

Aut(PH) = [UaU(H)] ∼= C2 n PU(H). (1.45)

Wigner’s theorem also allows anti-unitary maps as symmetries. However, these are always
associated with “time-reversal symmetry.” When considering the symmetries of a quantum system
with time-reversal symmetry, one has a group

G ∼= C2 nG0 (1.46)

arising as a semidirect product of C2 = {1,T} and a group G0. Then, T is interpreted as time-
reversal. Rather than a projective representation of G, the incarnation of G as a group of quantum
symmetries takes the form of a (continuous) homomorphism

ρ : G→ Aut(PH) (1.47)

in which the elements of G0 are mapped to unitarizable symmetries and T is mapped to an anti-
unitarizable symmetry, and hence the other elements of G\G0 are as well. We will call these Wigner
representations of (G,G0), or just of G for short, leaving the designated subgroup G0 of unitarizable
symmetries implicit.

3. Parity and time-reversal (?)

Above, we were careful to stipulate only that relativistic systems have the restricted Poincaré
group P(1, d) as a symmetry group, not the full Poincaré group

Pfull(1, d) 3 TT , TP (1.48)

for the simple reason that the current reigning theory of particle physics, the standard model, has
neither time-reversal nor reflection symmetry, nor a combination thereof.

However, many simplified theories, including QED and QCD, do have these fundamental
symmetries, in which case the symmetry group is augmented from P(1, d) to some larger subgroup
of Pfull(1, d). This possibility is the topic of this section. The simplest case is where the symmetry
group is that generated by P and P. Such theories have chiral symmetry — they look the same as
their mirror image, modulo a relabeling of states. A theory with T symmetry looks the same when
run in reverse, modulo a relabeling of states. It has time-reversal symmetry. It is also possible for a
system to have PT symmetry – a “particle-hole” symmetry – without having P or T symmetry
individually. Understanding these possibilities, and the interplay between parity and time-reversal
symmetry, is surprisingly involved.

3.1. The P,T ,C matrices. The parity and time-reversal matrices P,T ∈ O(1, d) are

P =
[
1 0
0 R

]
T =

[
−1 0
0 Id

]
, (1.49)
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respectively; R ∈ O(d) is as in eq. (1.19). The product of P,T is a third Lorentz matrix, C = PT ,

C =
[
−1 0
0 R

]
=


[
−I2 0

0 Id−2

]
(d even),

−I1+d (d odd).
(1.50)

We also use I = I1+d to denote the identity matrix. The matrices I , P, T , C constitute a
subgroup of O(1, d) isomorphic to the Klein four-group, V4 = C2 × C2. Together with the identity
component, which – as a reminder – we are calling SO(1, d), they generate the full Lorentz group.

We provide the proof below that P,T ,C are not in the identity component of the Lorentz
group. From this it follows that the full Lorentz group O(1, d), as well as the full Poincaré group,
have exactly four connected components – one component for each

A ∈ {I ,P,T ,C }, (1.51)

namely the connected component containing that A . No two of these components can coincide,
since that would imply that one of P,T ,C lies in the identity component. No other components
can exist, by the last sentence of the previous paragraph.

It follows from the above that the full Lorentz group O(1, d) arises as the (inner) semidirect
product

O(1, d) = V4 n SO(1, d) (1.52)
of its identity component SO(1, d) and the subgroup {I ,P,T ,C } ∼= V4. Here SO(1, d) is the
normal subgroup. The identity component of a topological group is always normal.

The four components of the Lorentz group can be denoted

SO = O+
↑ 3 I , O+

↓ 3 T , O−↑ 3P, and O−↓ 3 C . (1.53)

From these components, one can form the following three index-two subgroups of O(1, d):

O↑(1, d) = SO(1, d) tO−↑ (1, d),
O+(1, d) = SO(1, d) tO+

↓ (1, d),
sO(1, d) = SO(1, d) tO−↓ (1, d).

(1.54)

This information is summarized in Figure 1.2.
Warning: “SO(1, d)” is often used to denote sO(1, d).

Similar notation can be used for the components of P(1, d), and the corresponding index-two
subgroups.

3.2. Relativistic quantum mechanical systems with parity and/or time-reversal. Let
G denote one of P, P↑, P+, sP, Pfull. Each of these has a distinguished subgroup G↑ = G ∩ P↑. A
relativistic quantum mechanical system with the reflection symmetries

Z = G ∩ {I ,P,T ,C } (1.55)

is a Wigner representation of G, i.e. a continuous homomorphism ρ : G→ Aut(PH) in which the
elements of G↑ are mapped to unitarizable symmetries and the elements of G\G↑ are mapped to
anti-unitarizable symmetries. The possible pairs (Z,Z↑ = Z ∩ P↑) are

• Z,Z0 both trivial,
• Z = {I ,P} ∼= Z2, and Z0 = Z,
• Z = {I ,A } ∼= Z2 for A ∈ {T ,C }, and Z0 trivial,
• Z = {I ,P,T ,C } ∼= V4, and Z0 = {I ,P}.
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C

Id+1 ∈
SO

P

T

O↑

sOO+

O(1, d)

Figure 1.2. The various components of the full Lorentz group O(1, d), and the
important subgroups thereof.

In the first case, we have neither chiral symmetry nor time-reversal symmetry. In the second and
third cases, we have one of P,T ,C . In the fourth case, we have all three.

For each A ∈ Z, let
A = ρ(A ). (1.56)

The map A 7→ A is a Wigner representation of Z. Since each Poincaré transformation T ∈ G can be
written T = A T0 for exactly one such A and restricted Poincaré transformation T0 ∈ P, and since

ρ(A T0) = Aρ(T0), (1.57)
the full Wigner representation is determined by ρ|P and the various A.

Conversely, suppose we are given
• a projective unitary representation ρ : P→ PU(H),
• together with a Wigner representation A 7→ A ∈ Aut(PH) of Z.

We can attempt to extend ρ to all of G by taking eq. (1.57) as a definition for A 6= I . This is
a well-defined continuous function G → Aut(PH). It is a homomorphism, and therefore Wigner
representation, if and only if

ρ(A1TA T2) = A1ρ(T )Aρ(T2) (1.58)
for all A1,A ∈ Z and T, T2 ∈ P. Note that TA = A T̃1, where T̃ = A TA ∈ P. So,

ρ(A1TA T2) = ρ((A1A )T̃ T2) = A1Aρ(T̃ T2)
= A1Aρ(T̃ )ρ(T2),

(1.59)

where the second equality used that A 7→ A is a homomorphism, and the third used that ρ|P is a
homomorphism. So, the desired equality holds if and only if ρ(T )A = Aρ(T̃ ), i.e.

Aρ(T )A = ρ(A TA ) (1.60)
for all T,A .

To summarize, a Wigner representation of G is the same thing as a projective unitary repre-
sentation of the restricted Poincaré group P together with a Wigner representation of Z, such that
eq. (1.60) holds.

The rest of this section is devoted to the study of the Wigner representations of the group Z. A
Wigner representation of the group Z is the same thing as an assignment to each A ∈ Z a Wigner
automorphism A ∈ Aut(PH) such that

• P is unitarizable and involution (if defined),
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• T,C (whichever are defined) are anti-unitarizable and involutive,
• C = PT = TP if all three are defined.

3.3. Wigner representations of P,T ,C individually.

Proposition 1.13. If P ∈ PU(H) is an involution, then there exists a unitary involution
P ∈ U(H) such that P = [P]. �

Proof. By the assumption of unitarity, we have P = [P0] for a unitary operator P0. Since
P2 = id, this must satisfy P2

0 = cI for some c ∈ U(1). Let P = c−1/2P0. (The branch of the square
root does not matter.) Then,

P2 = c−1/2P0(c−1/2P0)
= c−1P2

0 = I,
(1.61)

which is what it means to be an involution. �

The proof above would not work if P were anti-unitary, because the equality going between the
two lines in eq. (1.61) would break. Indeed, if A is anti-unitary, then

(c−1/2A)2 = c−1/2A(c−1/2A) = |c|−1A2 = A2 (1.62)
whenever c ∈ U(1) is a phase. Instead:

Proposition 1.14. Suppose that A is an anti-unitary operator such that A = [A] satisfies
A2 = 1. Then, A2 = ±I. �

It is automatic that A2 = ωI for some ω ∈ U(1). Equation (1.62) shows that we cannot get rid
of the phase ω by replacing A with c−1/2A for some c ∈ U(1). So, ω is actually uniquely determined
by A.

Proof. As mentioned above, we have A2 = ωI for some ω ∈ U(1). We get a restriction on ω
from computing A3 in two different ways:

A3 = A(A2) = A(ωI) = ω−1A,
A3 = (A2)A = (ωI)A = ωA.

(1.63)

So, ω−1 = ω, which means that ω2 = 1, so ω ∈ {−1,+1}. �

If A2 = I, then A is a real structure on H. If A2 = −I, it is a quaternionic structure. Because the
sign of A2 is an invariant of A, every anti-unitary Wigner transformation comes from a real structure
or a quaternionic structure, but not both. Thus, we have two sorts of anti-unitary involutions.

3.4. The tenfold way. Now suppose that our system has both mirror and time-reversal
symmetry. So, we have Wigner automorphisms P,T, implementing parity and time-reversal,
respectively, satisfying the requirements above, including PT = TP. These constitute a Wigner
representation of (V4, C2 × {1}). By the discussion above, we have P ∈ U(H) and T ∈ aU(H)
related to P,T by P = [P], T = [T ] and satisfying

P2 = I, and T 2 = εTI (1.64)
for some εT ∈ {−1,+1}.

The condition PT = TP is equivalent to the existence of θ ∈ [0, 2π) such that
PT = eiθT P. (1.65)

But computing PT PT in two ways, we get a constraint on θ:
PT PT = eiθT P2T = eiθεTI

PT PT = P(e−iθPT )T = e−iθP2T 2 = e−iθεTI,
(1.66)
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so that eiθ = ±1. Let us call this εPT. To summarize: for some εT, εPT ∈ {−1,+1},

P2 = I, T 2 = εTI, PT = εPTT P. (1.67)

The operator C = PT also has to square to ±I:
C2 = PT PT = εPTT P2T = εPTεTI. (1.68)

So, let
εC = εPTεT (1.69)

denote the sign of C2. (Note the typographical difference between ‘ε’ and ‘ε.’) We can equally well
use (εT, εC), instead of (εT, εPT), to describe the situation. It should be emphasized that εT, εC
are invariants — they depend only on P,T ∈ Aut(PH) (as the notation indicates) and not on the
operators P, T used to represent them. Thus, they are invariants of the given Wigner representation,
and can be used to classify them.

Each of the four possible cases of (εT, εC) can be realized, already with H = C2.
What eq. (1.67) tells us is that P, T constitute a (faithful) representation of some group related

to the Klein 4-group. We will call the group generated by P, T the “PT -group.” Doing the casework,
and using conventional labels [nLab25] for the various cases:

• (Class BDI.) If εT, εC = 1, then P, T generate the group {I,P, T ,PT }, which is just a
copy of the Klein 4-group.
• (Class DIII.) If εT, εC = −1, then P, T commute but generate a slightly larger group: the
PT -group is

{I, T ,−I,−T ,P,PT ,−P,−PT }. (1.70)
This is a copy of C4×C2, with T generating the Z4 factor {I, T ,−I,−T } and P generating
the C2 factor {I,P}.
• (Class CII.) If εT = −1 but εC = 1, then P, T no longer commute, but rather anti-commute:

PT = −T P. (1.71)
As a set, the PT -group generated is still given by eq. (1.70), but now the group structure
is non-abelian. It turns out to be isomorphic to the dihedral group D8:

D8 = 〈x, a : a4 = x2 = 1, xax = a−1〉
= {1, x, a, xa, a2, xa2, a3, xa3}.

(1.72)

The group D8 can be interpreted as the group of symmetries of a square; x is a reflection
across a median, and a is a 90◦ rotation. An isomorphism with the PT -group is given by
T 7→ a and P 7→ x.
• (Class CI.) If εT = 1 and εC = −1, then everything in the previous item applies. Just
interchange T ,C . The isomorphism between the PT -group and D8 is now different,
because of the interchange (in particular, T 2 = I). An explicit isomorphism is given by
T 7→ xa and P 7→ x.

Altogether, we have ten possibilities, including those without some of P,T ,C - symmetry.
These possibilities are summarized in Table 1.1. The cases where Z is trivial or the parity group
{1,P} each contribute a single possibility. The cases where Z = {1,A} for A ∈ {T,C} each contribute
two possibilities, one for each possible sign εA. The case where Z is maximal, Z = V4, contributes
four possibilities, one for each possible pair (εT, εC). This sort of tenfold classification is known as a
tenfold way [Bae20]. Recently, condensed matter theorists working on topological superconductivity
have popularized closely related tenfold ways. The one here goes back to Wigner [Wig59].

All of the listed classes appear in physically significant examples. For examples, fermions tend
to have T 2 = −1, whereas bosons have T 2 = 1. Breaking symmetries is easy — chiral terms in the
standard model Lagrangian break parity. Some of these, like the axial vector term in the weak sector,
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Class εT εC εP Cover Example
A 0 0 0 Trivial Standard model
AI +1 0 0 C2 Fermi theory, bosonic sector
AII -1 0 0 C4 Fermi theory, fermionic sector
D 0 +1 0 C2 Yang–Mills θ-term,
C 0 -1 0 C4 ψ̄σµνγ5ψFµν-theory

AIII 0 0 1 C2 2<(eiθφ)-theory, θ ∈ (0, π/2)
BDI +1 +1 1 V4 = C2 × C2 Free spin-0 particle
CI +1 -1 1 D8 Symplectic boson
CII -1 +1 1 D8 Majorana fermion
DIII -1 -1 1 C4 × C2 Electron

Table 1.1. The tenfold classification of Wigner representations of the PT-group
(V4, C2×{1}) and subgroups thereof. For each generator A , εA = ±1 if A is present
and εA = 0 otherwise. For A = T ,C , the sign of εA, if nonzero, denotes whether A
is implementable by an involution. For A = P, it always is. The covering group is
the group that the Wigner representation lifts to an ordinary unitary/anti-unitary
representation of.

Wµψ̄γ
µγ5ψ, break parity without breaking time-reversal. Others, like the θ-term θεµναβFµνFαβ

break both.
Warning: Different conventions exist for defining P, given P. In classes CI, CII, some authors
prefer to use Palt = iP instead of P. This only satisfies P4

alt = I, not P2
alt = I, but it has the

advantage that it commutes with time-reversal:
T Palt = T iP = −iT P = iPT = PaltT . (1.73)

For example, when physicists say that the parity of a Majorana spinor is ±i, this is the convention
they are following.

3.5. Classification of Wigner representations within each way. The tenfold way here
is not a complete classification of the Wigner representations of V4 or subgroups thereof. A single
“way” in the tenfold way can apply to more than one possible representation of Z via Wigner
automorphisms. An obvious exception is class A, describing a system with none of the extra
symmetries P,T ,C . We will see below that all of the classes except AIII, BDI, and DIII have a
unique representation, modulo equivalence, on each H, if a representation exists at all.

Consider class AIII, a system with chiral symmetry but neither T nor C symmetry. We saw that
any Wigner representation in this class lifts to an ordinary unitary representation of C2 = {I,P}.
There are two different irreps of C2, the one-dimensional representations where P = ±1. Call these
1±. The two irreps are said to differ in terms of parity; 1+ is even parity, 1− is odd. The most
general finite-dimensional representation, modulo equivalence, is

1N−− ⊕ 1N+
+ , (1.74)

where N± ∈ N. (The infinite-dimensional cases are analogous.)
Consider now classes AI, AII, D, and C. Regardless of dimH (recall this is the complex

dimension), then the only representation of classes AI and D modulo equivalence is: H = C⊗R RN ,
A = ∗ ⊗ IN , where A = [A] is whichever of T ,C is in Z. If dimH = 2N is even, then we have the
following unique representation in classes AII and C: H = HN , A = j where H is the quaternions,
considered as a complex vector space. Here, j ∈ H is a unit quaternion anti-commuting with i
and satisfying j2 = −1. This is a complex-antilinear map, acting on HN , since jaq = ajq and
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j(iaq) = −iajq for all a ∈ R and q ∈ H. If dimH <∞ is odd, then we have no representation of
classes AII and C.

Classes BDI and DIII are similarly easy, since P and T commute. A representation in these
classes is just a combination (really, a tensoring) of the possibilities above. Regardless of dimH, we
have a representation of class BDI: H = C⊗R (RN− ⊕ RN+), T = ∗ ⊗ I, and

P = 1⊗
[
−IN− 0

0 1N+

]
. (1.75)

If dimH = 2N is even, then we have the following representation of class DIII: H = HN− ⊕HN+ ,
T = j, and

P =
[
− idHN− 0

0 idHN+

]
. (1.76)

These are the only possibilities, modulo equivalence. The comments above regarding absolute vs.
relative parity apply here as well; P,−P define the same Wigner representation, so should not be
considered inequivalent.

Classes CI, CII are more interesting, since P, T now anti-commute. In terms of the P-action,
H = 1N−− ⊕ 1N+

+ . We can identify this with C⊗R (RN− ⊕ RN+). Then,

P = 1⊗
[
−IN− 0

0 IN+

]
. (1.77)

The anti-commutation T P = −PT tells us that T = ∗ ⊗ ( 0 T−+
T+− 0 ), where T±∓ : 1N±± → 1N∓∓ are

two unitary maps. This forces N− = N+. Call their shared value N . Without loss of generality, we
can assume that T−+ = IN . Thus,

T 2 = 1⊗
[
T+− 0

0 T−+

]
. (1.78)

We can therefore read off T+−:

• In class CI, T 2 = I, so T+− = IN , and thus T = ∗ ⊗
[

0 IN
IN 0

]
.

• In class CII, T 2 = −I, so T+− = −IN , and thus T = ∗ ⊗
[

0 IN
−IN 0

]
.

These indeed define representations in the desired classes, the unique ones of the given dimension,
modulo equivalence.

Class Space hosting irrep irrep
A H = C Trivial
AI H = C T = ∗
AII H = H T = j
D H = C C = ∗
C H = H C = j

AIII H = C P = ±1
BDI H = C T = ∗, P = ±1
CI H = C⊗R R2 T = ∗ ⊗ σ1, P = 1⊗ σ3
CII H = C⊗R R2 T = ∗ ⊗ iσ2, P = 1⊗ σ3
DIII H = H T = j, P = ±1

Table 1.2. The irreps found above. Each Wigner representation of the stated
classes is induced (possibly non-uniquely) by a direct sum of irreps of the stated
forms. In this table, σ1, σ2, σ3 are the three Pauli matrices (eq. (A.1)).
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Warning: Not all of the possibilities above describe distinct Wigner representations. For example,
every case with dimH = 1 is identical, since then PH is a singleton.

Also, in the classes AIII, BDI, and DIII, replacing P with −P leads to the same Wigner
representation, since [P ] = [−P ]. As a consequence, only relative parity is defined. In quantum field
theory, everyone agrees that the vacuum state has even parity, so parities of states involving an even
number of spinors are defined relative to that. The univalence superselection rule (see §D) forbids
superposing states with an odd number of fermions with the vacuum, so the parities of spinor states
are only defined relative to each other.

A. More about special relativity

A.1. Inertial frames of reference. Consider an observer moving at some velocity v ∈ Rd\{0}
relative to some fiducial reference frame (the “laboratory frame”). The term inertial frame of
reference refers to the standpoint of such an observer.
Remark: More accurately, you should imagine a frame of reference as consisting of an army of
comoving experimentalists, spread throughout space, each equipped with their own clock (all of
which are synchronized from their collective point-of-view) and instructed to record the times of
events occurring at their location. Then, for an event to occur at (t,x) ∈ R1,d means that the
observer whom they perceive to be at location x ∈ Rd records a hit when their clock reads time
t ∈ R.

Let’s call the moving observer Moe, and a scientist working in the lab frame Larry. One difference
between the two observers is that they might not agree to synchronize their clocks. Let a0 ∈ R be
the time, according to Larry’s clock, when Moe’s clock reads t = 0. Moe’s worldline, the path they
trace out in spacetime from the perspective of Larry, is

Γ = {(t, tv + a0) : t ∈ R} ⊂ R1,d, (1.79)

where a0 is their position at time t = 0. We are measuring velocity in units relative to the speed of
light (“natural units”), so

‖v‖ < 1 (1.80)
imposes the physical requirement that Moe be moving slower than the speed of light. Let a = a0v+a0.
We combine this with a0 to form

a = (a0,a) ∈ Γ. (1.81)
This is Larry’s description of the point that Moe labels as the spacetime origin.

Conceivably, Larry and Moe could be using different Cartesian directions to coordinate space —
what one labels as the “x1-direction” could be labeled by the other as the “x2-direction” — but this
just amounts to a spatial rotation, and we understand these. So, let us assume the following “no
rotation” condition: any event that Larry perceives at (0,y) for y ⊥ v will be perceived by Moe at
(t′,y− a + wv), for some t′, w ∈ R.

In summary: an inertial frame of reference (barring rotations) is specified by two pieces of
data, (v, a) ∈ Bd × R1,d, Moe’s velocity and his spacetime origin. Q. If Larry perceives an event as
occurring at spacetime coordinates x ∈ R1,d, at what spacetime coordinates will Moe perceive that
event?

Let T : R1,d → R1,d denote the map such that if Larry perceives an event at x, Moe perceives
the same event at T (x). We know the following:

(i) The spacetime point labeled a by Larry will be labeled 0 by Moe, so T (a) = 0.
(ii) The worldline Γ will be described as the time axis T = {(t,0) : t ∈ R} by Moe, so

T (Γ) = T ,
(iii) If y ⊥ v, then T (0,y) = (t′,y− a + wv) for some t′, w ∈ R.
(iv) T preserves the arrow of time and spatial orientations.
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These are the only reasonable requirements, besides that Moe should be using the same laws of
physics as Larry. Consider the restricted Poincaré transformation

T0 : (t,x) 7→ TΛ(−v)T−a (1.82)

This obeys (i), (ii), (iii), and (iv). In fact, it is the unique Poincaré transformation with these prop-
erties. “Covariance” is a technical term meaning retaining form under a coordinate transformation.
A consequence of the Poincaré-covariance of the laws of physics is that Moe can adequately describe
the world using the coordinates furnished by T0. A corollary is that the moving observer Moe cannot
tell that it is he that is moving, not Larry. There may exist no objectively correct answer to the
question as to which observer is moving.

Special relativity is often expressed as the slightly stronger requirement that Moe will perceive at
T0(x) an event that Larry perceives at x. This is a consequence of another assumption: that, besides
being Poincaré-covariant, the laws of physics are not covariant under a larger group of spacetime
symmetries. The map T0 is not the only affine transformation satisfying the three properties above
— consider, for Z > 0, the scaling transformation TZ : (t,x) 7→ (Zt, Zx). Unless Z = 1, this is not a
Poincaré transformation. But, like T0,

T1
def= TZTΛ(−v)T−a (1.83)

also satisfies properties (i), (ii), and (iii), and therefore serves as a candidate coordinate transforma-
tion. Why shouldn’t Moe use the coordinate system derived from T1, instead of T0, to describe the
world?

The answer is: the very fact that we have the ability to measure distances and durations means
that nontrivial dilations cannot be symmetries of the laws of physics. This is implicit in the way
that we talk about frames of reference. When we ask how an observer perceives the world, we are
assuming that there exists an unambiguous answer. Consequently, there exists exactly one adequate
T , namely T = T0.

Scaling symmetries are typically symmetries of theories involving only massless particles. A
creature made entirely of massless particles would not be able to measure distances or durations.
This applies to light. Since light is massless, the symmetry group of classical electrodynamics without
matter (!) is the full conformal group, including the scaling symmetries TZ . This means that the
behavior of light is not by itself sufficient to derive special relativity. Fortunately, scaling is not a
symmetry of theories involving massive particles. The existence of massive charged particles like
the electron allows us to design clocks and rulers that, together with the behavior of light, single
out Poincaré-covariance.

B. Poincaré Lie algebra [*]

Physicists almost always work at the level of the complexified Poincaré Lie algebra pC rather
than the Lie group.

[Pµ,Pν ] = 0,
i[Mµν ,Pρ] = ηµρPν − ηνρPµ,

i[Mµν ,Mρσ] = ηµρMνσ − ηµσMνρ − ηνρMµσ + ηνσMµρ.

(1.84)
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In terms of the rotation generators Jk` = Mk`, boost generators Kj = M0j , and “Hamiltonian”
H = P0, this reads

[H,Pj ] = [H, Jkm] = [Pj ,Pk] = 0,
i[Jjk, Jlm] = δkmJjl − δjmJkl − δklJjm + δjlJkm,
i[Jjk,Pl] = δklPj − δjlPk,
i[Jjk,Kl] = δklKj − δjlKk,

i[Kj ,H] = −Pj , i[Kj ,Pk] = −δjkH, i[Kj ,Kk] = Jjk.

(1.85)

When d = 3, this can be written using Jk = εkJ`m, where εjk` is the Levi–Civita symbol. I.e.
(J1, J2, J3) = (J23, J31, J12). Then, the Lie algebra reads

[H,Pj ] = [H, Jkm] = [Pj ,Pk] = 0,
i[Jj , Jk] = −εjklJl,
i[Jj ,Pk] = −εjklPl,
i[Jj ,Kk] = −εjklKl,

i[Kj ,H] = −Pj ,
i[Kj ,Pk] = −δjkH,
i[Kj ,Kk] = εjklJl.

(1.86)

C. More on the Poincaré group

C.1. Dimensions. The dimension of the Lorentz group O(1, d) is

dim O(1, d) = dim P(1, d)− d− 1 = d2

2 + d

2 . (1.87)

In the physical case, d = 3, this is dim O(1, d) = 6. Three of these dimensions are from the subgroup
of rotations and three from the boosts. Rotations outnumber boosts for d ≥ 4, and boosts outnumber
rotations if d = 1, 2.

Since SO(d) has dimension d(d− 1)/2, the Poincaré group has dimension

dim P(1, d) = d2

2 + 3d
2 + 1. (1.88)

In the physical case, d = 3, this is dim P(1, d) = 10. Four of these dimensions are from the subgroup
of translations and the remaining six are from the subgroup of Lorentz transformations.

For the Lie algebras, see [Wei05, §2.4].

C.2. Topology. A Lorentz matrix Λ is called
(i) orthochronous if Λ0

0 > 0, where Λ0
0 is the upper-leftmost entry of Λ,

(ii) orthochorous if detΛ > 0, where Λ ∈ Rd×d consists of the bottom-right d-by-d submatrix
of Λ,

(iii) special if det Λ > 0, which, by eq. (1.27), means det Λ = 1.
An orthochronous Lorentz matrix is one which preserves the arrow of time, and an orthochorous
Lorentz matrix is one which preserves spatial orientation. A special Lorentz matrix is one which
preserves spacetime orientations.

Among P,T ,C , the only orthochronous matrix is P, the only orthochorous matrix is T , and
the only special matrix is C .

Proposition 1.15. For any Lorentz matrix Λ, |Λ0
0| ≥ 1. �
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Proof. Let N = (1, 0, 0, · · · ). This satisfies N2 = −1. Since Λ is a Lorentz matrix, (ΛN)2 =
N2 = −1 as well;

ΛN = (Λ0
0,
~Λ) (1.89)

is the first column of Λ; letting ~Λ ∈ Rd denote the spatial part, (ΛN)2 = −|Λ0
0|2 + ‖~Λ‖2. Setting

the left-hand side to −1, we get
|Λ0

0|2 = 1 + ‖~Λ‖2 ≥ 1. (1.90)
�

Second proof. We know that Λ = T ηRΛ(v) for some η ∈ {0, 1}, R ∈ O(d), and v ∈ Bd.
Thus,

Λ0
0 = NᵀΛN = ±NᵀΛ(v)N = ±γ, (1.91)

where γ = 1/
√

1− ‖v‖2 ≥ 1 is the Lorentz factor. �

Proposition 1.16. For any Lorentz matrix Λ, |detΛ| ≥ 1. �

Proof. Let x ∈ Rd be a unit vector, and x = (0,x) ∈ R1,d. Then x2 = ‖x‖2 = 1. Since Λ is
Lorentz, (Λx)2 = x2 = 1 as well. The spatial component of Λx is Λx, so

1 = (Λx)2 ≤ ‖Λx‖2. (1.92)
Since x was an arbitrary unit vector, this implies that every eigenvalue λ of Λ has |λ| ≥ 1. As detΛ
is the product of the eigenvalues of Λ (with multiplicity), |detΛ| ≥ 1 follows. �

Proposition 1.17. Let • stand for “orthochronous,” “orthochorous,” or “special.” Let C be a
connected component of O(1, d). If one matrix in C is •, then all are. �

Proof. The three maps Λ 7→ Λ0
0,detΛ,det Λ are all continuous functions O(1, d) → R. By

the results above, they are non-vanishing, so they cannot swap signs on any connected component
of O(1, d). �

Since the identity matrix I is orthochronous, orthochorous, and special, we conclude that
matrices in the same connected component are as well. This shows that P,T ,C are not in the
identity component SO(d).

Proposition 1.18. (a) A Lorentz matrix lies in the identity component of the Lorentz
group if it is orthochronous, orthochorous, and special.

(b) Any two of these imply the third.
�

Proof. This follows from the representation theorem Λ = T ξPηRΛ(v) holding for general
Lorentz matrices. Since SO(d) is connected, RΛ(v) lies in the same connected component as the
pure boost Λ(v), which lies in the same connected component as I (just take v 0). Thus, RΛ(v)
is orthochronous, orthochorous, and special. Multiplying this by one of T ,P,C on the left ruins
two of these. So, the only way Λ can be two or three is if Λ = RΛ(v). �

Let
O↑(1, d) = {Λ ∈ O(1, d) : Λ0

0 > 0},
O+(1, d) = {Λ ∈ O(1, d) : detΛ > 0},
sO(1, d) = {Λ ∈ O(1, d) : det Λ = 1},

(1.93)

denote the subsets of O(1, d) consisting of orthochronous, orthochorous, and special Lorentz matrices,
respectively. By what we have discussed so far, each of these subsets consists of a disjoint union of
components of the Lorentz group. It follows that they are all subgroups, and subgroups of index
two. (This can also be checked algebraically.) Each is generated by the restricted Lorentz matrices
together with whichever of A ∈ {P,T ,C } it contains.
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The decompositions T = TaTΛ and TΛ = TRTΛ(v) yield:

Proposition 1.19. • P(1, d) is homeomorphic to R1+d × SO(1, d),
• SO(1, d) is homeomorphic to Rd × SO(d).

��

Consequently,

π1(P(1, d)) ∼= π1(SO(d)) ∼=


trivial (d = 1),
Z (d = 2),
Z2 (d ≥ 3).

(1.94)

C.3. The Haar measure [*].

Proposition 1.20. The left Haar measure on each of the groups G = P, P∗, SO(1, d), Spin(1, d)
is also right-invariant. �

D. Superselection rules

If we are given two unitary representations ρ : G→ U(V), % : G→ U(W) of some group, then
we can form their direct sum

ρ⊕ % : G→ U(V ⊕W). (1.95)
The Hilbert space V ⊕W is used to model a system whose state can lie in either summand, V or W ,
or be a quantum superposition thereof. The matrices in the image of the combined representation
ρ⊕ % are block diagonal:

(ρ⊕ %)(g) =
[
ρ(g) 0

0 %(g).

]
(1.96)

That is, they lie in the image of the natural embedding U(V)×U(W) ↪→ U(V ⊕W).
Projective unitary representations, in contrast, cannot generally be summed (unless we are

willing to enlarge our group G). The reason is that we lack a natural embedding

PU(V)× PU(W) ↪→ PU(V ⊕W). (1.97)

The natural attempt, ([V ], [W ]) 7→
[(

V 0
0 W

)]
, is not well-defined because

idV ⊕eiθ idW =
(idV 0

0 eiθ idW

)
(1.98)

is not a scalar multiple of idV⊕W if eiθ 6= 1.
Example 1.21. Consider the double cover π : SU(2) � SO(3). Because kerπ = {I2,−I2} is

in the center of SU(2) (this is a general property of the kernels of covering maps), Schur’s lemma
tells us that, in any irreducible unitary representation of SU(2), both I2,−I2 are mapped to scalars.
Consequently, we get a projective unitary representation of SO(3).

We have two classes of SU(2)-irreps:
• those, like the trivial representation, where −I2 is mapped to the identity I,
• those, like the fundamental representation, where −I2 is mapped to −I.

If we take a direct sum of irreps in one of these classes — it can be either class, but all of the irreps
have to be from the same class — then −I2 is still mapped to a scalar, and so the SU(2)-rep factors
through to a projective unitary representation of SO(3). But, if we take a direct sum of irreps from
both classes, then −I2 is not mapped to a scalar, and it follows that the resulting SU(2)-rep does
not factor through. �
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This is the motivation for superselection rules. It is an empirical fact that spinors exist. One
would like to construct a theory in which one-particle spinor states coexist with the vacuum. But
the corresponding projective space does not admit a projective representation of the Poincaré group.
The problem consists of states involving a quantum superposition of states with an even number
of spinors with one with an odd number of spinors. For example, consider the vacuum |∅〉 and a
one-electron state |e〉. Under a 360◦ rotation,

1√
2

(|∅〉+ |e〉) 1√
2

(|∅〉 − |e〉). (1.99)

These vectors are not linearly dependent, so they span different states ∈ PH.
Q. So why does the world appear to be Lorentz invariant? A. Because the offending superposi-

tions are not seen in nature.
The interactions present in the standard model of particle physics guarantee that spinors are

only created in pairs. This is one way in which Lorentz invariance is preserved. So, we have three
choices.

(1) Declare that the actual state space consists either of only states in which the parity of the
spinor number is even, or states in which the parity is odd.

(2) Accept that Lorentz invariance might hold only at the level of experimental predictions,
not the state space.

(3) Cut down the state space by excluding the offending superpositions. This is known as the
univalence superselection rule [WWW52; SW00].

Until we observe some failure of Lorentz invariance, the choice between these possibilities is an
aesthetic one. The first is unappealing because it implies the existence of two different theories, one
in which the total number of spinors in the universe is even, and one in which the total number
is odd. Good luck figuring out which holds! Regarding the second possibility, manifest Lorentz
symmetry is a great simplification arguably not worth abandoning due to the conceivability of
quantum superpositions never found in nature. Our preference is (3), but no consensus exists
[Ear08]. Physicists seem to like (2), replacing manifest Lorentz covariance with manifest Spin(1, 3)
covariance. Nonobservability of problematic superpositions then amounts to a conservation law and
concomitant restriction on practical observables.

More generally, a model with superselection rules in force is one in which the state space is
defined to be a disjoint union of projectivizations of Hilbert spaces:

state space = PH[1] t PH[2] t · · · (1.100)

The choice between the different components

H[n] ( H (1.101)

(superselection sectors) is a classical OR, not a quantum OR. The system must lie in some definite
superselection sector. No quantum superpositions between the different possibilities are allowed.
Thus, the univalence superselection rule accommodates possibility (1) above at the level of the
state space. The theory of symmetries of quantum systems with superselection rules is developed
in parallel to the version without superselection rules — see [SW00, Thm. 1.1]. The only new
complication is that symmetries can permute superselection sectors, but we do not need to consider
this possibility.

In the C∗-algebra framework for quantum mechanics (which we have not broached), the existence
of multiple superselection sectors can become a theorem holding for various models. This applies to
QED, where the superselection sectors are labeled by the total charge Q. A rigorous result to this
effect is due to Strocchi–Wightman [SW74], but the basic idea goes back to Haag [Haa63]: letting ρ
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denote the charge density and E denote the electric field, we should have

Q = lim
R→∞

∫
|x|<R

ρ(t,x) d3x = lim
R→∞

∫
|x|<R

∇ ·E(t,x) d3x

= lim
R→∞

∫
|x|=R

E(t,x) · dA(x),
(1.102)

using ∇ ·E = ρ. This is Gauss’s law. Consequently, for any observable O, one expects

[Q,O] = lim
R→∞

∫
|x|=R

[E(t,x), O] · dA(x). (1.103)

But, if observables are local things, then, if we take R large enough, [E(t,x), O] = 0. So, [Q,O] = 0.
The main task taken up by Strocchi–Wightman is showing that the foregoing reasoning can be
rigorized.

In non-abelian gauge theories, topological properties of field configurations are also expected to
constitute superselection sectors. An example is the θ-angle in QCD [Col85, §7.3.3].

Exercises and Problems

Exercise 1.1: For v ∈ (−1, 1), define the rapidity β ∈ R by v = tanh β. Show that the standard
boost Λstd(v) defined in eq. (1.15) can be written

Λstd(v) =

 cosh β − sinh β 0
− sinh β cosh β 0

0 0 Id−1

 . (1.104)

This is a “hyperbolic rotation.”
Exercise 1.2: (a) Prove that Λstd(v) preserves the Minkowski interval, hence lies in the

Lorentz group.
(b) Let v ∈ Rd\{0}. Show that

Λ(v) =
[
1 0
0 R

]
Λstd(‖v‖)

[
1 0
0 R−1

]
(1.105)

for R ∈ O(3) any orthogonal transformation that takes x̂ = (1, 0, · · · ) to v̂ = v/‖v‖.
So, Λ(v) lies in the Lorentz group as well.

Exercise 1.3: Let v, u ∈ (−1, 1). Show the following:
• −1 < (v + u)/(1 + vu) < 1.
•

Λstd(v)Λstd(u) = Λ
( v + u

1 + vu

)
. (1.106)

This is the velocity addition formula (for collinear boosts).
In particular, Λstd(v)−1 = Λstd(−v).

Hint: the use of rapidities is very convenient here.
Exercise 1.4: Let H denote an infinite-dimensional (separable, as always) Hilbert space over
K ∈ {R,C}.

(a) Show that the strong and weak operator topologies agree on U(H).
(b) Show that U(H) is a topological group under the strong/weak operator topology.
(c) Explain why, when PU(H) is endowed with the quotient topology, it is also a topological

group.
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Exercise 1.5: For each a ∈ R, let Ta ∈ U(L2(R)) be the map
Taψ(x) = ψ(x− a) (1.107)

that translates functions to the right by a units. Is the map a 7→ Ta continuous with respect to the
strong operator topology? Uniform operator topology?
Exercise 1.6: Let T denote an anti-unitary operator on H such that T 2 = εI for ε = ±1. If
ε = +1, use T to write H as the complexification of some real subspace. If ε = −1, use T to endow
H with the structure of a left H-module.
Exercise 1.7: When working with spinors in 1+3 spacetime dimensions, the time-reversal operator
T satisfies T 2 = −I.

(a) Suppose one has a parity operator P satisfying P2 = I and commuting with T . According
to Table 1.1, in which tenfold way class do we land?

(b) When working with Majorana spinors, physicists like to define the parity operator P so that
it commutes with T but satisfies P2 = −I. Let P̃ = iP. Show that T , P̃ anti-commute.
Using Table 1.1, determine which tenfold way class this spinor system falls into, when
analyzed using the pair (T , P̃).

Problem 1.1: Prove rigorously that
• O(1, d) is a Lie subgroup of GL(1 + d,R)
• P(1, d) is a Lie subgroup of Aff(R1,d).

While you are at it, prove eq. (1.87), eq. (1.88).
Problem 1.2:

(a) (Optional.) Show that any bijection T : Rd → Rd preserving the Euclidean distance must
have the form x 7→ Rx + a for some a ∈ Rd and R ∈ O(d).

Let T : R1,d → R1,d denote a bijection preserving the Minkowski interval d(x, y) = (x− y)2, i.e. a
Minkowski isometry. Our goal is to show that T is affine.

(b) Reduce the general case to the case where T fixes the spacetime origin.
Now assume that T fixes the spacetime origin. Our goal is to show that T is linear.

(c) Let e = (1,0). Show that there exists a boost Λ(v) such that T jΛ(v)e = T (e), for j = 0, 1.
So, Λ(v)−1T is a Minkowski isometry fixing e.

(d) Let Σ = {(0,x) : x ∈ Rd}. Show that if T is any Minkowski isometry fixing e and the
spacetime origin, then there exists some R ∈ O(d) such that T |Σ = R.

(e) Then,
T0

def= R−1Λ(v)−1T jT

is a Minkowski isometry which fixes the spacetime origin, e, and Σ. Show that T0 is the
identity.

So, T = T jΛ(v)R is linear. This also shows that the time-reflection and parity operators, spacetime
translations, boosts, and rotations together generate the full Poincaré group.
Problem 1.3: Let Bd = {v ∈ Rd : ‖v‖ < 1}.

(a) (Velocity addition formula.) Show that, for any v,u ∈ Bd (not necessarily collinear!),
Λ(v)Λ(u) = WΛ(v⊕ u) (1.108)

for some W ∈ SO(3), where

v⊕ u = 1
1 + u · v

[(
1 + γ

γ + 1u · v
)
v + u

γ

]
(1.109)

and γ = γ(v) is the Lorentz factor associated to v. Prove that v⊕ u ∈ Bd.
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(b) Show that
γ(u⊕ v) = γ(u)γ(v)(1 + u · v). (1.110)

(c) Show that u⊕ v 6= v⊕ u in general, but they have the same magnitude.
Problem 1.4: This problem continues Problem 1.3. The rotation W is called a Thomas–Wigner
rotation. Prove that, if v,u are non-collinear, then W is a rotation of the plane in which u,v lie by
an angle ε ∈ (−π, π) satisfying

cos ε = (1 + γ(u) + γ(v) + γ(v⊕ u))2

(1 + γ(v⊕ u))(1 + γ(u))(1 + γ(v)) − 1. (1.111)

Moreover, the correct sign is the one such that W rotates u towards v.
Problem 1.5: Consider the matrix exponential

eΛ =
∑
j=1

Λj

j! .

Prove that this is a surjective map o(1, 3) → SO(1, 3). Hint: consensus is that no short proof of
this exists. You may wish to use the double cover SL(2,C)� SO(1, 3) that we discuss in the next
lecture.



CHAPTER 2

Deprojectivization

In the previous lecture, we defined the notion of a relativistic quantum system in d ∈ N+ spatial
dimensions: a (continuous) projective unitary representation ρ : P(1, d)→ PU(H) of the restricted
Poincaré group P(1, d). In this lecture, we present:

Theorem (Wigner–Bargmann [Wig39; Bar54]). If d ≥ 2, then ρ can be lifted to an ordinary
unitary representation of the universal cover π : P∗(1, d)� P(1, d). �

Classifying the projective unitary representations of the restricted Poincaré group is thereby reduced
to the more amenable problem of classifying ordinary unitary representations of a slightly bigger
group,

P∗(1, d) = R1,d o ˜SO(1, d). (2.1)

To this latter problem, the ample mathematical tools of linear representation theory apply. This
will be the topic of the next chapter.

We will call P∗(1, d) the universal Poincaré group, for
lack of standard terminology. The Lorentz part of this is

˜SO(1, d) ∼=
{

˜SL(2,R) (d = 2),
Spin(1, d) (d ≥ 3).

(2.2)

“Universal” is synonymous with spinorial if d ≥ 3, in which
case the relevant covers are all double covers. For each d ≥ 2,
there exists a unique connected double cover

Spin(1, d)� SO(1, d). (2.3)
As the name indicates, the existence of this cover has to do
with spinors.

Figure. The double cover
Spin(2)� SO(2).

In the physical d = 3 case, Spin(1, 3) is isomorphic to the group

SL(2,C) = {S ∈ C2×2 : detS = 1} =
{(

a b
c d

)
: a, b, c, d ∈ C, ad− bc = 1

}
(2.4)

of unimodular two-by-two matrices with complex entries. This isomorphism, which plays the
same role that Spin(3) ∼= SU(2) plays in non-relativistic quantum mechanics, is the basis for many
computations involving spinors.
Remark: Conversely, unitary representations of P∗(1, d) induce projective unitary representations
of P(1, d) as long as the elements of kerπ are mapped to c-numbers.
Warning: The notation “Spin(1, d)” is also used (by some authors, not us) to refer to a particular
double cover of the full Lorentz group O(1, d).
Warning: It is sometimes said that spinors do not return to themselves upon performing a 360◦
rotation, only after a 720◦ rotation. This is misleading. The state of a spinor, as element of PH,
does return to itself upon a full rotation. The confusion arises from mistaking vectors in H as states.

27
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1. The Wigner–Bargmann theorem

Let H denote an arbitrary Hilbert space. Suppose we are given a (continuous, as always)
projective unitary representation ρ : G→ PU(H) of some topological group G.

Definition. Let E denote a set and
π : E � G (2.5)

a surjection. A lift of ρ (to E, via π) is a map of sets % : E → U(H) such that
[%(g)] = ρ(π(g)) (2.6)

for all g ∈ E. In other words:
E

% //

π

��

U(H)

U 7→[U ]
��

G ρ
// PU(H)

(2.7)

commutes.
Note that, in this definition, we are not requiring anything of % other than that it be a map

of sets. By the axiom of choice, at least one lift exists. The phase of the operator %(g) is however
completely arbitrary:

%alt(g) = eiθ(g)%(g) (2.8)
is also a lift of ρ, for any function θ : E → R. Consequently, there is no reason why %, given what
we have said so far, would be a homomorphism, or even continuous.

The question of deprojectivization is whether there exists a choice of lift that is a continuous
homomorphism. In other words, can we, by choosing θ carefully, arrange that %alt is an ordinary
unitary representation of E? A far-reaching theorem of Bargmann [Bar54] states:

Lemma. (Bargmann’s theorem.) Any continuous projective unitary representation of
a connected Lie group G lifts to a continuous unitary representation of G itself if the
following two conditions are satisfied:
(I) the Lie group is simply connected: the fundamental group π1(G) is trivial,
(II) a certain cohomology group H2(g) = H2(g;R) (defined below) associated to the Lie

algebra g of G is trivial.
We will provide an outline of a proof of Bargmann’s theorem, omitting the difficult technical bits.

What matters for us is that the hypotheses are satisfied when G = P∗(1, d) for d ≥ 2. The
topological condition, (I), is automatic: the definition of the universal cover includes that π1 vanish.
For (II): the Lie algebra of P∗(1, d) is the same as the Lie algebra p of P(1, d), so it suffices to check
that

H2(p) = {0}. (2.9)
This calculation is rather involved, but it is just a calculation. We have included it in §A. If the
reader is willing to take for granted that Bargmann’s theorem applies to P∗(1, d), then it is not
important to understand what H2(p) is.

Proof of the Bargmann–Wigner theorem. Assume that H2(p) = {0}. For any continu-
ous projective representation ρ, let

ρ̄ : P∗(1, d)→ PU(H)
ρ̄ = ρ ◦ π. (2.10)

This is a continuous projective unitary representation of P∗(1, d). By Bargmann’s theorem, there
exists a (continuous) unitary representation % : P∗(1, d) → U(H) lifting ρ̄. That is, [%(g)] = ρ̄(g).
Since ρ̄(g) = ρ(π(g)), we conclude eq. (2.6). �
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The two hypotheses of Bargmann’s theorem each reflect an obstruction to lifting a projective
representation to an ordinary representation:

(I) The first hypothesis indicates a global topological obstruction to choosing a continuous lift.
(II) The second indicates an “infinitesimal” algebraic obstruction to making the lift a homo-

morphism.
We discuss these in turn.

Since the calculation of H2(p) is rather involved, let us say a few words about what would happen
were it nontrivial. Projective unitary representations ρ of simply connected Lie groups G with
nontrivial H2(g) lift to unitary representations not of G itself but of some U(1)-fiber bundle E � G
(which can depend on ρ). This Lie group has dimension dimE = dimG + 1 rather than dimG.
In physicists’ language, projective representations of G involve a “central charge.” Examples of G
where this happens include the Galilean group, where the additional central charge is interpreted as
the mass of the representation, the Weyl algebra (the symmetry algebra of conformal field theory
on the worldsheet R× S1 of a string), and the Poincaré group in d = 1 spatial dimensions, P∗(1, 1),
where the central charge can be interpreted as the slope of an energy gradient across space1. So,
what the proof of eq. (2.9) is doing is ruling out the presence of spurious central charges in projective
representations of the Poincaré group.

1.1. The topological obstruction, π1(G). Topological obstructions show up as a matter of
course in lifting problems, so the presence of a topological obstruction here is unsurprising. Some
lifting problems are topologically trivial, but this is not one of those: for each N ∈ N+, the covering
map U(N)� PU(N) is a nontrivial U(1)-bundle. It has no continuous sections. So, if a projective
unitary representation ρ is to be lifted, this imposes a topological constraint on ρ.

The ur-example, essential to understanding spinors, is:
Example 2.1 (SU(2)� SO(3)). Famously, the two groups

SU(2) = {U ∈ U(2) : detU = 1}
SO(3) = {R ∈ O(3) : detR = 1}

(2.11)

are related by a (smooth, homomorphic) double cover π : SU(2)� SO(3). Correspondingly, while
SU(2) is simply connected, SO(3) is doubly connected:

π1(SU(2)) = trivial, π1(SO(3)) ∼= C2. (2.12)

The kernel of π is kerπ = {I2,−I2}. Consequently,

SO(3) ∼= PU(2), (2.13)

with an explicit isomorphism ρ : SO(3)→ PU(2) being ρ(π(U)) = [U ]. The map ρ is a projective
unitary representation of SO(3).

Q. Does this lift to a continuous map µ : SO(3)→ SU(2)? A. No.
Suppose, to the contrary, that there did exist such a µ. This would mean that [µ(R)] = ρ(R)

for all R ∈ SO(3). I.e.
[µ(π(U))] = [U ] (2.14)

for all U ∈ SU(2). That is, µ(π(U)), U differ by a phase. But U, µ(π(U)) are special two-by-two
unitary matrices, not just general unitary matrices. So differing by a phase implies µ(π(U)) = ±U .
That is,

U−1µ(π(U)) = ±I2. (2.15)
A priori, the sign ± could depend on U — but it is easy to see that it cannot, because the left-hand
side depends continuously on U . Since SU(2) is connected, this means that the sign is constant.

1When d ≥ 2, this sort of thing is ruled out by rotation covariance.
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Without loss of generality, we can assume the + case, which means µ(I3) = I2. Then,
µ(π(U)) = U. (2.16)

But this is impossible, because π(−I2) = π(I2). �

Remark 2.2. The reader may have noticed an artificial restriction in the previous example: we
required µ : SO(3)→ SU(2). But why not weaken this to land in U(2)? The distinction does not
matter: there does not exist any continuous map SO(3)→ U(2) lifting ρ, but proving this requires
a bit more topology. �[Problem 2.1]

Remark 2.3. If we demand that µ : SO(3)→ U(2) be a homomorphism, then the lack of a lift
follows from representation theoretic facts: the only two-dimensional representation of SO(3) is the
trivial one.

One way of proving this is the argument above. Note that det ◦µ : SO(3) → U(1) is a one-
dimensional representation of SO(3), and the only one-dimensional representation of SO(3) is the
trivial one (see Exercise 2.1). Consequently, any two-dimensional unitary representation of SO(3)
must land in SU(2), and then the argument above applies. �

The fundamental group π1(G) is, as a set, the set of homotopy classes of continuous maps
S1 → G. (Recall that G is connected, so we do not need to worry about the choice of base point.)
In the proof of Bargmann’s theorem, the vanishing of the fundamental group is used to reduce the
problem to one about representations of the Lie algebra g. This is what we discuss next.

1.2. The algebraic obstruction, H2(g). Given a finite-dimensional Lie algebra g over K ∈
{R,C}, the vector space H2(g) = H2(g;K) is defined as follows. Identify elements of (∧2g)∗ with
anti-symmetric bilinear maps g2 → K. Then,

B2(g) = {ω ∈ (∧2g)∗ : ∃λ ∈ g∗ s.t. ω(X,Y ) = λ([X,Y ])}, (2.17)
and

Z2(g) = {ω ∈ (∧2g)∗ : ω([X,Y ], Z) + ω([Y,Z], X) + ω([Z,X], Y ) = 0} (2.18)
are the spaces of “coboundaries” and “cocycles” respectively. These are both vector subspaces of
(∧2g)∗. Note that B2(g) ⊆ Z2(g). Indeed, if ω ∈ B2(g),

ω([X,Y ], Z) + ω([Y,Z], X) + ω([Z,X], Y )
= λ([[X,Y ], Z]) + λ([[Y, Z], X]) + λ([[Z,X], Y ]) = λ(J), (2.19)

where J = [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ]. But J = 0 is the Jacobi identity. So, ω ∈ Z2(g).
Then,

H2(g;K) = Z2(g)/B2(g) (2.20)
is the quotient of the vector space of cocycles by the subspace of coboundaries.

The general theory of Lie algebra cohomology is due to Chevalley–Eilenberg [CE48]. The special
case of H•(g;K) goes further back, to Cartan, in his work on the de Rham cohomology of compact
Lie groups.

The relevance of H2(g) to lifting projective representations has to do with its role in classifying
central extensions of g via K. Recall that a short exact sequence of Lie algebras consists of the data

K ↪→ e
π
� g, (2.21)

where kerπ is exactly the image of R under the first embedding. If kerπ lies in the center of e, then
this is called a central extension.

Example 2.4. The trivial extension is e = g⊕K. More precisely, it is the short exact sequence
in which

• the embedding K ↪→ e is x 7→ (0, x) and
• the projection e� g is (X,x) 7→ X.
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�

Two central extensions K ↪→ e• � g are called equivalent if they fit together into a commutative
diagram

e1

�� ��
φ

��

K
/�

??

� o

��

g

e2

?? ??

(2.22)

where φ is an isomorphism of Lie algebras. A central extension e is also called trivial if it is equivalent
to the trivial extension g ⊕ K. Equivalently, a central extension is trivial if and only if it splits,
which means that there exists a map g 3 X 7→ X̄ ∈ e of Lie algebras such that π(X̄) = X.

Given any central extension K ↪→ e� g, let Z ∈ e denote a nonzero element in the image of the
first embedding. Choose an embedding of vector spaces g ↪→ e, and denote this X 7→ X̄. Note that
this will typically not be a map of Lie algebras. Measure its failure to be a map of Lie algebras by
defining ω : g2 → K by

ω(X,Y )Z = [X̄, Ȳ ]− [X,Y ], (2.23)

where the first Lie bracket is e’s and the second is g’s. The right-hand side lies in the kernel of the
projection e� g (this being a map of Lie algebras), so, by exactness, lies in the image of K ↪→ e,
which is why it has the form KZ.

Proposition 2.5. (a) The map ω defined above is a cocycle.
(b) It is a coboundary if and only if the extension is trivial.

�

Proof sketch. The first part of the proposition is the Jacobi identity for ω, as defined
by eq. (2.23). This will follow from combining the Jacobi identities for e, g. The second part
of the proposition comes from the following observation: an alternative to the lift X 7→ X̄ is
X 7→ X̄ + λ(X)Z, for any λ ∈ g∗. This alternative has a different ω, one differing from the original
by a coboundary. So, we can choose a lift eliminating ω (in which case the lift is a splitting map) if
and only if ω is a coboundary. �

Proof. (a) We want to show that ω satisfies the Jacobi identity ω([W,X], Y )+ω([X,Y ],W )+
ω([Y,W ], X) = 0. Note that

ω([W,X], Y ) = [[W,X], Ȳ ]− [[W,X], Y ]

= [[W̄ , X̄]− ω(W,X)Z, Ȳ ]− [[W,X], Y ]

= [[W̄ , X̄], Ȳ ]− [[W,X], Y ].

(2.24)

Likewise,

ω([X,Y ],W ) = [[X̄, Ȳ ], W̄ ]− [[X,Y ],W ]

ω([W,X], Y ) = [[W̄ , X̄], Ȳ ]− [[W,X], Y ].
(2.25)

The Jacobi identity for ω therefore follows from three things: the Jacobi identity for e’s
Lie bracket, the Jacobi identity for g’s Lie bracket, and the linearity of the map X 7→ X̄.

(b) • (‘If.’) It suffices to consider the case where e = g⊕K is literally the trivial extension,
in which case we can choose Z = (0, 1). Because X 7→ X̄ is linear, there must exist
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some λ ∈ g∗ such that X̄ = (X,λ(X)). Then,
ω(X,Y )Z = [X̄, Ȳ ]− [X,Y ] = ([X,Y ], 0)− ([X,Y ], λ([X,Y ]))

= (0, λ([X,Y ])).
(2.26)

We conclude that ω(X,Y ) = λ([X,Y ]), which is what it means to be a coboundary.
• (‘Only if.’) Suppose that ω(X,Y ) = λ([X,Y ]) for some λ ∈ g∗. Now define φ : g⊕K→
e by

φ(X, s) = X̄ + (s+ λ(X))Z. (2.27)
This is an isomorphism of vector spaces, fitting into a commutative diagram of vector
spaces, as in eq. (2.22). It is also a map of Lie algebras:

[φ(X, s), φ(Y, t)] = [X̄, Ȳ ] (2.28)

φ([(X, s), (Y, t)]) = φ([X,Y ], 0) = [X,Y ] + λ([X,Y ])Z

= [X,Y ] + ω(X,Y )Z = [X̄, Ȳ ].
(2.29)

�

It turns out that any continuous projective unitary representation of a Lie group induces an
ordinary representation not of g but of a one-dimensional central extension thereof. Indeed, consider
the topological group

E = {(U, g) ∈ U(H)×G : [U ] = ρ(g)}, (2.30)
whose (natural, continuous) unitary representation % : (U, g) 7→ U lifts ρ. This sits in a central
extension

U(1) ↪→ E � G (2.31)
in the category of topological groups. It turns out that E is canonically a Lie group of dimension
dimG+ 1, and the maps in eq. (2.31) are smooth.2 Consequently, they can be “differentiated” to
yield a central extension R ↪→ e� g of the corresponding Lie algebras. The representation % induces
a representation of e on H.

If the central extension R ↪→ e � g is trivial, so that e ∼= R ⊕ g, then we can ignore the
extra R factor and get a representation on H of g itself. Exponentiating this (using Lie’s second
theorem) yields an ordinary unitary representation of the universal cover of G. If G is already
simply connected, this is G itself. So:

ρ is guaranteed to lift ⇐⇒ all 1D central extensions of g are trivial.
Conversely, nontrivial central extensions of g typically yield projective representations of G

which only lift to ordinary unitary representations of some central extension of G by U(1), namely
E.

Example 2.6 (The Heisenberg group). In this example, we exhibit a projective representation
of the abelian group (R2,+) that does not lift to a unitary representation of (R2,+) but rather
of a three-dimensional Lie group H known as the “Heisenberg group.” The existence of such an
intrinsically projective representation has to do with the fact that the abelian Lie algebra t = R2

has nontrivial cohomology,
H2(t) ∼= R (2.32)

(see Exercise 2.3) and therefore admits a nontrivial central extension, namely the Lie algebra of the
Heisenberg group.

2Establishing this is the main technical step in the proof of Bargmann’s theorem. First, one shows straightforwardly
that E is a topological manifold [Sim71], being a U(1)-bundle over G. Then, the solution of Hilbert’s fifth problem
(the Montgomery–Zippin theorem) guarantees that E is canonically a Lie group. The special case relevant here –
that of a central extension of a Lie group by another Lie group – is considerably easier than the full problem, and a
complete exposition can be found in [Tao14, §2.6].
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The Heisenberg group H is the group

H =
{1 a c

0 1 b
0 0 1


︸ ︷︷ ︸
M(a,b,c)

: a, b, c ∈ R
}

(2.33)

of 3-by-3 matrices M ∈ R3×3 such that M − I3 is upper triangular. The group law is1 a c
0 1 b
0 0 1

1 a′ c′

0 1 b′

0 0 1

 =

1 a+ a′ c+ c′ + ab′

0 1 b+ b′

0 0 1

 . (2.34)

So, if we define π : H � R2 by M(a, b, c) 7→ (a, b), this is a homomorphism onto the abelian group
(R2,+). This fits into a central extension

(R,+) ↪→ H
π
� (R2,+) (2.35)

of groups, where the first map is c 7→M(0, 0, c). Differentiating yields a central extension

R ↪→ h� t = R2 (2.36)

of Lie algebras. Concretely, h ⊂ R3×3 is the Lie algebra of upper-triangular 3-by-3 matrices

m(a, b, c) =

0 a c
0 0 b
0 0 0

 , (2.37)

in which the Lie bracket is the usual commutator. The first map in eq. (2.36) is c 7→ m(0, 0, c) and
the second map is m(a, b, c) 7→ (a, b). The central extension h is nontrivial, because h is not abelian.

The Schrödinger representation of the Heisenberg group H is defined on H = L2(R). Actually, we
have many different Schrödinger representations, one for each ~ > 0. Specifically, let %~ : H → U(H)
be defined by

%~

(1 a c
0 1 b
0 0 1

)ψ(x) = ei~ceibxψ(x+ ~a) for all ψ ∈ L2(R) (2.38)

for all ψ ∈ L2(R). This is indeed a continuous unitary representation. [Problem 2.3(b)]
Let ρ~ : R2 → PU(H) be defined by ρ~(a, b) = %~(M(a, b, 0)) mod U(1). This is a (continuous)

projective unitary representation of (R2,+). While it lifts to an ordinary representation of H, by
construction, it does not lift to an ordinary representation of R2. The physical interpretation of ρ~ [Problem 2.3(c)]
is that it describes the Galilean symmetry of Schrödinger’s wave mechanics on the real line. One
factor of R2 is carrying out a translation, and the other is carrying out a Galilean boost. �

2. Parity and time-reversal (?)

We now discuss how the considerations above are modified in the presence of parity and/or
time-reversal symmetry. In §3, we discussed how these additional symmetries lift to unitary/anti-
unitary transformations of the ambient Hilbert space. The possibilities were classified according to
a “tenfold way.” Excluding class A, a system with no additional symmetries beyond the restricted
Poincaré group, there were nine cases: AI, AII, AIII, BDI, C, CI, CII, D, DIII. The goal of this
section is to discuss how, in each class, a Wigner representation of the relevant subgroup of the full
Poincaré group lifts to an ordinary unitary/anti-unitary representation of some cover thereof.

In each of the ten ways, we have a subgroup Z ⊆ {I ,P,T ,C = PT } telling us which
symmetries are present. In Table 1.1 is listed a covering group c : E � Z. This is either an
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isomorphism or a double cover, depending on which way we are in. For each A ∈ Z, we have an
automorphism

T 7→ TA TTA (2.39)
of P(1, d). This induces an automorphism of the Lie algebra p(1, d), which exponentiates (by
Lie’s second theorem) to an automorphism ΦA ∈ Aut(P∗(1, d)) of P∗(1, d). The map A 7→ ΦA

associating A with this automorphism is a homomorphism

Z → Aut(P∗(1, d)). (2.40)

Precomposing with c yields a homomorphism E → Aut(P∗(1, d)). Let E n P∗(1, d) denote the
corresponding semidirect product. This is a double or quadruple cover of the subgroup G of the full
Poincaré group containing the identity component and the members of Z.

Recall that we have been assuming d ≥ 2.

Proposition 2.7. Every Wigner representation of G lifts to an ordinary unitary/anti-unitary
representation of E n P∗(1, d). �

Proof. By the discussion in the previous lecture, and by the Wigner–Bargmann theorem, we
have:

• an ordinary unitary representation % : P∗(1, d)→ U(H), lifting the restriction of the given
Wigner representation to P(1, d),
• for each A ∈ Z, an operator A (as described in the tenfold way) such that

A%(T )A = εA%(ΦA (T ))eiθ(T ;A ) (2.41)

for each T ∈ P∗(1, d), where θ(T ; A ) is some phase, and where εA ∈ {−1,+1} is the sign
of A2 ∝ I.

The group generated by the A’s is the covering group E.
Let us restrict θ(T ; A ). Note that eiθ(I;A ) = 1. Compute

εAe
iθ(T1T2;A ) = A%(T1T2)A%(ΦA (T−1

2 T−1
1 )) = εAA%(T1)AA%(T2)A%(ΦA (T−1

2 ))%(ΦA (T−1
1 ))

= A%(T1)Aeiθ(T2;A )%(ΦA (T−1
1 ))

= eiθ(T2;A )A%(T1)A%(ΦA (T−1
1 ))

= εAe
iθ(T1;A )+iθ(T2;A )

(2.42)

for all T1, T2 ∈ P∗(1, d). That is, T 7→ eiθ(T ;A ) is a one-dimensional unitary representation of
P∗(1, d). Every such representation must be trivial (skip ahead to Proposition 3.8 for the proof).

Having now shown that eiθ(T ;A ) = 1, it suffices to observe that what we have in the A’s, % is a
unitary/anti-unitary representation of E n P∗(1, d). Explicitly,

E n P∗(1, d) 3 (A, %(T )) 7→ A%(T ) ∈ UaU(H) (2.43)

is a unitary/anti-unitary representation lifting the given Wigner representation. �

3. Spin(1, 3) ∼= SL(2,C)

The trick to connect the Lorentz group with SL(2,C) is to identify R1,3 with the real vector space
H2 = {M ∈ C2×2 : M = M †} of Hermitian 2-by-2 matrices with complex entries. Let Σ : R1,3 → H2
denote the Bloch map,

Σ(t, x1, x2, x3) = tI2 + x1σ1 + x2σ2 + x3σ3 =
(
t+ x3 x1 − ix2

x1 + ix2 t− x3

)
, (2.44)
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where σ• are the three Pauli matrices,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (2.45)

which satisfy σjσk = δjkI2 + iεjk`σ`, where εjk` ∈ {−1, 0,+1} is the Levi-Civita symbol. The Bloch
map is a linear isomorphism between R1,3 and H2. Its inverse is

Σ−1 :
(
α β
β∗ γ

)
7→
(α+ γ

2 ,<β,−=β, α− γ2
)
. (2.46)

Let S ∈ C2×2. Whenever M ∈ H2, then SMS† ∈ H2. Consequently, if x ∈ R1,3, then
Σ−1(SΣ(x)S†) ∈ R1,3 is well-defined. The map

x 7→ Σ−1(SΣ(x)S†) (2.47)
is linear and so can be represented by a matrix, which we denote π(S) ∈ R4×4. Evidently,
π : C2×2 → R4×4 is smooth. (An explicit formula will be below.) We can now state:

Proposition 2.8. π : SL(2,C)� SO(1, 3) is a surjective 2-to-1 homomorphism of Lie groups.
�

We will prove this below.

Proposition 2.9. π(S†) = π(S)ᵀ. �

Proof. Note that Σ(x)−1 exists if x2 6= 0, and Σ(x)−1 ∝ Σ(Px). By definition, π(S−1) : x 7→
Σ−1(S−1Σ(x)(S†)−1), and the right-hand side is, if x2 6= 0,

Σ−1((S†Σ(x)−1S)−1) = PΣ−1(S†Σ(Px)S) = Pπ(S†)Px. (2.48)
So, π(S−1) = Pπ(S†)P. Equivalently, π(S†) = Pπ(S−1)P. The right-hand side is Pπ(S)−1P
(since π is a homomorphism, which implies π(S−1) = π(S)−1). Now we can use the identity
Λ−1 = ηΛᵀη that holds for all Lorentz matrices to get π(S†) = (−I4)π(S)ᵀ(−I4) = π(Sᵀ). �

Warning: Many facts about the representation theory of SL(2,C) can be deduced from facts about
the Lie algebra sl(2,C). For example, it is possible to prove Proposition 2.8 by exhibiting an explicit
isomorphism

o(1, 3) ∼= sl(2,C). (2.49)
However, care is required, because the exponential map sl(2,C)→ SL(2,C) is not surjective. For
example, (−1 s

0 −1 ) is not in the image of the exponential map whenever s ∈ C×. (This does not
contradict Problem 1.5.)

3.1. Proof of Proposition 2.8. Observe: if x ∈ R1,3, then the Minkowski norm x2 =
−x2

0 + ‖x‖2 is given by −det Σ(x).
Lemma 2.10. Whenever S ∈ SL(2,C), we have π(S) ∈ SO(1, 3) . �

Proof. For any x ∈ R1,3, the Minkowski norm of π(S)x = Σ−1(SΣ(x)S†) is

det Σ(Σ−1(SΣ(x)S†)) = det(SΣ(x)S†)
= |detS|2 det(Σ(x)) = det Σ(x) = −x2,

(2.50)

the Minkowski norm of x. So, π(S) preserves the Minkowski norm. This means that π(S) ∈ O(1, 3)
is a Lorentz matrix.

Since SL(2,C) is connected, the image of π must be a connected subset of O(1, 3), and must
therefore lie entirely in one of the four connected components of O(1, 3). Because π(I2) = I4,
the relevant component is the one containing the identity I4, i.e. the restricted Lorentz group
SO(1, d). �
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Lemma 2.11. The map π : SL(2,C) 3 S 7→ π(S) ∈ SO(1, 3) is a homomorphism. �

Proof. Firstly, π(I2) = I4.
If S,Q ∈ SL(2,C), then the Lorentz matrices π(SQ), π(S)π(Q) implement the maps

x 7→ Σ−1(SQΣ(x)(QS)†) = Σ−1(SQΣ(x)Q†S†),
x 7→ Σ−1(SΣ(Σ−1(QΣ(x)Q†))S†) = Σ−1(SQΣ(x)Q†S†),

(2.51)

which agree. So, π(SQ) = π(S)π(Q). �

Lemma 2.12. Fix N ∈ N+. Let S ∈ CN×N , and suppose that SMS† = M for all M ∈ HN .
Then, S = eiθIN for some θ ∈ R. �

Proof. Try M = vv† for v ∈ CN . Then, SMS† = (Sv)(Sv)†. This map, whose range is the
span of Sv, is equal to M , whose range is the span of v, if and only if

Sv = eiθv (2.52)
for some θ ∈ R. So, every nonzero element of CN is an eigenvector of S. This implies that S is a
scalar multiple of the identity: S = cIN for some c ∈ C, which, by eq. (2.52), must be a phase. �

Corollary. kerπ = {−I2, I2}. ��

Proof. Evidently, ±I2 ∈ kerπ, so the main order of business is the converse.
If S ∈ kerπ, then it satisfies the hypotheses of lemma 2.12 with N = 2. So S = eiθI for some

θ ∈ R. Then detS = e2iθ, so S is unimodular only if S = ±I2. �

Lemma 2.13. π is onto SO(1, 3). �

Proof. This can be shown in several ways. It follows from the fact that SO(1, 3) is connected
and Dπ : sl(2,C)→ o(1, 3) is surjective (which must be true because both Lie algebras have real
dimension 6 and kerπ is discrete; alternatively, Dπ is computed below). �

This completes the proof of Proposition 2.8.

3.2. Dπ. The Lie algebra sl(2,C) can be taken to consist of X ∈ C2×2 such that esX ∈ SL(2,C)
for all s ∈ R. Since

e(s+δs)X = esXeXδs = esX(I2 +Xδs+O(δs2)), (2.53)

det e(s+δs)X = (det esX)(det(I2 +Xδs) +O(δs2))
= (det esX)(1 + (δs) trX +O(δs2))

(2.54)

the derivative
d
ds det esX = (det esX) trX (2.55)

can be computed. So, the Lie algebra sl(2,C) consists of traceless matrices:

sl(2,C) = {X ∈ C2×2 : trX = 0} =
{[

a b
c −a

]
: a, b, c ∈ C

}
. (2.56)

Over the complex numbers, this is spanned by the three Pauli matrices.
Since esX = I2 + sX +O(s2), we can compute π(esX) modulo O(s2) by throwing out all terms

in eq. (2.61) that are quadratic in s. This results in

π(esX) = I4 + s


0 <(b∗ + c) =(b∗ + c) 2<a

<(c∗ + b) 0 2=a <(c∗ − b)
−=(c∗ + b) −2=a 0 =(b− c∗)

2<a <(b∗ − c) =(b∗ − c) 0


︸ ︷︷ ︸

(Dπ)X

+O(s2). (2.57)
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The matrix in the previous line is supposed to lie in the Lie algebra

o(1, 3) =
{[

0 aᵀ
a X

]
: a ∈ R3,X ∈ R3×3,X = −Xᵀ

}
(2.58)

of O(1, 3), and indeed, it does, with

a =

<(b∗ + c)
=(b∗ + c)

2<a

 , X =

 0 2=a <(c∗ − b)
−2=a 0 =(b− c∗)

−<(c∗ − b) −=(b− c∗) 0

 . (2.59)

In summary:

Proposition 2.14. The differential Dπ : sl(2,C)→ o(1, 3) is given by

X =
[
a b
c −a

]
7→
[
0 aᵀ
a X

]
, (2.60)

where a, X are as above. So:
• The generators of Lorentz boosts, in sl(2,C), are those X with a ∈ R and b = c∗, i.e.
satisfying X ∈ spanR{σ1, σ2, σ3}.
• The generators of rotations, in sl(2,C), are those X with a ∈ iR and b = −c∗, i.e. satisfying
X ∈ spanR{iσ1, iσ2, iσ3}.

�

Corollary. The pre-image π−1(SO(3)) of the subgroup SO(3) ⊆ SO(1, 3) of rotations is the
subgroup SU(2) ⊂ SL(2,C). ��

Proof. We know that π−1(SO(3)) is a Lie subgroup of SL(2,C). By the previous proposition,
its Lie algebra is spanR{iσ1, iσ2, iσ3}, which exponentiates to SU(2). �

3.3. An explicit formula (?).

Proposition 2.15. For S =
(
a b
c d

)
, the matrix π(S) is

2−1(|a|2 + |b|2 + |c|2 + |d|2) <(ab∗ + cd∗) =(ab∗ + cd∗) 2−1(|a|2 − |b|2 + |c|2 − |d|2)
<(ac∗ + bd∗) <(ad∗ + bc∗) =(ad∗ − bc∗) <(ac∗ − bd∗)
−=(ac∗ + bd∗) −=(ad∗ + bc∗) <(ad∗ − bc∗) =(bd∗ − ac∗)

2−1(|a|2 + |b|2 − |c|2 − |d|2) <(ab∗ − cd∗) =(ab∗ − cd∗) 2−1(|a|2 − |b|2 − |c|2 + |d|2)

 .
(2.61)
�

Proof. Concretely,

SΣ(x)S† =
(
a b
c d

)(
t+ x3 x1 − ix2

x1 + ix2 t− x3

)(
a∗ c∗

b∗ d∗

)
=
(
α β
β∗ γ

)
(2.62)

for

α = |a|2(t+ x3) + |b|2(t− x3) + 2<[(x1 − ix2)ab∗],
β = (t+ x3)ac∗ + (t− x3)bd∗ + (x1 − ix2)ad∗ + (x1 + ix2)bc∗,
γ = |c|2(t+ x3) + |d|2(t− x3) + 2<[(x1 − ix2)cd∗].

(2.63)
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Consequently, Σ−1(SΣ(x)S†) = (t′, (x1)′, (x2)′, (x3)′) for

t′ = (|a|2 + |b|2 + |c|2 + |d|2) t2 + (|a|2 − |b|2 + |c|2 − |d|2)x
3

2 + <[(x1 − ix2)(ab∗ + cd∗)],

(x1)′ − i(x2)′ = (t+ x3)ac∗ + (t− x3)bd∗ + (x1 − ix2)ad∗ + (x1 + ix2)bc∗,

(x3)′ = (|a|2 + |b|2 − |c|2 − |d|2) t2 + (|a|2 − |b|2 − |c|2 + |d|2)x
3

2 + <[(x1 − ix2)(ab∗ − cd∗)].
(2.64)

The matrix implementing the transformation x 7→ x′ is eq. (2.61). �

A. Calculation of H2(p)

One of the hypotheses of Bargmann’s theorem is that the second cohomology group H2(p) =
H2(p;R) of the Lie algebra p = p(1, d) of P(1, d) is trivial. It will be, if d ≥ 2. Carrying out this
computation is the purpose of this appendix.

Because p is finite-dimensional, (∧2p)∗ is finite-dimensional, so the subspaces B2(p),Z2(p) of
“coboundaries” and “cocycles” are both finite-dimensional. The latter is defined by finitely many
linear constraints, and the former is defined as the image of p∗ under a particular map. So, computing

H2(p) = Z2(p)/B2(p) (2.65)

is a matter of finite-dimensional Lie algebra, for each individual d, and could be done with a
computer.

Rather than phrasing the computation this way, we revert to the perspective of H2(p) as
classifying central extensions (by R). Proving that it is trivial amounts to proving that every central
extension is equivalent to the trivial one. Proving that it is non-trivial amounts to constructing
a central extension that is provably inequivalent to the trivial one. Either way, the computations
involved are equivalent to computations done using the cohomological language, the difference being
a matter of presentation.

Remark 2.16 (Complexification). Physicists usually prefer to work with the complexification
pC = C⊗ p of the Lie algebra rather than p itself. This does not matter because

H2(pC;C) ∼= C⊗R H2(p;R) (2.66)

naturally. So, the triviality of H2 does not depend on the choice of base field. Below, we work with[Exercise 2.4]
pC in place of p, so as to match physicists’ notation (specifically that in [Wei05, §2.7]). Thus, all
Lie algebras in this appendix will be complexified, and we will not write the ‘C’ subscript. �

Example 2.17 (d = 1). If d = 1, then, the Poincaré algebra p = p(1, 1) is three-dimensional. It
is spanned over C by three generators, P0,P1,K, the two generators of translations and the generator
of boosts, respectively, satisfying

i[P0,K] = P1, i[P1,K] = P0 (2.67)

and [P0,P1] = 0. Let us try to centrally extend p. A central extension of p consists of a Lie algebra e
with one more generator than p — call it Z (physicists call this a “central charge”) — in the center,
whose Lie bracket can be written

i[P0,K] = P1 +DZ, i[P1,K] = P0 + EZ,
i[P0,P1] = CZ

(2.68)

for some C,D,E ∈ C. Usually, the new coefficients would be constrained by the Jacobi identity, but
the Jacobi identity is automatically satisfied in this case. So, eq. (2.68) defines a valid Lie algebra.
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The extension e is trivial if and only if it is possible to replace each of P0,P1,K with a linear
combination with Z so as to eliminate the C,D,E. This is easy to do for D,E. Indeed, letting

P̃1 = P1 +DZ, P̃0 = P0 + EZ, (2.69)
we have

i[P̃0,K] = P̃1, i[P̃1,K] = P̃0,

i[P̃0, P̃1] = CZ.
(2.70)

Thus, we have eliminated D,E.
But, C cannot be so eliminated — replacing the generators Pj with some linear combinations

with Z, we do not change [P0,P1]. So,

H2(p(1, 1)) ∼= C (2.71)
is one-dimensional. �

The fact that H2(p(1, 1)) is non-trivial should make us appreciate:
Lemma 2.18. For each d ≥ 2, H2(p(1, d)) ∼= {0}. �

Proof. Let R ↪→ e� p denote a central extension of p. Let Z denote a central charge, and let
Jµν ,Pµ denote arbitrarily chosen elements of the preimages of the identically named generators of p.
The Lie bracket of e then takes the form

i[Jµν , Jσλ] = ηµλJνσ − ηµσJνλ + ηνσJµλ − ηνλJµσ + Cµν,σλZ
i[Pµ, Jνσ] = ηµνPσ − ηµσPν + Cµ,νσZ
i[Pµ,Pν ] = Cµ,νZ

(2.72)

for some Cµν,σλ, Cµ,νσ, Cµ,ν ∈ C. The game is to show that there exist other choices of generators,
J̃µν = Jµν +DµνZ, P̃µ = Pµ +DµZ ∈ e, Dµν = −Dνµ, Dµ ∈ C, (2.73)

each differing from Jµν ,Pµ by a multiple of the central charge Z, such that, when rewritten in terms
of these new generators, eq. (2.72) becomes the usual Poincaré algebra,

i[J̃µν , J̃σλ] = ηµλJ̃νσ − ηµσ J̃νλ + ηνσ J̃µλ − ηνλJ̃µσ (2.74)
i[P̃µ, J̃νσ] = ηµνP̃σ − ηµσP̃ν (2.75)
i[P̃µ, P̃ν ] = 0. (2.76)

But note that the commutators above do not change when we replace Jµν ,Pµ with J̃µν , P̃µ:
[Jµν , Jσλ] = [J̃µν , J̃σλ], [Pµ, Jνσ] = [P̃µ, J̃νσ], [Pµ,Pν ] = [P̃µ, P̃ν ]. (2.77)

So, what we want to do is choose the coefficients Dµν , Dµ so that, upon rewriting the right-hand
side of eq. (2.72) in terms of J̃µν , P̃µ, the effect is to absorb the terms involving the central charge Z.

• (Cµ,ν = 0.) The most dangerous terms in eq. (2.72) are the Cµ,ν , because there are no
terms on the right-hand side of i[Pµ,Pν ] = Cµ,νZ besides the central charge. If any of these
were nonzero, we would not be able to eliminate them by redefining Jµν ,Pµ.

Fortunately, Cµ,ν must be zero, so eq. (2.76) holds automatically. In order to prove
this, consider the Jacobi identity

[Jµν , [Pσ,Pλ]]− [Pλ, [Pσ, Jµν ]] + [Pσ, [Pλ, Jµν ]] = 0. (2.78)
The terms here, as computed using eq. (2.72), are [Jµν , [Pσ,Pλ]] = 0 and

[Pλ, [Pσ, Jµν ]] = i[Pλ, ησνPµ − ησµPν ] = (Cλ,µησν − Cλ,νησµ)Z,
[Pσ, [Pλ, Jµν ]] = i[Pσ, ηλνPµ − ηλµPν ] = (Cσ,µηλν − Cσ,νηλµ)Z.

(2.79)
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So, the Jacobi identity eq. (2.78) says
Cλ,µησν − Cλ,νησµ = Cσ,µηλν − Cσ,νηλµ. (2.80)

Contracting with ηµσ yields (d− 1)Cλ,ν = 0, so Cλ,ν = 0. (This is the only place in the
argument where we use that d ≥ 2.)
• (Eliminating Cµ,νσ.) Next, we check that, by defining P̃µ = Pµ +DµZ for appropriate
Dµ, we can arrange eq. (2.75). However, we only have 1 + d different Dµ’s, and many more
Cµ,νσ’s, so it had better be the case that the Cµ,νσ’s are severely restricted by the Jacobi
identity. We win if (and only if, as reversing the reasoning shows) the Jacobi identity
implies that Cµ,νσ has the form

Cµ,νσ = ηµνξσ − ηµσξν (2.81)
for some ξ• ∈ C. Indeed, we can then define Dµ = ξµ, and this has the desired effect:

ηµνPσ − ηµσPν + Cµ,νσZ = ηµνPσ − ηµσPν + (ηµνξσ − ηµσξν)Z
= ηµνP̃σ − ηµσP̃ν .

(2.82)

To prove eq. (2.81), consider the Jacobi identity
[Jµν , [Pσ, Jλρ]] + [Pσ, [Jλρ, Jµν ]]− [Jλρ, [Pσ, Jµν ]] = 0. (2.83)

The terms here are given by
[Jµν , [Pσ, Jλρ]] = (ησρηλν − ησληρν)Pµ + (ησληρµ − ησρηλµ)Pν

+ (ησλCρ,µν − ησρCλ,µν)Z,
[Jλρ, [Pσ, Jµν ]] = (ησνηµρ − ησµηνρ)Pλ + (ησµηνλ − ησνηµλ)Pρ

+ (ησµCν,λρ − ησνCµ,λρ)Z,
[Pσ, [Jλρ, Jµν ]] = (ηρνησλ − ηλνησρ)Pµ + (ηλµησρ − ηρµησλ)Pν

+ (ηλνησµ − ηλµησν)Pρ + (ηρµησν − ηρνησµ)Pλ

+ (ηλµCσ,ρν − ηλνCσ,ρµ + ηρνCσ,λµ − ηρµCσ,λν)Z,

(2.84)

so the Jacobi identity eq. (2.83) reads
ησλCρ,µν − ησρCλ,µν − ησµCν,λρ + ησνCµ,λρ

+ ηλµCσ,ρν − ηλνCσ,ρµ + ηρνCσ,λµ − ηρµCσ,λν = 0.
(2.85)

Contracting with ηµσ yields dCν,λρ− ηλνCσ,ρσ + ηρνCσ,λσ = 0. (Here we are using standard
conventions regarding raised and lowered indices. A review is in §5.A.) Rearranging and
renaming dummy variables (ν  µ, λ ν, σ  λ, ρ σ), this last equation becomes

Cµ,νσ = d−1(ηµνCλ,σλ − η
µσCλ,νλ) (2.86)

This says that eq. (2.81) holds for ξσ = d−1Cλ,σλ.
• (Eliminating Cµν,σλ.) This is equivalent to showing that the cohomology H2(o(1 + d)) of
the Lorentz Lie algebra is trivial. We have separated this as its own lemma, Lemma 2.19.

�

Lemma 2.19. For any d ≥ 1, H2(o(1 + d)) = {0}. �

Remark 2.20. Whitehead’s second lemma [Jac79] says that H2(g) is trivial whenever g is a
semisimple Lie algebra. Since the Lorentz Lie algebra o(D) is semisimple for D ≥ 3 (in fact simple,
with the one exception D = 4), when d ≥ 2, Lemma 2.19 is a special case of this. The Lie algebra
o(2) relevant to the d = 1 case is abelian and therefore not considered semisimple, but this case is
trivial regardless.
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Note that p(1, d) is not semisimple, because of the abelian subalgebra of translations. So,
Whitehead’s lemma does not apply, and indeed we saw that p(1, 1) has nontrivial H2. �

Proof of Lemma 2.19. The only two-dimensional Lie algebra with nontrivial center is the
abelian one, hence a trivial central extension of o(2) ∼= R. This gives the d = 1 case of the lemma.
For the rest of the proof, suppose d ≥ 2.

Let R ↪→ e � o(1 + d) denote a central extension of o(1 + d), Z ∈ e denote a central charge,
and Jµν denote arbitrarily chosen elements of the preimages of the identically named generators of
o(1 + d). The Lie bracket of e then takes the form

i[Jµν , Jσλ] = ηµλJνσ − ηµσJνλ + ηνσJµλ − ηνλJµσ + Cµν,σλZ, (2.87)
for some structure constants Cµν,σλ. The game is to show that we can choose Dµν = D−νµ ∈ C
such that, if we define J̃µν = Jµν +DµνZ, then eq. (2.87) can be written

i[J̃µν , J̃σλ] = ηµλJ̃νσ − ηµσ J̃νλ + ηνσ J̃µλ − ηνλJ̃µσ, (2.88)
which says that J̃µν satisfy the usual Lorentz algebra. However, we only have d(d− 1)/2 different
Dµν ’s, and many more Cµν,σλ’s that we want to eliminate, so it had better be the case that the
latter are severely restricted. By Jµν = −Jνµ and the anti-symmetry of e’s Lie bracket, Cµν,σλ
switches sign under interchanging the two Lorentz indices on either side of the comma, or under
interchanging the two sides of the comma.

Owing to the centrality of Z, we have [Jµν , Jσλ] = [J̃µν , J̃σλ], so what we want to do is choose
Dµν such that the right-hand sides of eq. (2.87), eq. (2.88) agree. This means

Cµν,σλ = ηµλDνσ − ηµσDνλ + ηνσDµλ − ηνλDµσ. (2.89)
So, we win if the Cµν,σλ can be shown to have this form.

The restriction comes from the Jacobi identity
[Jµν , [Jσλ, Jρτ ]] + [Jσλ, [Jρτ , Jµν ]] + [Jρτ , [Jµν , Jσλ]] = 0. (2.90)

Note that this is e’s Lie bracket. Let J = spanC{Jµν : 0 ≤ µ < ν ≤ d} ⊆ e denote the span of the
Jµν ’s. Define JI, JII, JIII ∈ J and ξI, ξII, ξIII ∈ C by

[Jµν , [Jσλ, Jρτ ]] = JI + ξIZ
[Jσλ, [Jρτ , Jµν ]] = JII + ξIIZ
[Jρτ , [Jµν , Jσλ]] = JIII + ξIIIZ.

(2.91)

The Jacobi identity for so(1 + d) guarantees that JI + JII + JIII = 0, so eq. (2.90) (which was the
Jacobi identity for e) says ξI + ξII + ξIII = 0. Let us compute what these ξ’s are:

[Jµν , [Jσλ, Jρτ ]] = −i[Jµν , ηρλJτσ − ηρσJτλ + ητσJρλ − ητλJρσ]
= −(ηρλCµν,τσ − ηρσCµν,τλ + ητσCµν,ρλ − ητλCµν,ρσ)Z mod J ,

[Jσλ, [Jρτ , Jµν ]] = −i[Jσλ, ηµτJνρ − ηµρJντ + ηνρJµτ − ηντJµρ]
= −(ηµτCσλ,νρ − ηµρCσλ,ντ + ηνρCσλ,µτ − ηντCσλ,µρ)Z mod J ,

[Jρτ , [Jµν , Jσλ]] = −i[Jρτ , ησνJλµ − ησµJλν + ηλµJσν − ηλνJσµ]
= −(ησνCρτ,λµ − ησµCρτ,λν + ηλµCρτ,σν − ηλνCρτ,σµ)Z mod J .

(2.92)

That is,
−ξI = ηρλCµν,τσ − ηρσCµν,τλ + ητσCµν,ρλ − ητλCµν,ρσ,

−ξII = ηµτCσλ,νρ − ηµρCσλ,ντ + ηνρCσλ,µτ − ηντCσλ,µρ,

−ξIII = ησνCρτ,λµ − ησµCρτ,λν + ηλµCρτ,σν − ηλνCρτ,σµ.

(2.93)
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So, the Jacobi identity ξI + ξII + ξIII = 0 says

ηρλCµν,τσ−ηρσCµν,τλ+ητσCµν,ρλ−ητλCµν,ρσ+ηµτCσλ,νρ−ηµρCσλ,ντ +ηνρCσλ,µτ −ηντCσλ,µρ

+ ησνCρτ,λµ − ησµCρτ,λν + ηλµCρτ,σν − ηλνCρτ,σµ = 0. (2.94)
Contracting with ηµσ gives

− (d− 1)Cρτ,λν = ητλC ν,ρσ
σ + ηντC λ,σρ

σ − ηρλC ν,τσ
σ − ηνρC λ,στ

σ , (2.95)
having used the various anti-symmetries of C• under interchanging various Lorentz indices. Renaming
dummy variables (ρ µ, τ  ν, λ σ, ν  λ, σ  ρ) and rearranging, we end up with

(d− 1)Cµν,σλ = ηµλC σ,ρν
ρ − ηµσC λ,ρν

ρ + ηνσC λ,ρµ
ρ − ηνλC σ,ρµ

ρ . (2.96)

So, eq. (2.89) holds with Dνσ = (d− 1)−1C σ,ρν
ρ = −(d− 1)−1C ν,ρσ

ρ . �

Exercises and problems

Exercise 2.1: Show that the only one-dimensional continuous representation of SU(2) is the trivial
one.

Hint: see the proof of Proposition 3.8.
Exercise 2.2: Show that SO(1, 3) ∼= PSL(2,C).
Exercise 2.3: Let t = R2 denote the abelian two-dimensional Lie algebra. Show that H2(t;R) ∼= R.
Exercise 2.4: Prove eq. (2.66) (H2(pC;C) ∼= C⊗R H2(p;R)).

Problem 2.1: Prove the claim in Remark 2.2: there does not exist a continuous map µ : SO(3)→
U(2) such that, for all U ∈ SU(2), µ(π(U)) differs from U by a phase.

Hint: show that such an existence would imply a homeomorphism U(2) ∼= U(1)× SO(3). This
contradicts

π1(U(2)) ∼= Z
π1(U(1)× SO(3)) ∼= π1(U(1))× π(SO(3))

∼= Z× Z2,

since Z2 6∼= Z× Z2.
Problem 2.2: This problem discusses a few isomorphisms similar to Spin(1, 3) ∼= SL(2,C) that
hold for other numbers of spatial dimensions besides the physical d = 3 case.

(a) Show that Spin(1, 2) ∼= SL(2,R).
(b) Show that Spin(1, 4) is isomorphic to the group

Sp(1, 1) =
{
A ∈M2(H) : A†

[
−1 0
0 1

]
A =

[
−1 0
0 1

]}
(2.97)

consisting of 2-by-2 quaternionic “Lorentz matrices.”
(c) (Optional.) Show that the group Spin(1, 5) is isomorphic to the group

SL(2,H) = {M ∈M2(H) : detD(M) = 1} (2.98)
of 2-by-2 quaternionic unimodular “matrices.” Note: the correct notion of determinant for
quaternionic matrices is the Dieudonné determinant, detD(M). This is the same thing as√

det(MC), where MC is the 4-by-4 complex matrix representing M .
(d) (Optional.) Combining the results of (a), (c), the following pattern appears: for the three

division algebras K = R,C,H, the isomorphism Spin(1, 1 + dimK) ∼= SL(2,K) holds, where
dimK ∈ {1, 2, 4} is the dimension of K as a real vector space. What does this suggest
about Spin(1, 9)?
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Problem 2.3: This problem continues Example 2.6.
(a) Consider the following elements of hC:

x = −i

0 1 0
0 0 0
0 0 0

 , p = −i

0 0 0
0 0 1
0 0 0

 , Z = −i

0 0 1
0 0 0
0 0 0

 . (2.99)

Show that these satisfy the “canonical commutation relation”
i[x, p] = Z. (2.100)

(b) Check that the Schrödinger representation is in fact a representation of the Heisenberg
group.

(c) Show that in the Schrödinger representation,
i[x, p] = ~. (2.101)

Why does this imply that the projective representation ρ~ : (R2,+)→ PU(H) cannot be
lifted to a unitary representation of (R2,+)?

Problem 2.4: (a) Formulate a category relQM of relativistic quantum mechanical systems,
and show that, if d ≥ 2, then this category is equivalent to the category of (continuous)
unitary representations of P∗(1, d).

(b) (Optional.) Formulate and prove a similar statement for d = 1.
Problem 2.5: The celestial sphere CS2 = {Γy : y ∈ S2} is the set of null lines Γy = {(t, ty) : t ∈ R}
in R1,3. This is naturally given a smooth manifold structure, identifying it with S2 via the map
Γy 7→ y.

(a) Show that any restricted Lorentz transformation induces a conformal transformation of
the celestial sphere.

Hint: S2 ∼= CP 1, with conformal transformations being those on CP 1 = C ∪ {∞}
induced by Möbius transformations

z 7→ az + b

cz + d
a, b, c, d ∈ C s.t. ad− bc 6= 0. (2.102)

(b) (Optional.) Show that this yields a surjective map SO(1, 3)→ PSL(2,C).





CHAPTER 3

The spectrum

In the previous lecture, we covered how every projective unitary representation of the restricted
Poincaré group lifts to an ordinary unitary representation of the universal cover P∗(1, d).1 This
lecture begins our analysis of the lift. We concentrate on the subgroup

(R1,d,+) ⊂ P∗(1, d) (3.1)
of translations, whose representation theory we understand. The decomposition of a unitary
representation of this group into irreps is an abstract version of Fourier analysis. The spectrum

σ ⊆ R1,d (3.2)
is the (closed) set keeping track of which irreps show up. A rigorous definition appears below;
roughly, it is the support of the Fourier transforms of states in our space. This is an invariant of the
representation, meaning that the spectra of two unitarily equivalent representations agree.

On an intuitive level, the spectrum consists of the possible “energy-momentum” vectors p = (E,p)
of states of our system. In classical-mechanical special relativity, a physical system of mass m > 0
and velocity v ∈ Bd has momentum

p = γmv = mv√
1− ‖v‖2

. (3.3)

The energy E is

E = γm = m√
1− ‖v‖2

≈ m︸︷︷︸
Rest energy

+

Newtonian kinetic energy︷ ︸︸ ︷
m‖v‖2

2 + · · ·

=
√
‖p‖2 +m2.

(3.4)

These are collected into the (1 + d)-vector p(v) = (E,p). If our relativistic quantum mechanical
system is modeling the quantum analogue of the classical system described above, then p(v) should
be in the spectrum σ, for any v ∈ Bd.

Throughout this lecture, we use ρ : P∗(1, d) → U(H) to denote our unitary representation of
P∗(1, d) and % = ρ|R1,d to denote the restriction of ρ to the subgroup of translations.

1. The technical challenge

Given a unitary representation of a groupG, the simplest hope for decomposing the representation
into irreps would be that the representation decomposes as a direct sum of its irreducible subspaces.2
Unitary representations of finite groups and more generally compact Lie groups do decompose in
this way, but non-compact groups are more subtle.

To see why, consider the representation of the abelian group (R,+) on L2(R) acting via
translation: (Taψ)(x) = ψ(x + a). Since the irreps of abelian groups are one-dimensional, this
infinite-dimensional representation is certainly reducible. An irrep X ⊂ L2(R) would be the span of

1As long as d ≥ 2.
2Or primary subspaces.
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a nonzero element f ∈ L2(R), that, when translated by any amount, yields a multiple of f : for each
a ∈ R,

f(x+ a) ∈ Cf(x). (3.5)
Some functions f : R → C do have this property, for instance f(x) = eαx for α ∈ C, but such f
never lie in L2(R). Consequently, L2(R) does not contain even one irrep of (R,+). It is not the[Exercise 3.1]
sum of its irreducible subspaces.

The Fourier transform allows us to write, for any f ∈ L2(R),

f(x) =
∫ ∞
−∞

eixξ f̂(ξ) dξ, (3.6)

for some f̂ ∈ L2(R).3 This looks like a decomposition of f into components in irreps. Indeed, the
function χξ(x) = eixξ, when translated by a ∈ R units, changes by a factor of eiaξ:

χξ(x+ a) = eiaξχξ(x). (3.7)
Now, χξ is not in L2(R), but we can consider spanC χξ its own Hilbert space (isomorphic to C),
hosting the one-dimensional irrep R 3 a 7→ eiaξ of (R,+). So, the (inverse) Fourier transform acts
like a decomposition of f into an integral of irreducible components χξ that fail to lie in H. The
coefficient of χξ is f̂(ξ) ∈ C, which is defined for almost all ξ ∈ R. The moral is:

We need to use a direct integral to carry out the decomposition into irreps, instead of a direct
sum.

Note that the example of G = (R,+) is of direct relevance to G = P∗(1, d), because P∗(1, d)
contains the former as a subgroup.

2. Abstract plane waves

Consider the group (R1,d,+). Because it is abelian, its irreps are all one-dimensional. For each
p,

χp : R1,d 3 x 7→ ei〈x,p〉 ∈ C (3.8)
is a one-dimensional irrep of (R1,d,+), and every irrep has this form.

As far as the previous sentence is concerned, the bilinear form 〈−,−〉 : (R1+d)2 → R is arbitrary,
as long as it is non-degenerate. Different choices lead to different parametrizations of the set of
irreps by p. However, one choice is particularly natural: the Lorentzian “inner product”

〈x, p〉 = x · p = −x0p0 + x · p. (3.9)
For this choice of 〈−,−〉,

χp(x) = eix·p (3.10)
is described as a plane wave with “momentum” p = (p0,p). The temporal component p0 ∈ R is
the temporal frequency of the wave, while p ∈ Rd is the velocity. The quantity ‖p‖ is the spatial
frequency. Plane waves are standing waves, not wavepackets, so the wave never “goes anywhere,” in
the sense that the amplitude is constant in time. Nevertheless, it makes sense to talk about the
wave’s velocity, speed, direction of travel p/‖p‖ ∈ Sd−1 (unless p = 0), etc.

What makes the Lorentzian inner product natural is:

Proposition 3.1. For any Λ ∈ O(1, d), we have χp ◦ Λ−1 = χΛp. �

3Recall that, though the integral

f̂(ξ) =
∫ ∞
−∞

e−ixξf(x) dx
2π

might not make literal sense for all f ∈ L2(R), it makes sense for f lying in some dense subset D ⊂ L2(R), and that is
good enough; the Fourier transform F : D 3 f 7→ f̂ , defined initially only for f ∈ D, is bounded L2 → L2 (say by
Parseval–Plancherel), and therefore extends boundedly to all f ∈ L2.
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In words, acting (via precomposition with Λ−1) on a plane wave with momentum p results in a
plane wave with momentum Λp.

Proof. χp ◦ Λ−1(x) = ei(Λ
−1x)·p = eix·(Λp) = χΛp(x). �

By an abstract plane wave with momentum p, we mean a unitary representation of (R1,d,+)
consisting of a direct sum of countably many copies of the same χp. These model polarized plane
waves.

Example 3.2 (Light). A light wave with frequency ω > 0 traveling in the direction θ ∈ S2 is
modeled by a function A•,θ ∈ C∞(R1,3;C) of the form

Aε,θ(x) = εe−iωt+iωx·θ, (3.11)

where ε ∈ C3 satisfies ε ⊥ θ (meaning that the vectors <ε,=ε ∈ R3 are both orthogonal to θ). So,
Aε,θ(x) = εei〈x,p〉 for p = (ω, ωθ). The vector ε is known as the polarization of the plane wave. It
specifies the direction orthogonal to the wavevector θ in which the electric field is oscillating. The
magnetic field is oscillating in the remaining orthogonal direction. Because the space

H[p] = {Aε,θ : ε ⊥ θ} (3.12)

of light waves traveling in the fixed direction θ is two-dimensional, one says that light admits two
distinct polarizations. The group (R1,3,+) of spacetime translations acts on the space Hθ in the
obvious way. This representation is equivalent to χp ⊕ χp. We have two copies of χp, one for each
“polarization.” �

Example 3.3 (Dirac plane waves). In Dirac’s theory of the electron, an electron traveling with
velocity exactly p ∈ R3 is described by a plane wave

uφ,p(x) = e−it
√
m2

e+‖p‖2+ix·p
(

φ
σ·p
ω+me

φ

)
, φ ∈ C2, (3.13)

where me > 0 is the mass of the electron (in natural units), ω =
√
m2

e + ‖p‖2. This has energy-
momentum p = (ω,p). (When thinking about an electron, you probably have in mind a wavepacket,
not a plane wave. But because we are specifying the velocity exactly, the Heisenberg uncertainty
principle forces the particle to be de-localized, like a plane wave, rather than a wavepacket.) Here,
σ = (σ1, σ2, σ3) is the vector of Pauli matrices.

A “spin up” electron is u(1,0),p, and a “spin down” electron is u(0,1),p. The group (R1,3,+) of
spacetime translations acts on

H[p] = {uφ,p : φ ∈ C2} (3.14)
in the obvious way. This representation is equivalent to χp ⊕ χp. We have two copies of χp,
corresponding to the two degrees-of-freedom present in the pair φ ∈ C2. One for the spin-up electron,
and one for the spin-down electron. �

Example 3.4 (Phonons). Phonons represent oscillations of a crystal lattice, or massive analogues
of the photon. The plane waves have the form

Aε,p(x) = εe−it
√
m2+‖p‖2

eix·p, (3.15)

where ε ∈ C3 is not required to be orthogonal to p ∈ R3. Thus, compared to the photon, we have
an extra polarization, ε ‖ p, whose interpretation is that it describes a pressure wave, in which the
density of the crystal is oscillating along the wave’s direction of propagation. Imagine the atoms in
the crystal oscillating back and forth. The interpretation of the polarizations ε ⊥ p is that they
represent transverse waves, in which the crystal lattice is oscillating orthogonally to the direction in
which the wave is propagating. �
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Figure 3.1. A plane wave of the electromagnetic field, showing the electric and
magnetic fields oscillating in orthogonal directions, both in the plane k⊥ perpendicular
to the wavevector k. Not depicted is the wave’s variation in time.

3. Definition of the spectrum

3.1. The spectrum: incorrect method. We would like to decompose % = ρ|(R1,d,+) into
isotypic components, i.e. generalized plane waves. Each generalized plane wave is described by a
(unique) p ∈ R1,d. Define

H[p] = {ψ ∈ H s.t. %(−)ψ = χp(−)ψ}. (3.16)
This consists of all of the generalized plane waves in H with energy-momentum exactly p.

As a preliminary attempt at defining the spectrum, let
σ0 = {p ∈ R1,d s.t. H[p] 6= {0}}. (3.17)

This will not quite work, but it is instructive to push ahead.

Proposition 3.5. If Λ ∈ Spin(1, d) and ψ ∈ H[p], then ρ(Λ)ψ ∈ H[Λp]. �

Proof. Using TaTΛ = TΛTΛ−1a,
%(a)ρ(Λ)ψ = ρ(TaΛ)ψ = ρ(Λ(Λ−1TaΛ))ψ = ρ(ΛTΛ−1a)ψ = ρ(Λ)%(Λ−1a)ψ

= ei〈p,Λ
−1a〉ρ(Λ)ψ = ei〈Λp,a〉ρ(Λ)ψ.

(3.18)
�

So, σ0 is closed under the action of the restricted Lorentz group:
p ∈ σ0 =⇒ Λp ∈ σ0 for all Λ ∈ SO(1, d). (3.19)

By the same logic, if S ⊂ R1,d is closed under the action of the restricted Lorentz group, then
the subspace ⊕

p∈S
H[p] ⊆ H (3.20)

consisting of superpositions of finitely many of the generalized plane waves with momentum p ∈ S
is a subspace closed under the action of P∗(1, d).

If ρ is irreducible, this subspace can only be {0} or all of H:⊕
p∈S
H[p] =

{
{0},
H.

(3.21)

(If we are only assuming that ρ is primary, the reasoning is similar.) It follows that either σ0 = ∅ or
it consists of the closure of precisely one orbit O of the Lorentz group.
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Here’s the major technical snag: σ0 ⊆ {0}. No irreps exist as actual subspaces of H, with the
one possible exception p = 0:

H[p] = {0} for all p 6= 0, (3.22)
exactly as in the example of the Fourier transform that we discussed earlier. Indeed, if q 6= p, then
H[p] and H[q] must be orthogonal; this is the usual computation that eigenvectors of a self-adjoint
operator with different eigenvalues must be orthogonal. Because every Lorentz orbit ⊂ R1,d besides
the singleton {0} consists of uncountably many different points, H[p] 6= {0} would imply that H is
not separable.

While H will be decomposable into irreps, it will be via a direct integral, not direct sum. So,
σ0 is not a good definition of the spectrum. This does not mean that the preceding discussion
was without purpose. It will apply, with the technical details modified, once we have a rigorous
definition of σ. The equality σ = σ0 may be false, but it is false for technical reasons rather than
moral ones, and so it does not lead us far astray.

3.2. The spectrum: correct method. To define σ, we can use the following version of the
spectral theorem. Recall that a projection-valued Borel measure is a map Π : Borel(R1,d)→ B(H)
assigning to each Borel subset E ⊆ R1,d an orthogonal projection Π(E), satisfying some axioms
analogous to those a measure is required to satisfy. The spectral theorem for locally compact
abelian groups [Fol95, Thm. 4.45] (“SNAG theorem”), like (R1,+,+), tells us that there exists a
projection-valued Borel measure Π such that

%(x) =
∫
R1,d

eix·p dΠ(p). (3.23)

This expression can be interpreted in the following way: for φ, ψ ∈ H, Borel(R1,d) 3 E 7→
〈φ,Π(E)ψ〉 ∈ C defines an ordinary complex measure (with finite mass) µφ,ψ : Borel(R1,d) → C,
and this satisfies

〈φ, %(x)ψ〉 =
∫
R1,d

eix·p dµφ,ψ(p). (3.24)

Part of the spectral theorem is the functional calculus: for any f ∈ L∞ ∩C0(R1,d), we can define
an operator Π(f) ∈ B(H) by

Π(f) =
∫
R1,d

f(p) dΠ(p)

〈φ,Π(f)ψ〉 =
∫
R1,d

f(p) dµφ,ψ(p).
(3.25)

For example, Π(eix·•) = %(x). The operator Π(f) depends linearly on f , and, for all other
g ∈ L∞ ∩ C0,

Π(fg) = Π(f)Π(g), (3.26)
as suggested by the formal idempotency identity

dΠ(p) dΠ(q) = δ1+d(p− q) dΠ(p) (3.27)
that ought to hold on account of Π being projection-valued. Moreover, for A ∈ B(H),

[A, %(x)] = 0 for all x ∈ R1,d ⇐⇒ [A,Π(f)] = 0 for all f ∈ L∞ ∩ C0

⇐⇒ [A,Π(E)] = 0 for all Borel E.
(3.28)

The spectrum σ is defined – correctly, now – as the support of the measure Π. That is, the
complement σ{ = R1,d\σ is defined by

σ{ = {p ∈ R1,d : ∃ open U 3 p s.t. Π(U) = 0}. (3.29)
Note that σ is nonempty, because Π(H) is the identity operator on H (via a standard argument
using countable additivity). [Exercise 3.6]
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Lemma 3.6. ρ(a,Λ)−1Π(E)ρ(a,Λ) = Π(Λ−1E) for all Borel sets E ⊂ R1,d. �

Proof. It suffices to show that

〈ρ(a,Λ)φ,Π(E)ρ(a,Λ)ψ〉 = 〈φ,Π(Λ−1E)ψ〉 (3.30)

for all φ, ψ ∈ H and E ∈ Borel(R1,d). Phrased in terms of spectral measures, this is µρ(a,Λ)φ,ρ(a,Λ)ψ =
µφ,ψ ◦ Λ−1. It suffices to check that their Fourier transforms∫

R1,d
eix·p dµρ(a,Λ)φ,ρ(a,Λ)ψ(p) eq. (3.24)= 〈ρ(a,Λ)φ, %(x)ρ(a,Λ)ψ〉

= 〈φ, ρ(a,Λ)−1%(x)ρ(a,Λ)ψ〉
(3.31)

∫
R1,d

eix·p dµφ,ψ(Λ−1p) det Λ=1=
∫
R1,d

eix·(Λp) dµφ,ψ(p) =
∫
R1,d

ei(Λ
−1x)·p dµφ,ψp

eq. (3.24)= 〈φ, %(Λ−1x)ψ〉
(3.32)

agree. This holds because ρ(a,Λ)−1%(x)ρ(a,Λ) = %(Λ−1x). �

Proposition 3.7. The spectrum σ is Lorentz-closed. �

Proof. We prove the contrapositive: Λp ∈ σ(P ){ ⇒ p ∈ σ(P ){.
Suppose that Λp ∈ σ(P ){, so that there exists an open neighborhood U 3 Λp such that Π(U) = 0.

Lemma 3.6 gives

Π(Λ−1U) = ρ(0,Λ−1)Π(U)ρ(0,Λ) = 0. (3.33)

Since Λ−1U is an open neighborhood of p, we can conclude that p ∈ σ(P ){. �

Note that

H[p] = Π({p})H (3.34)

The fact that this is usually trivial means Π({p}) = 0. This is consistent with Π(σ) = idH, because
σ (if not Ω) has uncountably many different p’s in it, and measures are only countably additive.

4. Orbits of the Lorentz group

In the previous section, we proved that the spectrum σ ⊂ R1,d of a unitary representation of the
Poincaré group is closed under the action of the Lorentz group on R1,d. Consequently, σ is a union
of orbits O ⊂ R1,d of the Lorentz group. Since d ≥ 2, these orbits are:[Exercise 3.3]

• the origin f = {0},
• the forward/backward “light cones” V± = {(E,p) ∈ R1,d\{0} : ±E = ‖p‖} (which in this
context are defined to exclude the origin p = 0 and are therefore not closed),
• the mass shell

Xm,± =
{

(E,p) ∈ R1,d : E = ±
√
m2 + ‖p‖2

}
, (3.35)

labeled by a parameter m > 0 (the “mass”),
• the one-component hyperboloid YΓ = {(E,p) ∈ R1,d : ‖p‖ =

√
Γ2 + E2 }.

We can consider V± as X0,±.
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Figure 3.2. The Lorentz orbits f, Xm,±, YΓ, V+, V−, plotted in R1,d
p , p = (E,p),

for particular m,Γ.

5. Vacua

An important theoretical role is played by the subspace H[0] = Π({0}) consisting of translation-
invariant states. These are called vacuum states. Intuitively, the vacuum is homogeneous, so it
should remain unchanged under the application of any translation.

Because all Lorentz transformations Λ ∈ ˜SO(1, d) map H[0] to itself, this space hosts a unitary
representation of the (universal) Lorentz group. Vacuum states are typically isotropic in addition to
homogeneous. That is, they remain unchanged under the application of any Lorentz transformation.
Recalling that states are complex lines in H, a Lorentz-invariant vacuum state is the same thing as
a one-dimensional representation of the (universal) Lorentz group inside H[0]. Of course, the trivial
representation is an example.

Proposition 3.8. For d ≥ 2, the only (continuous) one-dimensional representation of ˜SO(1, d)
is the trivial one. �

Proof. Any (continuous) one-dimensional representation of this connected group induces one
of the Lie algebra o(1, d). It suffices to show that this induced representation is zero, as it then
follows by exponentiating that the original representation is trivial (by Lie’s second theorem).
Complexifying, we have a one-dimensional representation of o(1 + d)C.

Fact: no such representation exists if d ≥ 2, except for the zero representation.
Given this fact, we are done. �

One way of proving the fact stated above is to use semisimplicity. For d ≥ 2, the Lie algebra
o = o(1 + d)C is semisimple, a consequence of which is that o is “perfect;” this means

[o, o] = o. (3.36)

The left-hand side is the subspace of o spanned by the commutators of the various elements of o. In
any one-dimensional representation of a Lie algebra g, the commutator subalgebra [g, g] must be
mapped to 0, since scalars commute. So if the commutator subalgebra is everything, no nonzero
one-dimensional representations exist.

The key identity eq. (3.36) can be proven directly from the Lie algebra

i[Jµν , Jσλ] = ηµλJνσ − ηµσJνλ + ηνσJµλ − ηνλJµσ. (3.37)
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Here Jµν = −Jνµ are the generators of o. For any distinct values of ν, σ, choose a third distinct
value (which exists because d ≥ 2) and plug it in for µ, λ to get

i[Jµν , Jσλ] = ±Jνσ. (3.38)

Thus, Jνσ ∈ [o, o].

Remark: Actually, there are no nontrivial finite-dimensional unitary representations of ˜SO(1, d),
but this requires a different argument. [*]

6. Wigner’s concept of particle

Wigner identifies particle species with irreducible (continuous, as always) unitary representations
of P∗(1, 3). We will use “irrep” as an abbreviation. Note that this includes unitarity. Because
the Poincaré group is noncompact, unitarizability of representations is not automatic, and non-
unitarizable representations do exist.

The irreducibility requirement in Wigner’s definition is sometimes conveyed as the particle being
elementary. However, composite particles can be modeled as elementary if their internal structure
can be ignored. Baryons are bound states of quarks held together by a matrix of gluons; they
have a rich internal structure, but that structure is not visible to low-energy experiments, so, for
the purpose of such experiments, they can be treated as elementary. Within high energy particle
colliders, like the LHC, baryons cannot be treated as elementary — the whole purpose of the LHC
is to break protons apart.

Besides irreducibility, we include in Wigner’s definition the following postulates:
• (Stability.) σ ⊆ {(E,p) : E ≥ 0}.
• (Localizability.) σ 6= {0}.

The first of these says that the particle has non-negative energy. The second ends up being equivalent
to the particle not having exactly zero energy. We can summarize their combination by saying that
the particle is “positive-energy.” This does not mean that 0 /∈ σ. Indeed, 0 ∈ σ happens for massless
particles.

In isolation, a negative-energy particle would behave sensibly. After all, the difference between
positive/negative energy amounts to a sign convention, like +i vs. −i. However, once a coupling
has been turned on between particles and some external field, then the relative signs matter. For
example, if we have chosen sign conventions such that the electromagnetic field has positive energy,
then an atomic system whose energy spectrum is unbounded below would be expected to radiate
away an infinite amount. This is the sort of runaway instability that the stability axiom is supposed
to prevent.

What σ = {0} would mean is that translations act trivially. Vacua are examples. There is
nothing physically wrong with vacua — they exist in any QFT — but these sorts of delocalized
entities do not deserve to be called “particles.” Barring these is the purpose of the localizability
requirement, and the rationale for its name.

7. The typical spectrum of QFTs

The spectrum of quantum field theories takes two typical forms.
(1) The first form describes a theory with a mass gap with mass m > 0. The spectrum σ takes

the form
σ = {0} ∪Xm,+ ∪X+

2m,+, (3.39)
where

X+
2m,+ = Xm,+ +Xm,+ = {p ∈ R1,d : p0 > 0 and p2 ≤ −4m2}. (3.40)
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The origin 0 ∈ σ is point spectrum, meaning that it is associated with the eigenspace
H[0] ⊂ H of states which are left invariant under all translations. Typically, H[0] = CΩ is
the span of a single vacuum state Ω, which is invariant under the whole Poincaré group.

The “mass shells” Xm,+ describe stable massive particles.
The region X+

2m,+ consists of spectrum which is continuous with respect to the Lebesgue
measure d1+dp (except possibly for some embedded mass shells XM,+, M ≥ 2m). These
describe multi-particle configurations.

Note: it is possible to have additional mass shells Xm′,+ ⊂ σ for m′ ∈ (m, 2m) in
between m and the two-particle threshold.

(2) The second form describes a theory with massless particles. As m→ 0+, the mass shell
Xm,+ converges to the (closed) lightcone

V̄+ = {p ∈ R1,d : p0 ≥ 0 and p2 = 0}, (3.41)
and the two-particle region X+

2m,+ converges to

V̄ +
+ = {p ∈ R1,d : p0 ≥ 0 and p2 ≤ 0}. (3.42)

In this case, the spectrum is just σ = V̄ +
+ . Usually, one expects that σ◦ consists entirely

of continuous spectrum. It is possible that there exist some exceptional mass shells Xm,+
describing stable particles.

If QED exists as a well-defined theory, it is expected that the spectrum has a logarithmic
singularity as

p→ Xme,+ from above, (3.43)
i.e. as p2 → −m2

e , where me > 0 is the mass of the electron. In this sort of situation, where
the spectrum is continuous with respect to the Lebesgue measure d1+dp, with an L1

loc
density, but the density blows up at Xm,+, one says that an infraparticle is present. In
QED, electrons are expected to be inseparable from a dressing of low-energy (a.k.a. “soft”)
photons, resulting in a smearing of the spectrum upwards in energy.

A. The Lebesgue decomposition (?)

Let O denote the set of all Lorentz orbits O ⊂ R1,d such that Π(O) 6= 0. For each O ∈ O, let
H[O] = range(Π(O)) (3.44)

denote the range of Π(O). Each of these is closed under the action of the Poincaré group.
If O,O′ are distinct Lorentz orbits, then H[O] ⊥ H[O′], by the generalization to infinite-

dimensions of the usual computation that eigenvectors of a Hermitian matrix with distinct eigenvalues
are orthogonal.

Now consider the subspaces

Hpp =
⊕
O∈O
H[O], Hc = H⊥pp. (3.45)

By construction, H = Hpp ⊕Hc. Since Hpp is closed under the action of the Poincaré group (and
our representation is unitary), Hc is also closed under that action.

Proposition 3.9 (Lebesgue decomposition theorem). There exists a decomposition Hc =
Hsc ⊕Hac into orthogonal subspaces, each of which is closed under the action of the Poincaré group,
such that

• the spectral projector Πsc = Π|Hsc associated with Hsc is singular with respect to the Lebesgue
measure on R1,d,
• for any φ, ψ ∈ Hac, the spectral measure µφ,ψ = 〈φ,Π(−)ψ〉 is absolutely continuous with
respect to the Lebesgue measure on R1,d.
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�

Proof. [*] �

In standard quantum field theory, the singular continuous spectrum is assumed to be trivial.
Physical examples with singular continuous spectrum are somewhat exotic and usually associated
with chaotic or quasi-periodic systems (like quasicrystals).

B. Differentiating a Lie group representation

Let G denote an arbitrary Lie group, and let g = TeG denote its Lie algebra. Our goal here is
to prove that any continuous unitary representation

ρ : G→ U(H) (3.46)
of G on a separable Hilbert space H induces a representation % of gC (and ultimately its universal
enveloping algebra) via (usually unbounded) operators, defined on some common dense domain
D ⊆ H.

The prototype for this is Stone’s theorem:
Example 3.10. Suppose that G = (R,+). A strongly-continuous unitary representation

ρ : G→ U(H) is the same thing as a strongly-continuous one-parameter family of unitary operators
{Ut}t∈R ⊂ U(H), (3.47)

meaning that
• U0 = I,
• UtUs = Ut+s for all t, s ∈ R,
• limt→t0 Utψ = Ut0ψ for all t0 ∈ R and ψ ∈ H (strong continuity).

Stone’s theorem [Sto32] says that any such family has the form Ut = eitA for some (possibly
unbounded) self-adjoint operator A : D(A)→ H with domain

D(A) = {ψ ∈ H : lim
t→0

t−1(Ut − I)ψ exists}. (3.48)

Specifically, Aψ = −i limt→0 t
−1(Ut − I)ψ for ψ ∈ D. �

If ρ : G → U(H) is a strongly-continuous unitary representation of a Lie group G, and if
j : (R,+)→ G is a non-trivial smooth homomorphism, then we can form ρ ◦ j. By Stone’s theorem,
there exists a self-adjoint operator A : D(A)→ H such that

ρ ◦ j(t) = eitA (3.49)
for all t ∈ R. Any element of X of the Lie algebra g generates a one-parameter group via
exponentiation: j(t) = etX . So, we can define %(X) = iA. This is anti-self-adjoint and satisfies

ρ(etX) = et%(X). (3.50)
One would like to say that % is a representation of g, but now domain issues, stemming from the

possible unboundedness of the generator A, rear their head. The problem is that the domain D(A)
in Stone’s theorem depends on A. Consequently, it is not clear that we can compose two elements
%(X), %(Y ). This leaves the interpretation of their commutator unclear.

Example 3.11. Let G = (Rd,+), H = L2(Rd), and G act on H via translation. Then, g = Rd,
and

%(X) = Xj∂j = ∂X (3.51)
for any X ∈ Rd, where Xj is the jth component of X. So, %(X) is a differential operator and
therefore unbounded (except if X = 0). The domain D(X) on which ∂X is anti-self-adjoint is the
set of u ∈ L2(Rd) such that ∂Xu, which makes sense as a distribution, lies in L2(Rd). �
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Example 3.12. Let G = SO(2), H = L2(R2
x,y), and G act on H via rotations around the origin.

Then, g has a single generator, L, satisfying

%(L) = ∂θ = −y∂x + x∂y, (3.52)

where ∂θ is the usual angular partial derivative in polar coordinates (r, θ), i.e. rθ̂. As in the previous
example, %(L) is an unbounded operator. �

Of course, no domain issues are present in the finite-dimensional setting:
Example 3.13. Let H = CN for N ∈ N, so that U(H) = U(N). It turns out that any continuous

finite-dimensional unitary representation of any Lie group must be smooth, but rather than prove
this, let us just assume that ρ : G→ U(N) is some smooth unitary representation. Differentiating
then yields a map

Dρ : TG→ T U(N). (3.53)
Restricting to the fibers over the identity element e ∈ G gives a linear map g → u(N), denoted
Dρ(e). Because ρ is a homomorphism, Dρ(e) must preserve the Lie bracket, so is a homomorphism
of Lie algebras. �

All domain issues are resolved by:

Proposition 3.14 (Gårding [Gr47]). There exists a dense domain D ⊆ H such that:
(i) for each X ∈ g, the operator %(X) contains D in its domain and maps D back to itself,
(ii) %(X) is essentially anti-self-adjoint when restricted to D,
(iii) ρ(g)D = D, for all g ∈ G.
(iv) The map % : g → End(D) is a map of Lie algebras, from g to the algebra of linear

endomorphisms of D.
�

We will provide the proof below. In the two examples above, one can take D = C∞c , the domain
of smooth compactly supported functions.

The proof uses a smoothing procedure: for ψ ∈ H and χ ∈ C∞c (G), let

avgχ ψ =
∫
G
χ(g)ρ(g)ψ dµ(g). (3.54)

Here, µ denotes a fixed left-invariant Haar measure µ : Borel(G)→ [0,∞], so that∫
G
χ(hg) dµ(g) =

∫
G
χ(g) dµ(g) (3.55)

for any χ ∈ L1(G,µ) and h ∈ G.
Remark 3.15 (The Bochner/Pettis-integral). The integrand on the right-hand side of eq. (3.54)

is H-valued, so an iota of care is required in interpreting it. The simplest way of doing so is via
duality: consider the map Λ : H → C given by

Λ(φ) =
∫
G
χ(g)〈ρ(g)ψ, φ〉dµ(g). (3.56)

The map g 7→ 〈ρ(g)ψ, φ〉 is continuous (since we are assuming that ρ is strongly-continuous), so
the integral on the right-hand side of eq. (3.56) is a well-defined, ordinary numerical integral on G.
Evidently, Λ is linear, and, using the unitarity of ρ, the estimate

|Λ(φ)| ≤ ‖χ‖L1‖ψ‖‖φ‖ (3.57)

holds. So, Λ ∈ H∗, and the Riesz representation theorem guarantees the existence of a (unique)
vector avgχ ψ ∈ H such that Λ(φ) = 〈avgχ ψ, φ〉 for all φ ∈ H. �
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In order to understand why the map

avgχ : ψ 7→ avgχ ψ (3.58)

is described as smoothing, consider the example above, where G = (Rd,+) and H = L2(Rd). Then,
averaging is convolution:

avgχ ψ(x) =
∫
Rd
χ(a)(ρ(a)ψ)(x) dda =

∫
Rd
χ(a)ψ(x+ a) dda = χ̃ ∗ ψ(x), (3.59)

where χ̃(x) = χ(−x). Convolution smooths, since derivatives fall on χ:

L(χ̃ ∗ ψ) = (Lχ̃) ∗ ψ (3.60)

for any constant-coefficient differential operator L. So, in this example, avgχ ψ lands in the set

H∞(Rd) =
⋂
m∈N

Hm(Rd) ⊂ L2 (3.61)

of functions all of whose derivatives (including zeroth derivatives, second derivatives, third derivatives,
etc.) lie in L2 as well. We saw previously that, in this example, the Stone generators A = −i∂tetX |t=0
are constant-coefficient vector fields, such as ∂xj , j = 1, . . . , d. These do in fact act on H∞(Rd), and
they map H∞(Rd) to itself.

This suggests: in the proof of Proposition 3.14, the subset D ⊂ H will be defined by

D = {avgχ ψ : χ ∈ C∞c (G), ψ ∈ H}. (3.62)

This is manifestly invariant under the application of any ρ(g), g ∈ G.
Now let us prove the theorem.

Proof of Proposition 3.14. (I) Claim: D is dense.
Because ρ is strongly-continuous, if {χj}∞j=1 ⊆ C∞c (G) are chosen so that χj dµ → δ

weakly, where δ is a Dirac-δ function at the identity element of G, then

avgχj ψ → ψ (3.63)

in H. So, D is a dense subspace of H.
(II) Claim: if X ∈ g and φ = avgχ ψ ∈ D, then

lim
t→0+

ρ(etX)φ− φ
t

= − avgLX̃χ ψ ∈ D, (3.64)

where LX̃χ is the Lie derivative of χ by the right-invariant vector field X̃ with X̃(e) = X.
So, not only is D a subspace of the domain described in Stone’s theorem, but the generator
A in that theorem maps D back to itself. Indeed,

ρ(etX)φ− φ
t

= 1
t

∫
G
χ(g)(ρ(etXg)− ρ(g))ψ dµ(g), (3.65)

and using the left- invariance of the Haar measure,∫
G
χ(g)(ρ(etXg)− ρ(g))ψ dµ(g) =

∫
G

(χ(e−tXg)− χ(g))ρ(g)ψ dµ(g). (3.66)

We can write
χ(e−tXg) = χ(g)− tLX̃χ(g) +OL1(t2), (3.67)

where the error term OL1(t2) has L1(G,µ)-norm bounded above by Ct2, for some C > 0.
So,

ρ(etX)φ− φ
t

= −
∫
G
LX̃χ(g)ρ(g)ψ dµ(g) +O(t) = − avgLX̃χ ψ +O(t). (3.68)
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(III) Claim: The Hermitian generators A = −i%(X) are essentially self-adjoint on D, i.e. D is a
core for A.

We already know that A is self-adjoint on the domain D(A) from Stone’s theorem.
Moreover, D is invariant under G. A general theorem from functional analysis [RS80, Thm.
VIII.11] then guarantees that D is a core.

(IV) Claim: % is a map of Lie algebras. We want to show that if X,Y ∈ g, then
(%(X)%(Y )− %(Y )%(X))φ = %([X,Y ])φ, (3.69)

for all φ ∈ D. Let φ = avgχ ψ. Then,
%(X)%(Y )φ = −%(X) avgLỸ χ ψ = avgLX̃LỸ χ ψ
%(Y )%(X)φ = −%(X) avgLX̃χ ψ = avgLỸ LX̃χ ψ.

(3.70)

So, (%(X)%(Y )− %(Y )%(X))φ is avg[LX̃ ,LỸ ]χ ψ. Since

[LX̃ ,LỸ ] = L[X̃,Ỹ ] = L
−[̃X,Y ]

= −L
[̃X,Y ]

, (3.71)

this is
− avgL

[̃X,Y ]
χ ψ = %([X,Y ])φ. (3.72)

The sign in eq. (3.71) is due to the fact that the Lie bracket of right-invariant vector fields
on G corresponds to minus the Lie bracket on g.

�

In representation theory, three different sorts of representations act as building blocks. A
(not-necessarily unitary) representation ρ : G→ GL(H) = {invertible A ∈ B(H)} of a group G on a
Hilbert space H is said to be:

• irreducible if the only G-closed subspaces X ⊆ H are X = {0},H,
• indecomposable if, whenever X ,Y are G-closed subspaces such that H = X ⊕ Y, then one
of X ,Y is {0}, in which case the other is H,
• primary (a.k.a. factorial) if the centralizer

C = {A ∈ B(H) : [A, ρ(g)] = 0 for all g ∈ G} (3.73)
has a center consisting only of scalar multiples of the identity.

Here, a subspace X ⊆ H is described as “G-closed” (or “ρ-closed”) if it is closed and ρ(g)X ⊆ X for
all g ∈ G.

For finite-dimensional representations:
irreducible +3

Schur $,

indecomposable

primary.
None of the other implications hold in general. Fortunately, more can be said when ρ is a unitary
representation. Firstly, Schur’s lemma holds, even if H is infinite-dimensional (Lemma 3.18).
Secondly:

Proposition 3.16. When ρ is a (continuous) unitary representation, irreducibility and inde-
composability are equivalent. �

Proof. If X is a proper G-closed subspace, so is X⊥, owing to
v ∈ X⊥ ⇐⇒ 〈v, w〉 = 0 for all w ∈ X ⇐⇒ 〈ρ(g)v, ρ(g)w〉 = 0 for all w ∈ X , g ∈ G

⇐⇒ 〈ρ(g)v, w〉 = 0 for all w ∈ X , g ∈ G =⇒ ρ(g)v ∈ X⊥.
(3.74)
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So H = X ⊕ X⊥ is a decomposition of H into proper G-closed subspaces. �

Any unitary representation of a Lie group decomposes as a direct integral of irreducible
representations [Fol95, Thm. 7.38]. The irreps, rather than being subrepresentations, will be found
by a limiting procedure. We will take a hands-on attitude towards direct integrals in these notes,
preferring to avoid any general theory.

The uniqueness of the direct integral decomposition is subtle for general Lie groups [Fol95, §7].
What is always unique is the decomposition into primary components. Fortunately, for all of the
groups we work with in these notes, all primary decompositions decompose canonically as a direct
sum of countably many copies of a single irrep. Such groups are called “Type I.” Finite groups,
locally compact abelian groups, and compact groups are all Type I. Wigner showed in [Wig39] that
P∗(1, 3) is Type I (and the same proof works for P∗(1, d)).

Indecomposability does not imply irreducibility or primality in general:
Example 3.17. Consider the two-dimensional non-unitary representation ρ : (R,+)→ GL(2)

given by

ρ(a) =
(

1 a
0 1

)
. (3.75)

This is not irreducible, because the span of e = (1, 0) is an invariant subspace, but it is indecompos-
able. Indeed, the span of e is the only ρ-closed proper subspace, and none of its linear-algebraic
complements are closed under the group action.

In this example, C is the image of ρ. Since this contains non-diagonalizable matrices, ρ is not
primary. �

Schur’s lemma holds for unitary representations on Hilbert spaces:
Lemma 3.18. For any group G, if ρ : G → U(H) is irreducible, then C(ρ) = {c idH : c ∈ C}.

�

Proof. If A ∈ C, then A† ∈ C as well. Consequently, B = (A+A†)/2 and C = (A−A†)/(2i) are[Exercise 3.5]
both in C. If both of these are scalar multiples of the identity, then the same applies to A = B + iC.
Note that B,C are self-adjoint. So, it suffices to prove every self-adjoint element of C is a scalar
multiple of the identity I.

Let O ∈ C be self-adjoint, and let Π denote its spectral projectors. Claim: its spectrum σ(O)
consists of only one element, hence O ∝ I. Suppose, to the contrary, that |σ(O)| ≥ 2. Then, let
U ⊂ R denote an open set containing part of σ(O) whose closure does not contain all of σ(O). Then,
the ranges

X = Π(U)H, Y = Π(R\U)H (3.76)
are orthogonal and satisfy X ⊕ Y = H. Both of these must be proper (by the definition of U). �

If ρ is irreducible, then ρ ⊕ ρ, ρ ⊕ ρ ⊕ ρ, and so on are examples of primary representations
that are not irreducible. Indeed, the direct sum of d copies of ρ is equivalent to ρ⊗ (1⊕d), whose
centralizer is

C(ρ⊗ (1⊕d)) = {c idH⊗A : A ∈ Cd×d}, (3.77)
and the center of this consists only of scalar multiples of the identity. There are more exotic
possibilities, but only for somewhat wild groups like a free group on multiple generators.

Lemma 3.19. A representation of an abelian group is primary if and only if it is a direct sum of
countably many instances of the same irreducible representation. �

Proof. Suppose that ρ : A→ GL(H) is a primary representation of an abelian group A. Then,
ρ(a) is in the center of the centralizer C(ρ), for each a ∈ A. So, primacy implies that ρ(a) = χ(a) idH,
for some χ(a) ∈ C. Thus, given any nonzero φ ∈ H, the span Cφ is a sub-representation and, since
it is one-dimensional, irreducible. So, any orthonormal basis of H gives a decomposition of ρ into
copies of the character χ. �
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Exercises and problems

Exercise 3.1: (a) Suppose that f ∈ L2(R) has the property that ∀a ∈ R, ∃c ∈ C s.t.
f(x+ a) = cf(x). Show that f = 0.

(b) Use the Fourier transform to show that the only tempered distributions having the property
in the previous part are of the form f(x) ∝ eiξx, for ξ ∈ R.

(c) Show that χξ : x 7→ eixξ are all of the irreps of (R,+).
Exercise 3.2: Let ρ : P∗(1, d) → U(H) be a (continuous) unitary representation of P∗(1, d).
Suppose that X is a Poincaré-closed (norm-closed) subspace of H. Thus, X constitutes a subrep-
resentation. Show that the spectrum of this subrepresentation is a subset of the spectrum of the
whole representation.
Exercise 3.3: (a) Prove that, if d ≥ 2, the orbits O ⊂ R1,d of the restricted Lorentz group

are Ω, V±, Xm,±, YΓ, for m,Γ > 0.
(b) What about d = 1?

Exercise 3.4: Show that the (complexified) Poincaré algebra pC = p(1, d)C satisfies [p, p] = p, thus
proving that it has no nonzero one-dimensional representations.
Exercise 3.5: Consider the setup of Lemma 3.18. Prove the claim that A ∈ C ⇒ A† ∈ C. Hint:
this uses unitarity.
Exercise 3.6: Use the definition of the spectrum σ, eq. (3.29), to prove that σ 6= ∅.





CHAPTER 4

Wigner’s classification of particles

In the previous lecture, we presented Wigner’s definition of a relativistic particle: a positive-
energy irreducible (continuous) unitary representation – or “irrep” for short – of the universal
Poincaré group

P∗(1, d) = R1,d o ˜SO(1, d)︸ ︷︷ ︸
=Spin(1,d) when d≥3

. (4.1)

This lecture is devoted to Wigner’s classification of such irreps, a result contained in the seminal
paper [Wig39]. Put more colorfully, this lecture is devoted to the classification of particles in terms
of their kinematics.

In the physical d = 3 case (and ignoring one irrep not known to have physical relevance):

For each m ≥ 0 and

s ∈
{

2−1N (m > 0),
2−1Z (m = 0),

(4.2)

we have one irrep, πm,s. The parameter m is the “mass,” which identifies the spectrum σ = Xm,+,
and s is the “spin” (if m > 0) or “helicity” (if m = 0), which will have to do with the action of
rotations.

This classification has two parts:
(i) the construction of the irreps π• : P∗(1, d)→ U(H•), and
(ii) a proof that every irrep is unitarily equivalent to (exactly) one of them.

These notes will go through both. Beginning with an irrep of P∗(1, d), we will attempt to understand
its structure. This guides us to the definition of π•.

Particle Representation # of internal d.o.f.
Higgs bosons πm,0 1
quarks, leptons πm,1/2 2
photons, gluons π0,−1 ⊕ π0,1 2
W±,Z bosons πm,1 3

pions πm,0 1
ρ, ω mesons πm,1 3

∆,Ω− baryons πm,3/2 4
sterile neutrinos π0,1/2 1

gravitinos π0,−3/2 ⊕ π0,3/2 2
gravitons π0,−2 ⊕ π0,2 2

Table 4.1. Some elementary and composite particles and their respective π•’s.

Warning: The usage of similar notation belies the differences between π0,±s and πm,s, m > 0.
Whereas a particle described by the latter representation has 2s+ 1 internal degrees-of-freedom, a
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particle described by the former has only a single internal degree-of-freedom. Much of our intuition
about massive particles comes from their “non-relativistic limit.” Massless particles always travel
the speed of light and admit no non-relativistic limit.

We will provide below a similar classification for any number d ≥ 4 of spatial dimensions.
Massive particles are classified by their mass m > 0 and an irrep of Spin(d), and massless particles
(barring one unphysical possibility) are classified by irreps of Spin(d− 1). A simpler statement holds
when d = 2. However, we will not enumerate these irreps explicitly, except in the physical d = 3
case. For that, see [BB21].

Throughout this section, d ≥ 3.

1. The method of induced representations: summary

The strategy of the classification involves exploiting the semidirect product structure of P∗.
The key is to understand how irreps of P∗ are assembled from irreps of the subgroup (R1,d,+) of
translations and irreps of a certain (m-dependent) subgroup L ⊂ Spin(1, d) known as the “little
group.” This method is known by several names — the one we will use is the method of induced
representations.

Suppose we are given an irreducible representation

ρ : P∗(1, d)→ U(H). (4.3)

The steps in the analysis of ρ are:
(I) Restrict ρ to the abelian subgroup consisting of translations, giving a representation

% : (R1,d,+)→ U(H)
: a 7→ ρ(Ta)

(4.4)

of (R1,d,+). We discussed in the last lecture how to decompose % into irreps via the spectral
measure. The support of that measure is the spectrum σ ⊂ R1,d.

It will be shown that, as a consequence of Lorentz covariance, σ consists of the closure
of precisely one orbit O of the restricted Lorentz group.

(II) Pick any “reference momentum” p> ∈ R1,d in the relevant one of O = Ω, V±, Xm,±, YΓ.
Then, the little group L = L[p>] is defined to be the subgroup of Spin(1, d) which stabilizes
p>; that is,

L[p>] = {Λ ∈ Spin(1, d) s.t. Λp> = p>}. (4.5)
This depends on p>, but only as a set; different choices of p> ∈ O lead to conjugate, and
therefore isomorphic, subgroups of Spin(1, d). The possible isomorphism classes are listed[Exercise 4.1]
in Table 4.2.

It will be shown that the space of generalized plane waves with momentum exactly p>
hosts a representation of the little group:

ς : L[p>]→ U(V). (4.6)

(We are sweeping under the rug some major technical headache involved in making the
definition of ς precise, but the gist of the foregoing discussion is correct. See §2.2 for
the rigorous definition.) Different choices of reference momentum p> lead to unitarily
equivalent ς.

It will then be shown that ρ is unitarily equivalent to a representation, denoted π•, consisting
of superpositions of plane waves with momenta p ∈ O with dimV “spin indices,” acted on via ς.
Mathematically,

π• = indR1,doSpin(1,d)
R1,doL (%⊗ ς) (4.7)
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Orbit O Eg. p> ∈ O Little group Description Example
Ω = {0} (0, 0, 0, 0) Spin(1, d) vacuum
V± (±1, 0, 0, 1) E∗(d− 1) Massless photon

Xm,±, m > 0 (±m, 0, 0, 0) Spin(d) Massive electron
YΓ, Γ > 0 (0, 0, 0,Γ) Spin(1, d− 1) Tachyonic string tachyon

Table 4.2. The six sorts of orbits O of the Lorentz group in d ≥ 2 spatial dimensions,
representative momenta p> (in the physical d = 3 case, for simplicity), and the
isomorphism classes of the corresponding little groups L[p>]. Here, E∗(j) is the
double cover of the isometry group of j ≥ 2 dimensional space; this is the universal
cover if j ≥ 3.

is the induced representation constructed from ς. The subscript ‘•’ will contain a label indicating ς
as well as O ∈ {Ω, V±, Xm,±, YΓ}. The irreducibility of π•, and thus of the original representation ρ,
will be equivalent to the irreducibility of ς.

In summary, to each irrep ρ is associated two pieces of data, which characterize it:
• a Lorentz-orbit O ⊂ R1,d, whose closure Ō is the spectrum σ, describing which representa-
tions of the normal subgroup R1,d C P∗(1, d) are present,
• an irrep ς of a certain subgroup L ⊆ Spin(1, d), describing the representation’s “spin
degrees-of-freedom.”

Conversely, given these two pieces of data, O and ς, an irrep π• can be constructed from them —
the Lorentz orbit associated to π• is O, and the little group representation is ς.

This reduces the classification of irreps of P∗(1, d) to the classification of irreps of the various L.
For example, when O = Xm,+ for m > 0, the little group is the group of rotations, or really the
double cover

Spin(d)� SO(d). (4.8)
This is a compact simple Lie group, so its representation theory is relatively easy. In the physical
d = 3 case, the little group is

Spin(3) = SU(2), (4.9)
and we know the irreps of SU(2); we have one, j for each dimension j ∈ N, the spin s = 2−1(j − 1)
representation.

This completes our summary.
The reader may prefer to try their hand at the method of induced representations for semidirect

products of finite groups. No new algebraic ideas are required to handle P∗(1, d), only analytic
technicalities owing to the existence of the noncompact abelian subgroup of translations, some of
which we have already discussed. On the other hand, if the reader just wants to see the definition of
π• without having to work through its motivation, they can skip directly to §2.5.

To cut down on the amount of notational casework, we will sometimes use “X0,±” to mean V±.

2. The method of induced representations: details

Let ρ : P∗(1, d)→ U(H) denote a (continuous) unitary representation of P∗(1, d). We will not
assume just yet that ρ is irreducible, but we will assume that it is primary.

2.1. Regarding the spectrum.

Proposition 4.1. Assuming that ρ is irreducible, σ consists of the closure of a single orbit of
the Lorentz group. �
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Proof. We already know that σ consists of a (nonempty) union of orbits Ω, V−, V+, Xm,+,
Xm,−, YΓ of the Lorentz group.

Suppose that E ∈ Borel(R1,d) is Lorentz-closed. This means that E = ΛE, so Lemma 3.6 says

Π(E)ρ(a,Λ) = ρ(a,Λ)Π(E). (4.10)

Thus, range(Π(E)) ⊆ H is a Poincaré-closed subspace of H. It will be proper if Π(E) 6= 0, I. Since
we are assuming that ρ is irreducible, Π(E) must be 0 or I. This applies to all of the operators Π(•)
appearing in the rest of the proof.

Suppose that Oj are two distinct Lorentz orbits Oj ⊆ R1,d, such that neither of Ō0, Ō1 is a
subset of the other (this just rules out the case where O0 = Ω and O1 = V±, or vice versa). Unless
O0 = V− and O1 = V+, or vice versa, there exist disjoint Lorentz-closed open neighborhoods
Uj ⊃ Ōj . Because[Exercise 4.2]

I = Π(R1,d) = Π(U0) + Π(U1) + Π(R1,d\(U0 ∪ U1)), (4.11)
at most one of Π(U0),Π(U1) can be nonzero. Consequently, at least one of O0 or O1 is not a subset
of σ.

The previous paragraph shows that

σ ∈ {Ω, V̄±, V− ∪ V+ ∪ Ω, Xm,±, YΓ : m,Γ > 0}. (4.12)

The last remaining thing to do is rule out the unwanted possibility σ = V− ∪ V+ ∪ Ω. In this case,
Π(R1,d\(V̄− ∪ V̄+)) = 0. If it were also the case that Π(V+) = 0, then we would have

Π(R1,d\V̄−) = Π(R1,d\(V̄− ∪ V̄+)) + Π(V+) = 0. (4.13)

But R1,d\V̄− is an open set containing all of V+, so this would imply V+ ∩ σ = ∅, contradicting our
assumption.

So, Π(V+) 6= 0. For the same reason, Π(V−) 6= 0.
If it were the case that Π(V+) = I, then we would have

Π(R1,d\V̄−) = Π(R1,d\(V̄− ∪ V̄+)) + Π(V+) = I. (4.14)

But because I = Π(R1,d) = Π(R1,d\V̄−) + Π(V−) + Π(Ω), this would imply Π(V−) = 0, which has
already been ruled out. �

Remark: The conclusion of the previous proposition holds under the weaker assumption that ρ is
primary.[Problem 4.1]

2.2. The abstract Fourier transform. We have discussed the technical obstruction to
decomposing wavefunctions into generalized plane waves — it requires a direct integral, analogous to
the Fourier transform, as the required generalized plane waves do not sit in our Hilbert space H. For
each φ, ψ ∈ H, we have a spectral measure µφ,ψ : Borel(R1,d)→ C, such that µφ,ψ(E) = 〈φ,Π(E)ψ〉
for all Borel subsets E ⊆ R1,d. The support of µφ,ψ is a subset of that of Π, which is the spectrum
σ. When ρ is primary, and thus σ = Ō for a Lorentz orbit O, this means that µφ,ψ is an ordinary
complex measure supported on Ō.

There is a natural choice of Lorentz-invariant measure µ : Borel(R1,d)→ [0,∞) supported on O.
This comes from the homeomorphism

O ∼= SO(1, d)/L∗, (4.15)

where L∗ = L∗(p>) is the stabilizer of p> in the restricted Lorentz group SO(1, d). The Haar
measure on SO(1, d) descends via this quotient to O. We will see explicit formulas later.

The following technical result is proven in §A:
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Proposition 4.2. There exists a dense subspace D ⊂ H, closed under the action of P∗(1, d),
such that, for all φ, ψ ∈ D, the spectral measure µφ,ψ has a continuous density

dµφ,ψ
dµ ∈ C0(O) ∩ L1(O,µ) (4.16)

on O. That is, µφ,ψ is absolutely continuous with respect to µ, and its Radon–Nikodym derivative is
continuous. �

Proof idea. The subspace D will be the Gårding domain (eq. (3.62)). This means that
elements of D arise via “smoothing” elements ψ ∈ H by applying a Poincaré transformation ρ(T )
and then averaging over T (pairing against a bump function). The averaging over translations
doesn’t do much here; the important thing is the averaging over Lorentz transformations. Because
Lorentz transformations act transitively on O, this averaging has an effect similar to convolution,
smoothing things out over O. It is essential here that µφ,ψ is supported on O, because we do not
get any smoothing effect across O. �

Remark 4.3. The Radon–Nikodym derivative is characterized by:

µφ,ψ(E) =
∫
E

dµφ,ψ
dµ (p) dµ(p) (4.17)

for all Borel E ⊆ R1,d. The following direct construction may be employed. Fix p ∈ R1,d, and
consider a sequence {χn}∞n=1 ⊂ C0

c (R1,d)
• χn ≥ 0, ‖χn‖L1(O,µ) = 1, where µ is a Lorentz invariant measure on O (see below),
• suppχn shrinks to {p} as n→∞.

Then, the value of dµφ,ψ/ dµ at p is limn→∞〈ψ,Π(χn)φ〉. �

Consider
〈〈φ, ψ; p〉〉 def= dµφ,ψ

dµ (p) (4.18)

for ψ, φ ∈ D. This is a sesquilinear, positive semi-definite form on D. Semi-definiteness means

〈〈ψ,ψ; p〉〉 ≥ 0 (4.19)

(which holds because µψ,ψ is an ordinary nonnegative measure). This form is not definite – and
therefore not an inner product – so cannot be used to complete D to a Hilbert space. This is because
if the spectral measure µφ,ψ is supported away from p, then 〈〈ψ, φ; p〉〉 = 0. This is a feature, not a
bug, because we want this to be measuring something like the density of the wavefunctions’ “Fourier
transforms” near p. If these Fourier transforms are vanishing near p, we should get 0.

Fortunately, semi-definite forms are almost as good as inner products, and there exists a standard
way of getting a Hilbert space from them. This relies on Cauchy–Schwarz,

|〈〈φ, ψ; p〉〉| ≤
√
〈〈φ, φ; p〉〉 ·

√
〈〈ψ,ψ; p〉〉, (4.20)

which only requires semi-definiteness, as the standard proof shows. Let

N [p] = {ψ ∈ D, 〈〈ψ,ψ; p〉〉 = 0} (4.21)

denote the subset of degenerate vectors. An immediate consequence of Cauchy–Schwarz is that
〈〈ψ, φ; p〉〉 = 0 whenever at least one of φ, ψ ∈ D lie in N . It follows that N [p] is a linear subspace of
D. We can therefore form the quotient space

Q[p] = D/N [p]. (4.22)

Note that this could be the trivial (zero-dimensional) vector space {0}, if N [p] = D. This will be
the case if p is not in the spectrum σ of the representation.
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The form 〈〈−,−; p〉〉 descends to an actual inner product on Q[p], which we denote with the
same symbols:

〈〈ψ mod N [p], φ mod N [p]; p〉〉 = 〈〈ψ, φ; p〉〉. (4.23)
The key point is that this sesquilinear form is positive definite, not semidefinite. Finally, let H[p]
denote the completion of Q[p] under 〈〈−,−; p〉〉. This is a different Hilbert space than what we called
H[p] in §3.2, but, unlike our first candidate, it will usually be nonzero. Going forward, this is what
we mean by “H[p],” not the original attempt.

We have a canonical map D → H[p], namely ψ 7→ ψ mod N [p]. We will denote
Fψ(p) = ψ mod N [p]. (4.24)

The notation “F” is meant to evoke the Fourier transform. For ψ ∈ D,∫
O
‖Fψ(p)‖2H[p] dµ(p) =

∫
O
〈〈ψ,ψ; p〉〉︸ ︷︷ ︸
dµψ,ψ/dµ

dµ(p) =
∫
O

dµψ,ψ(p) = ‖ψ‖2. (4.25)

So, F is unitary, in a sense.

2.3. The little group representation.

Proposition 4.4. If T = (a,Λ) ∈ P∗, then ρ(T ) : N [p]→ N [Λp]. Consequently, ρ(T ) induces
a unitary map

ρ(T )[p] : H[p]→ H[Λp], (4.26)
as expected. �

Proof. There are two non-trivial things to check: (i) that ρ(T ) : N [p]→ N [Λp], and (ii) that
the induced map eq. (4.26), which is well-defined if we know (i), is unitary. Both claims follow from

〈〈ψ, φ; p〉〉 = 〈〈ρ(T )ψ, ρ(T )φ; Λp〉〉, (4.27)
, which is a consequence of the Lorentz-covariance of the spectral measures µφ,ψ. �

A corollary of this is that all H[p]’s, p ∈ O, are isomorphic.
The maps ρ(T )[p] satisfy the following “groupoid” property:

Proposition 4.5. ρ(T2T1)[p] = ρ(T2)[Λ1p] ◦ ρ(T1)[p]. �

Proof. Immediate from above. �

Proposition 4.6. ρ(Ta)[p] = ei〈a,p〉. �

Proof. Follows from dµφ,ρ(Ta)ψ/ dµ(p) = ei〈a,p〉 dµφ,ψ/dµ(p). �

Corollary. Fix p> ∈ O, and let L = L[p>] be the stabilizer of p> in Spin(1, d). Then,

ρ(−)[p>] : R1,d o L→ U(H[p>]) (4.28)
is a unitary representation of R1,doL, with all of the translation operators Ta acting via multiplication
by ei〈a,p〉. ��

Restricting ρ(−)[p] to the subgroup (R1,d,+) of translations, the result is a direct sum of
countably many copies of χp. We have a generalized plane wave with momentum exactly p,
constructed from our original representation, but not as a subspace thereof.

Let ς : L[p>]→ U(H[p>]) be the restriction of this unitary representation to Lorentz transfor-
mations:

ς(Λ) = ρ(Λ)[p>]. (4.29)
This is the “little group representation” that will help us in classifying ρ.

Proposition 4.7. Let T = (a,Λ). Then, ρ(T )[p]((Fψ)(p)) = (F(ρ(T )ψ))(Λp). �
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Proof. ρ(T )[p]((Fψ)(p)) = ρ(T )[p](ψ mod N [p]) = (ρ(T )ψ mod N [Λp]) = (ρ(T )ψ)(Λp) =
(F(ρ(T )ψ))(Λp). �

Moving ahead, we will drop the “[p]” in ρ(T )[p] and use the same notation to refer to the
representation on H as the one induced on H[p].

2.4. The group law. Next, we identify Fψ with a function on O valued in some fixed vector
space.

Remark 4.8. This can be couched in geometric terms. The various Hilbert spaces H[p], p ∈ O
can be aggregated into a “bundle” H[•]→ O over O, whose “fiber” over a point p ∈ O is the Hilbert
space H[p]. Since

Fψ(p) ∈ H[p], (4.30)
Fψ is a “section” of the bundle. What we want to do is trivialize the bundle, identifying it with
O × V for some vector space V. �

Fix a reference momentum p> ∈ O, and abbreviate H[p>] = V. Suppose that we have chosen,
for each p ∈ O, a “standard boost” D[p] ∈ Spin(1, d) with

D[p]p> = p. (4.31)

(D[p>] = Id+1.) Then, ρ(D[p]−1) : H[p]→ V is some unitary map, for each p ∈ O. We assume that
D[p] has been chosen “sufficiently nicely” on p. It suffices for D[p] to depend Borel measurably on p
and be continuous on an open set U0 3 p> whose complement has measure zero.1 (This can always
be done.) From Fψ, we can form a map O → V by

p 7→ ρ(D[p]−1)Fψ(p). (4.32)

Call this function Uψ. It follows immediately from eq. (4.25) that Uψ ∈ L2(O,µ;V), with

U : H → L2(O,µ,V) (4.33)

a partial isometry onto its image. In fact, this map is surjective.

Proposition 4.9. U is onto L2(O,µ,V). �

Proof. Let X denote the image of U and Y its orthogonal complement. By Lorentz-smoothing,
the subspace C0(O;V) ∩ Y is dense in Y. Suppose that Ψ is in this intersection. Suppose that
Ψ(p>) 6= 0. We can find a set of vectors ψ1, ψ2, · · · ∈ D (not necessarily independent) such that
the ψj mod N [p>] span (this is the finite span) a dense subspace of V = H[p>]. So, there is an
element of this span, Σ, such that 〈(FΣ)(p>),Ψ(p>)〉V > 0. By continuity, there exists a ε > 0
and a neighborhood U 3 p> such that <〈ρ(D[p]−1)FΣ(p),Ψ(p)〉V > ε for all p ∈ U . Now consider
Π(χ)Σ for χ ∈ C0

c (U) with χ(p>) = 1 and χ(p) ≥ 0 everywhere. Then, F(Π(χ)Σ)(p) = χ(p)FΣ(p),
so

〈ρ(D[p]−1)FΠ(χ)Σ,Ψ〉L2(O,µ;V) =
∫
O
χ(p)〈ρ(D[p]−1)FΣ(p),Σ(p)〉V dµ(p) (4.34)

has positive real part. But this contradicts Ψ ∈ X⊥.
What we have shown is that Ψ ∈ Y ⇒ Ψ(p>) = 0. But there is nothing special about p> (in the

open set U0 mentioned above), so Ψ = 0 identically. Thus, X is all of L2(O,µ;V). �

We can therefore “transport” our original representation ρ on H to one on the image of U (which
will end up being all of L2(O,µ,V)):

P∗(1, d) 3 T 7→ Uρ(T )U−1 ∈ U(L2(O,µ;V)). (4.35)

1We will talk as though D[p] is defined for all p ∈ O, though we actually only need D[p] to be defined for almost
all p ∈ O.
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Note that L2(O,µ;V) carries no obvious representation of P∗(1, d), only the (usually proper) little
group (including spacetime translations). Thus, we have no guess for what Uρ(Λ)U−1 had ought to
be. But we can just work it out:

Proposition 4.10. For any Ψ ∈ L2(O,µ;V) and T = (a,Λ) ∈ P∗,

(Uρ(T )U−1Ψ)(p) = ei〈a,p〉ρ(D[p]−1ΛD[Λ−1p])Ψ(Λ−1p). (4.36)
�

Proof. It suffices to prove the proposition for Ψ of the form Ψ = Uψ for ψ ∈ D, since these
are dense in L2(O,µ;V) (by above). For such Ψ, our goal is to prove

(Uρ(T )ψ)(p) = ei〈a,p〉ρ(D[p]−1ΛD[Λ−1p])((Uψ)(Λ−1p)). (4.37)
Now we compute the left-hand side:

(Uρ(T )ψ)(p) = ρ(D[p]−1)F(ρ(T )ψ)(p)
(Prop. 4.7)

= ρ(D[p]−1)ρ(T )Fψ(Λ−1p)
= ρ(D[p]−1T )Fψ(Λ−1p)
= ρ(D[p]−1TD[Λ−1p])ρ(D[Λ−1p]−1)Fψ(Λ−1p)
= ρ(D[p]−1TD[Λ−1p])((Uψ)(Λ−1p)).

(4.38)

Now write T = TaΛ = ΛTΛ−1a. The operator above is
ρ(D[p]−1TD[Λ−1p]) = ρ(D[p]−1ΛTΛ−1aD[Λ−1p])

= ρ(D[p]−1ΛD[Λ−1p]TD[Λ−1p]−1Λ−1a)
= ρ(D[p]−1ΛD[Λ−1p])ρ(TD[Λ−1p]−1Λ−1a).

(4.39)

In eq. (4.38), this is applied to (Uψ)(Λ−1p), which is an element of H[p>]. The effect of applying a
translation ρ(Tb) to (Uψ)(Λ−1p) is therefore to multiply by ei〈b,p>〉. Thus,

ρ(TD[Λ−1p]−1Λ−1a)((Uψ)(Λ−1p)) = ei〈D[Λ−1p]−1Λ−1a,p>〉(Uψ)(Λ−1p)

= ei〈Λ
−1a,D[Λ−1p]p>〉(Uψ)(Λ−1p)

= ei〈Λ
−1a,Λ−1p〉(Uψ)(Λ−1p) = ei〈a,p〉(Uψ)(Λ−1p).

(4.40)

Putting everything together, we have proven eq. (4.37). �

This looks god-awful, but let us press ahead. We can simplify the final formula somewhat by
defining

W (Λ, p) = D[p]−1ΛD[Λ−1p], (4.41)
in terms of which the formula reads

Uρ(T )U−1Ψ(p) = ei〈a,p〉ρ(W (Λ, p))[p>]Ψ(Λ−1p). (4.42)
We have restored the ‘[p>]’ that we have been notationally suppressing so as to emphasize the fact
that Ψ(Λ−1p) lies in V = H[p>], and thus, strictly speaking, Lorentz transformations act on it via
the representation ρ(−)[p>] induced on V by ρ and not by ρ itself.

The Lorentz transformation W (Λ, p) lies in the little group:

Proposition 4.11. For any Λ ∈ Spin(1, d), we have W (Λ, p) ∈ L. �

Proof. Straightforwardly,
W (Λ, p)p> = D[p]−1ΛD[Λ−1p]p> = D[p]−1ΛΛ−1p = D[p]−1p = p>. (4.43)

�
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Figure 4.1. The Wigner rotation (massive case).

The Lorentz “matrix”2 W (Λ, p) is called a Wigner rotation. It depends on p> through D[p], but
this dependence is left implicit.

The use of the term “rotation” is motivated by the O = Xm,+ case. When p> = (m,0) for some
m > 0, then the stabilizer L is naturally Spin(d). Thus,

W (Λ, p) ∈ Spin(d) (4.44)

as well. So, W (Λ, p) is “literally” a rotation, except it may be spinorial. In the massless case, m = 0,
the little group will be seen to consist of some rotations and some Lorentz transformations known
as null rotations. They are not literally rotations of either space or spacetime, but the terminology
is standard.

Because the Wigner rotation W = W (Λ, p) lies in the little group, eq. (4.42) can be rewritten
compactly as:

Uρ(T )U−1Ψ(p) = ei〈a,p〉ς(W )Ψ(Λ−1p). (4.45)

Note that the little group representation ς has arisen. To summarize:

Theorem. Given the setup above, the primary representation ρ must be unitarily equivalent to
a representation on L2(O,µ;V) of the form

(TΨ)(p) = ei〈a,p〉ς(W )Ψ(Λ−1p) (4.46)

for T = (a,Λ). The intertwining map is the U above. �

So, it suffices to restrict attention to representations of this form. Note: we have not proven
that there actually exists a representation with spectrum σ = Ō and little group representation
ς. We deduced that any such representation must be equivalent to one of a particular form, but
it could be the case that eq. (4.46) fails to define a valid representation, in which case we would
have reached a contradiction. That would mean that no representation exists with the prescribed
spectrum and little group representation. The first thing we will do in the next subsection is prove
that the formula above actually does define a valid representation.

2Using scare quotes because W (Λ, p) is technically an element of ˜SO(1, d), not SO(1, d) itself.
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2.5. Facts about induced representations. To repeat the definition:
Let

• O ∈ {Ω, V±, Xm,±, YΓ : m,Γ > 0} and L ⊂ Spin(1, d) be the corresponding little group,
and
• ς : L→ U(V) denote a unitary representation of L on some Hilbert space V.

Assume that a standard boost D[p] : p> 7→ p has been chosen so as to depend Borel measurably
on p ∈ O. Consider the Hilbert space

H = L2(O,µ;V). (4.47)
For each a ∈ R1,d and Λ ∈ Spin(1, d), consider the operator π(a,Λ) ∈ U(H) on H defined by

(π(a,Λ)Ψ)(p) = ei〈a,p〉ς(W (Λ, p))Ψ(Λ−1p), (4.48)
where W (Λ, p) = D[p]−1ΛD[Λ−1p].

Proposition 4.12. Then, (a,Λ) 7→ π(a,Λ) defines a continuous unitary representation of
P∗(1, d) �

Proof. Evidently, π(a,Λ) is unitary, and depends continuously on a,Λ with respect to the
strong-operator topology. That this defines a representation of P∗ is the following calculation:

(π(a,Λ)π(a′,Λ′)Ψ)(p) = ei〈a,p〉ς(W (Λ, p))(π(a′,Λ′)Ψ)(Λ−1p)

= ei〈a,p〉ς(W (Λ, p))ei〈a′,Λ−1p〉ς(W (Λ′,Λ−1p))Ψ((ΛΛ′)−1p)

= ei〈a+Λa′,p〉ς(W (Λ, p)W (Λ′,Λ−1p))Ψ((ΛΛ′)−1p).

(4.49)

Note that W (Λ, p)W (Λ′,Λ−1p) = D[p]−1ΛΛ′D[(ΛΛ′)−1p] = W (ΛΛ′, p). So, the above is

= ei〈a,+Λa′,p〉ς(W (ΛΛ′, p))Ψ((ΛΛ′)−1p)
= π(a+ Λa′,ΛΛ′)Ψ(p).

(4.50)

�

Remark: If ς descends to a representation of L∗ ⊆ O(1, d), then π descends to a representation of
P(1, d).

The representation defined in the previous theorem is denoted

π = IndR1,doSpin(1,d)
R1,doL (χ⊗ ς), (4.51)

where χ⊗ ς : R1,d o L→ U(V) is given by (x,A) 7→ ei〈x,p〉ς(A). See [Fol08], [Tal22] for alternative
expositions.

Having succeeded in defining the representation π, one should check that it has the desired
spectrum σ = Ō and little group representation ς. This is left as an exercise.[Exercise 4.3]

Proposition 4.13. π is irreducible if and only if ς is. �

Proof. If ς is reducible, so that there exists some ς-closed subspace W ⊆ V, then L2(O,µ;W)
is evidently a π-closed subspace of H = L2(O,µ;V).

Conversely, suppose that π is reducible, so that H = X ⊕ Y for proper subrepresentations X ,Y .
These have to have the same spectrum. The space H[p>] ∼= V splits as

H[p>] ∼= X [p>]⊕ Y[p>], (4.52)
each summand in which is ς-closed. We know that each Z = X ,Y is unitarily equivalent to a
subspace of L2(O,µ;Z[p>]), so Z[p>] must be a proper subspace of H[p>]. We conclude that H[p>],
and hence V, is reducible as a ς-representation. �



2. THE METHOD OF INDUCED REPRESENTATIONS: DETAILS 71

Remark: Similarly, π is primary if and only if ς is. [Problem 4.2]
Remark: The definition of eq. (4.48) does not depend on the choice of standard boosts D[p] ∈
Spin(1, d), whose only defining properties (besides depending continuously on p) were that D[p]p> =
p. Call an alternative D̃[p], leading to the alternative Wigner rotation W̃ (Λ, p). Then, we can
rewrite eq. (4.48) as

(U(a,Λ)Ψ)(p) = ei〈a,p〉

× ς(D[p]−1D̃[p])ς(D̃[p]−1ΛD̃[Λ−1p]︸ ︷︷ ︸
W̃ (Λ,p)

)ς(D̃[Λ−1p]−1D[Λ−1p])Ψ(Λ−1p). (4.53)

Note that this makes sense because

D[p]−1D̃[p], D̃[Λ−1p]−1D[Λ−1p] : p> 7→ p> (4.54)

and are therefore in the little group. So, if we define Ψ̃(p) = ς(D̃[p]−1D[p])Ψ(p), then the unitary
map Ψ 7→ Ψ̃ intertwines the original representation with that constructed using D̃[p].

So, every pair of a Lorentz orbit O and little group irrep ς is realized by some irrep of P∗(1, d).
Combining this with previous propositions, we have a complete classification of irreps: for each
Lorentz orbit O and corresponding little group irrep ς, we have (modulo unitary equivalence) exactly
one irrep of P∗(1, d) with those two pieces of data, and it is the induced representation

IndR1,doSpin(1,d)
R1,doL (χ⊗ ς) (4.55)

defined above.

2.6. An alternative construction. The homeomorphism O ∼= Spin(1, d)/L suggests attempt-
ing to build the representation in question as consisting of V-valued functions on Spin(1, d) satisfying
some kind of L-invariance that allows us to pass to functions on the quotient. The correct notion is
“equivariance” — a function Ψ : Spin(1, d)→ V is called L-equivariant if

Ψ(ΛA−1) = ς(A)Ψ(Λ) (4.56)

for all Λ ∈ Spin(1, d) (or almost all Λ) and A ∈ L.
Given a function Ψ : Spin(1, d)→ V, a natural action of Λ ∈ Spin(1, d) on Ψ is

(ΛΨ)(Λ0) = Ψ(Λ−1Λ0). (4.57)

This suggests considering the big Hilbert space Hbig = L2(Spin(1, d);V). For any Λ, the map
Ψ 7→ ΛΨ is unitary by virtue of the invariance of the Haar measure. So, we get a manifest continuous
unitary representation of Spin(1, d). For any p>, we can extend this to a representation Ũ of the
full Poincaré group by writing

(Ũ(a,Λ)Ψ)(Λ0) = ei〈a,Λ0p>〉Ψ(Λ−1Λ0). (4.58)

Clearly, Ũ(a,Λ) is unitary and depends continuously on a,Λ.

Proposition 4.14. Ũ is a representation of P∗. �

Proof. Calculate
(Ũ(a,Λ)Ũ(a′,Λ′)Ψ)(Λ0) = ei〈a,Λ0p>〉(Ũ(a′,Λ′)Ψ)(Λ−1Λ0)

= ei〈a,Λ0p>〉ei〈a
′,Λ−1Λ0p>〉(Ψ((ΛΛ′)−1Λ0))

= ei〈a+Λa′,Λ0p>〉(Ψ((ΛΛ′)−1Λ0)) = (Ũ(a+ Λa′,ΛΛ′)Ψ)(Λ0).

(4.59)

�



72 4. WIGNER’S CLASSIFICATION OF PARTICLES

Note that we have not yet assumed that L is the stabilizer of p>.
Let Hsmall denote the subspace of Hbig consisting of L-equivariant functions. It is clear from

the definition of equivariance (because the A−1 in ΛA−1 is on the right) that

Ψ L-equivariant =⇒ (ΛΨ) = Ψ ◦ Λ−1 L-equivariant, (4.60)

so Hsmall is a P∗-subrepresentation of Hbig.

Proposition 4.15. This subrepresentation is unitarily equivalent to the one defined above. �

Proof. See [Tal22, §9.8]. �

3. The massive case

Consider the Lorentz orbit O = Xm,+, for m > 0. Recall that this is

Xm,+ =
{
(ω,p) ∈ R1,d : ω =

√
m2 + ‖p‖2

}
, (4.61)

one sheet of a hyperboloid. The most natural choice of reference momentum p> ∈ Xm,+ is
p> = (m,0) ∈ Xm,+. In this section, we discuss the (spinorial) Poincaré-irreps π• whose spectrum is
O. By the classification theorem above, we get exactly one irrep from each irrep ς of the little group

L = {Λ ∈ Spin(1, d) : Λp> = p>}, (4.62)

the stabilizer of p> in Spin(1, d). In addition, we will write down explicitly the Lorentz-invariant
measure µ on Xm,+ and the standard boosts D[p]. These are required to make explicit the description
of π•.

3.1. Little group and its representations. Recall that Spin(d) denotes the universal cover
of SO(d), for d ≥ 2.

Proposition 4.16. L ∼= Spin(d) if d ≥ 3, and L ∼= (R,+) if d = 2. �

Proof. The stabilizer of p> in the restricted Lorentz group, L∗, is SO(d). The group L is the
pre-image of L∗ under the universal cover. �

So, the method of induced representations has reduced the classification of irreps of the spinorial
Poincaré group to that of irreps of the Lie group Spin(d), which is compact, unless d = 2. The
irreps of Spin(d) are well-understood.

The physically-relevant d = 3 case, in which Spin(3) = SU(2) can be exposited explicitly. For
each j ∈ N+, we have exactly one j-dimensional irrep, labeled j, and referred to as the “spin-s”,
s = (j−1)/2, irrep. In particle physics, one rarely needs the irreps 4,5,6,7, . . . . The low-dimensional
examples 1,2,3 can all be described simply:

• 1 is the trivial representation.
• 2 is the defining representation of SU(2).
• 3 is the double cover SU(2)→ SO(3).

(If j is odd, then j has a real structure. Otherwise, if j is even, it has a quaternionic structure.)
Explicit formulas for general j are given by the Wigner D-matrices.
So, we have, for each s ∈ 2−1N, an irrep πm,s of the spinorial Poincaré group P∗(1, d). The rest

of this section is devoted to describing this representation more explicitly.
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3.2. Invariant measure. Up to a multiplicative constant, the Lorentz-invariant measure
µ = µXm,+ on R1,d supported on Xm,+ is given by

dµ(p) = Θ(p0)δ(p2 +m2) d1+dp, (4.63)

where Θ(ω) = 1ω>0 is a Heaviside step function. The δ-function δ(p2 +m2) is either defined as or,
if defined in some other way, is proven to be equal to

δ
(
p0 ∓

√
m2 + ‖p‖2

)( d
dp0

p2
∣∣∣
p2=m2

)−1
=
δ
(
p0 −

√
m2 + ‖p‖2

)
2(m2 + ‖p‖2)1/2 . (4.64)

So, we have the following concrete formula for µ: if f ∈ L1(Xm,+, µ), then∫
Xm,+

f(p) dµ(p) =
∫
R3

f
(
(m2 + ‖p‖2)1/2,p

)
ddp

2(m2 + ‖p‖2)1/2 . (4.65)

The manipulations of δ-functions above are rigorously justifiable, but the reader may prefer to
take eq. (4.65) as the definition of µ.

Why is µ Lorentz-invariant? If we know how to make sense of eq. (4.63), then this is more or
less obvious, since the terms

sign(p0), p2, d1+dp (4.66)
out of which dµ = Θ(p0)δ(p2 + m2) d1+dp is built are individually invariant. (The invariance of
the Lebesgue measure d1+dp on R1+d is due to special Lorentz matrices having unit determinant.)
However, we would like to verify Lorentz-invariance without needing any general theory of δ-functions.
It should be possible to deduce this directly from the formula/alternative definition eq. (4.65).
Indeed:

Proposition 4.17. For any orthochronous, orthochorous Lorentz matrix Λ and f ∈ L1(Xm,+, µ),∫
Xm,+

f(p) dµ(p) =
∫
Xm,+

f(Λp) dµ(p). (4.67)

That is, the measure µ is Lorentz-invariant. �

Proof. Since the definition eq. (4.65) is manifestly rotation invariant, and since rotations
together with boosts in a single direction generate the whole Lorentz group, it suffices to consider
the boost

Λ =

c s 0
s c 0
0 0 Id−1

 (4.68)

for c = cosh(β), s = sinh(β), β ∈ R. Then, by definition,∫
Xm,+

f(Λp) dµ(p) =
∫
Rd
f
(
cp0(p) + sp1, sp0(p) + cp1, p2, · · ·

) ddp
2(m2 + ‖p‖2)1/2 , (4.69)

where p0(p) = ±(m2 + ‖p‖2)1/2. Let q1 = sp0(p) + cp1, q2 = p2, · · · . Then,

cp0(p) + sp1 = (m2 + ‖q‖2)1/2,

ddp = (−sq1(m2 + ‖q‖2)−1/2 + c) ddq,

p0(p) = c(m2 + ‖q‖2)1/2 − sq1.

(4.70)

These give
ddp

(m2 + ‖p‖2)1/2 = ddq
(m2 + ‖q‖2)1/2 , (4.71)
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and consequently∫
Xm,+

f(Λp) dµ(p) =
∫
Rd

f
(
(m2 + ‖q‖2)1/2,q

)
ddq

2(m2 + ‖q‖2)1/2 =
∫
Xm,+

f(q) dµ(q). (4.72)

�

3.3. Standard boosts and Wigner rotations. Given some other p ∈ O, the standard boost
D[p] is supposed to take p> to p = ((m2 + ‖p‖2)1/2,p), p 6= 0. The standard boost Λ(−v) has this
property for v = (m2 + ‖p‖2)−1/2p.

Note that this depends continuously on p, as we required.
We now compute the Wigner rotation W (Λ, p) = D[p]−1ΛD[Λ−1p]. We consider two cases, (i)

Λ a rotation, (ii) Λ a pure boost.
(i) When Λ = R is a rotation, then D[Λ−1p] = Λ(−R−1v) = R−1Λ(−v)R, so the Wigner

rotation is
W (R, p) = (Λ(−v))−1R(R−1Λ(−v)R) = Λ(v)Λ(−v)R = R, (4.73)

just r itself.
(ii) When Λ = Λ(w) is a pure boost, D[p]−1Λ = Λ(v)Λ(w) = WΛ(v ⊕ w), by the velocity

addition formula Problem 1.3, where W is the same matrix called the Wigner rotation
there.

Above, we actually wanted D[p] to be an element of Spin(1, d), not SO(1, d), but this is easily
amended, as the map p 7→ Λ(−v) can be lifted to Spin(1, d).

4. The massless case

4.1. Invariant measure. The construction of the invariant measure µ = µV± is the same in
the massless case as the massive case:

dµ(p) = Θ(p0)δ(p2) d1+dp, (4.74)
except it is a bit more difficult to make rigorous sense of δ(p2), as compared to δ(p2 +m2), since
the zero set of p2 is not smooth. It is a bicone, which fails to be a submanifold of R1,d at the
origin, whereas the zero set of p2 −m2 is a two-sheeted hyperboloid. Making sense of the product
Θ(p0)δ(p2) is also not automatic, because the singular supports of the individual factors Θ(p0), δ(p2)
are not disjoint.

So, we just take eq. (4.65), with m = 0, as our definition: µ is the Borel measure on V± such
that ∫

V+
f(p) dµ(p) =

∫
Rd
f(‖p‖,p) ddp

2‖p‖ (4.75)

for all f ∈ C0
c (R1,d). The same computation as in the massive case shows that µ, defined in this

way, is Lorentz-invariant.

4.2. Little group. As our reference momentum p> ∈ O, we can take p> = (1, 1, 0, . . . ).
Unlike in the massive case, the stabilizer L∗ of p> in SO(1, d) requires some work to compute.

The obvious members of L∗ are those Lorentz transformations

I2 ⊕R =

1 0 0
0 1 0
0 0 R

 , R ∈ SO(d− 1) (4.76)

which fix the t- and x1-axes and rotate the remaining variables. Perhaps surprisingly, these are
not the only elements of L∗ (excluding the d = 1 case, as we are assuming that d ≥ 2). A natural
candidate to try would be a boost along the x-axis, but this doesn’t work — no nontrivial boost
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along the x-axis preserves p>. So, any remaining elements of the little group would have to mix x1

with the other spatial components x2, x3, · · · in some interesting way.
Example 4.18 (d = 2 case). The most general 3-by-3 real-valued matrix fixing p> = (+1, 1, 0)

is

Λ =

a 1− a b
c 1− c d
e −e f

 , (4.77)

where a, b, c, d, e, f ∈ R. The question is: for which values of these parameters is Λ a proper,
orthochronous Lorentz matrix? For each w ∈ R3, we get a linear constraint from equating 〈w, p>〉
with 〈Λw,Λp>〉 = 〈Λw, p>〉.

• Taking w = (1, 0, 0), in which case 〈w, p>〉 = −1, we get the constraint c = a− 1.
• Taking w = (0, 1, 0) yields the same constraint.
• Taking w = (0, 0, 1) yields the constraint d = b.

So,

Λ =

 a 1− a b
a− 1 2− a b
e −e f

 . (4.78)

For each w, v ∈ R3, we get a quadratic constraint from equating 〈w, v〉 and 〈Λw,Λv〉.
• Taking w, v = (0, 0, 1), we get f = ±1.
• Then, taking w = (1, 0, 0) and v = (0, 0, 1), we get e = ±b. The sign here is the same as
that of f .
• Finally, taking w, v = (1, 0, 0), we get a = 1 + e2/2.

We could continue in this way, but we would not get any more constraints. Anyways, we only have
a single degree-of-freedom e, left, in addition to an undetermined sign:

Λ =

1 + ζ −ζ ±e
ζ 1− ζ ±e
e −e ±1

 (4.79)

for ζ = e2/2. This turns out to be a Lorentz matrix (which is why trying different pairs w, v of
vectors above fails to yield new constraints), as some straightforward algebra reveals. [Exercise 4.5]

We have not done anything to guarantee that Λ is proper or orthochronous. Apparently,
orthochronicity is automatic, since Λ0

0 = 1 + ζ > 0. Propriety must depend on the sign ±, since the
two possible choices lead to opposite determinants. If e = 0, then we get a positive determinant
if the sign is +. Considering the whole continuous family of Lorentz matrices Λ(e), the sign of
the determinant cannot change (since Lorentz matrices have determinant ±1), so the previous
conclusion must hold for all e. �

The discussion above generalizes:

Proposition 4.19. Let d ≥ 2. For each e ∈ Rd and R ∈ SO(d− 1), let

N(e, R) =

1 + ζ −ζ eᵀR
ζ 1− ζ eᵀR
e −e R

 , (4.80)

where ζ = ‖e‖2/2. Then, L∗(p>) = {N(e, R) : e ∈ Rd, R ∈ SO(d− 1)}. �

The matrix N(e, Id−1) is what is known as a null rotation.

Proof. The claim is that if Λ is a proper, orthochronous Lorentz matrix such that Λp> = p>,
then there exist e ∈ Rd and R ∈ SO(d− 1) such that Λ = N(e, R).
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The computation for general d ≥ 2 is almost identical to the d = 2 case discussed above, so let
us just explain where the R comes from. After going through the linear constraints on the entries of
Λ imposed by 〈Λ•, p>〉 = 〈•, p>〉, we get that

Λ =

 a 1− a bᵀ
a− 1 2− a bᵀ

e −e R

 . (4.81)

for some a ∈ R, b, e ∈ Rd−1, R ∈ R(d−1)×(d−1). Equating w2 = (Λw)2 for w = (1, 0, 0, . . . ) yields
a = 1 + ζ for ζ = ‖e‖2/2. Now taking w = (0, 0, z) for z ∈ Rd−1 and equating (Λw)2 = w2, we get
that ‖Rz‖2 = ‖z‖2. So, R ∈ O(d− 1). To see that

b = Rᵀe = R−1e, (4.82)
equate 0 = 〈w, v〉 = 〈Λw,Λv〉 for that same w and v = (1, 0, . . . ). The Lorentz product 〈Λw,Λv〉 is
given explicitly by

〈Λw,Λv〉 = −b · z + e ·Rz. (4.83)
So, b · z = e ·Rz = (Rᵀe) · z. Since this holds for all z ∈ Rd−1, we must have b = Rᵀe.

To see that N(e, R) is a Lorentz matrix, we can use N(e, R) = N(e, Id−1)N(0, R). The second
factor, N(0, R), is a spatial rotation and therefore a Lorentz matrix, and to show that N(e, Id−1) is
a Lorentz matrix, it suffices (via a coordinate change) to consider e = (e, 0, . . . ). Then,

N(e, Id−1) =


a 1− a e 0ᵀ

a− 1 2− a e 0ᵀ
e −e 1 0ᵀ
0 0 0 Id−2

 . (4.84)

The check that N(e, Id−1) is a Lorentz matrix therefore reduces to the d = 2 case above.
Finally, note that Λ is automatically orthochronous, and it is proper if and only if R ∈ SO(d−1).

Indeed, N(e, Id−1) is proper, and N(0, R) is proper if and only if R ∈ SO(d − 1). So, N(e, R) is
proper and orthochronous if and only if R is orientation-preserving. �

For the rest of the section, d ≥ 3.
The spinorial little group

L = π−1(L∗) (4.85)
is then the pre-image of all of the null rotations N(e, R) under the cover π : Spin(1, d)� SO(1, d).

Example 4.20. For concrete computations in the d = 3 case, the choice p> = (1, 0, 0, 1) is
convenient with the matrix

I2 + σ3 =
(

2 0
0 0

)
, (4.86)

and L(p>) ⊆ SL(2,C) is the set of S ∈ SL(2,C) such that S(I2 + σ3) = (I2 + σ3)S−1†. Concretely,
for S ∈ SL(2,C),

S =
(
a b
c d

)
⇒ S−1† =

(
d∗ −c∗
−b∗ a∗

)
, (4.87)

so the condition for S to be in L[p>] becomes(
a 0
c 0

)
=
(
d∗ −c∗
0 0

)
. (4.88)

Thus, we have c = 0, d = a∗, and b is unconstrained. Note that this implies detS = |a|2, so if S is
to lie in SL(2,C), then we must have |a| = 1. We conclude that

L[p>] =
{(

a b
0 a∗

)
: a, b ∈ C, |a| = 1

}
. (4.89)

�
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Let E(j) = Rj o SO(j) denote the group of orientation-preserving isometries of j-dimensional
Euclidean space, and let

E∗(j) = Rj o Spin(j) (4.90)
denote its double cover. (We will also use π : E∗(j)� E(j) to denote the covering map.)

Proposition 4.21. The little groups L∗, L are isomorphic to E(d− 1), E∗(d− 1), respectively.
More precisely, letting A(e, R) ∈ E(d− 1) denote the isometry x 7→ e +Rx, consider the bijection
ι : A(e, R) 7→ N(e, R). Then, ι is an isomorphism, and there exists an isomorphism ι∗ : E∗(d−1)→
L(p>) such that π ◦ ι∗ = ι ◦ π. �

Proof. Since A(e, R)A(e′, R) = A(e + Re′, RR′), for ι to be a homomorphism (and thus an
isomorphism) means that

N(e, R)N(e′, R′) = N(e +Re′, RR′). (4.91)
This identity is straightforwardly checked directly, just multiplying the two matricesN(e, R), N(e′, R′)
together. �

4.3. Representations of little groups. The classification of massless irreps of P∗(1, d) has
been reduced to the classification of irreps of the cover

E∗(d− 1) = Rd−1 o Spin(d− 1) (4.92)
of the group E(d − 1) of Euclidean isometries. This is because the stabilizer in Spin(1, d) of a
nonzero null vector k ∈ V+ happened to be isomorphic to E∗(d− 1). This isomorphism identified
Euclidean translations with null rotations of spacetime and Euclidean rotations with rotations in
space around the spatial component of k.

Like the Poincaré group, the group E∗(d − 1) is a semidirect product of Rd−1 and another
(semisimple) Lie group, so its irreps can be classified using the method of induced representations.
Since the analysis is almost identical to that of the Poincaré group, we can just state the upshot.
The irreps are classified by two pieces of data: an orbit o ⊆ Rd of the group SO(d− 1) of Euclidean
rotations, and an irrep of the stabilizer

`(k>) = {R ∈ Spin(d− 1) : Rk> = k>}, k> ∈ o, (4.93)
called the short little group in this context. The orbit o is the spectrum of the restriction of the
representation to Euclidean translations – i.e. to null rotations.

Unlike in the Lorentzian setting, where we had six sorts of possible orbits, in the Euclidean
setting there are only two:

• the sphere rS = {q ∈ Rd−1 : ‖q‖ = r} of radius r > 0,
• the origin f = {0}.

This is summarized in Section 4.3, together with the corresponding short little groups. In either
case, the short little group is Spin(j) for some j ∈ N+, so its irreps can be looked up.

Orbit o ⊂ Rd−1 Reference k> ∈ o Short little group `
rS, r > 0 k> = (1, 0, · · · , 0) Spin(d− 2)
f = {0} k> = 0 Spin(d− 1)

Table 4.3. The orbit o ⊂ Rd−1 and associated short little group `.

The possibility o = rS leads to an irrep ς : E∗(1, d)→ U(V) of the little group E∗(d− 1) which is
infinite-dimensional, since it will consist of wavefunctions on rS valued in an irrep of the short little
group. This exotic possibility leads to continuous spin. It does not appear to be realized in nature.

So, we focus on the case where the orbit o is f = {0}. This means that null rotations act
trivially on the little group irrep. The whole little group irrep is then unitarily equivalent to the
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short little group irrep. So, we can conclude: for each irrep of Spin(d− 1), we get exactly one irrep
of E∗(d− 1).

When d = 3, then the relevant short little group is Spin(2) ∼= U(1). The irreps of U(1) have the
form χj : eiθ 7→ eijθ, where j ∈ Z. Then, {χj}j∈Z is a complete set of irreps.

Proposition 4.22. Choosing p> = (1, 0, 0, 1), so that L ⊆ SL(2,C) is given by eq. (4.89), the
irrep ς : L→ C induced by χj has the form S 7→ aj. �

To summarize, in ς, the null rotations all act trivially, but the rotations around k act nontrivially.

4.4. Standard boosts and Wigner rotations. For each p ∈ V+\{p>}, we want to find a
restricted Lorentz matrix D[p] such that D[p] : p> 7→ p, where p> = (1, 0, · · · , 0, 1) is the future-
directed null vector whose spatial component we call z = (0, 0, · · · , 1). If p = (p0,p) is a null vector,
with p0 > 0 and p /∈ span z, then there is a unique spatial rotation R(p) acting as the identity on
{z,p}⊥ and mapping R(p) : z 7→ p̂. Then, we can take

D[p] = R(p)D[q] (4.94)
for q = p0p>, if we have already defined D[q]. So, it suffices to define D[q] for such q.

The natural choice is to define D[q] = Λ(vz), the usual speed v pure boost in the z-direction
(eq. (1.15) but with z in place of x), for some v ∈ R. Specifically, Λ(v)p> = q when√

1− v
1 + v

= p0, i.e. v = 1− p2
0

1 + p2
0
. (4.95)

So,

D[p] = R(p)Λ
(1− p2

0
1 + p2

0
z
)

= Λ
(1− p2

0
1 + p2

0
p̂
)
R(p). (4.96)

The next ingredient is the Wigner rotation W (Λ, p) = D[p]−1ΛD[Λ−1p]. The computations of
these can be found in [Tal22, §9.6.2].

5. Parity and time-reversal (?) [*]

A. Existence of the Radon–Nikodym derivative (Proof of Proposition 4.2)

Fix p> ∈ O. Let D[p] ∈ Spin(1, d) denote the standard boosts, with D[p]p> = p, discussed
above. We are assuming that these have been chosen to depend continuously on p. We prove the
following, which is a more precise version of Proposition 4.2.

Proposition 4.23. Let D denote the Gårding domain, eq. (3.62). Suppose that φ, ψ ∈ D, with
φ = avgθ φ0 and ψ = avgϑ ψ0 for ψ0, φ0 ∈ H, θ, ϑ ∈ C∞c (G;R). Consider, for each p, q ∈ O, h ∈ P∗.

fp[h](q) def=
∫
R1,doL[p>]

θ(D[p]`D[q]−1h−1)ϑ(D[p]`D[q]−1) d`, (4.97)

where the integral is done using the Haar measure on R1,d o L[p>]. Then:
(i) For each fixed p, the function P∗×O 3 (h, q) 7→ fp[h](q) lies in C0

c (P∗×O).
(ii) Moreover, this depends continuously on p, in the sense that for each fixed p0 ∈ O, there

exists some open neighborhood U ⊂ O of p0 and a compact subset K b P∗×O such that,
for all p ∈ U , supp fp[−](−) ⊆ K, and the map (h, q, p) 7→ fp[h](q) lies in C0(P∗×O2).

(iii) For any Borel E ⊆ R1,d, µφ,ψ(E) =
∫
E∩O

∫
P∗ 〈φ0, ρ(h)Π(fp[h])ψ0〉︸ ︷︷ ︸

∈C0
c (P∗)

dh dµ(p).

In other words, the Radon–Nikodym derivative dµφ,ψ/ dµ(p) exists and is
dµφ,ψ

dµ (p) =
∫

P∗
〈φ0, ρ(h)Π(fp[h])ψ0〉 dh. (4.98)

�
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Proof. The statements (i) and (ii) on the regularity, needed to make sense of the integrals in
(iii), are straightforward consequences of the compact support of θ, ϑ, so we will focus on the more
difficult proof of (iii). Let E ∈ Borel(R1,d). We want to compute∫

O
1E(p)

∫
P∗
〈φ0, ρ(h)Π(fp[h])ψ0〉 dh dµ(p)

=
∫

P∗

〈
φ0, ρ(h)Π

( ∫
O

1E(p)
∫
R1,doL[p>]

θ(D[p]`D[•]−1h−1)ϑ(D[p]`D[•]−1) d` dµ(p)
)
ψ0
〉

dh. (4.99)

The key thing is to recognize that, setting g = D[p]`, then d` dµ(p) = dg (this is one way in which
dµ(p) is defined). So, the argument of Π(•) above is the function

q 7→
∫

P∗
1E(Λ(g)p>)θ(gD[q]−1h−1)ϑ(gD[q]−1) dg (4.100)

where Λ(g) is the linear part of g. Using the invariance of the Haar measure, we can replace gD[q]−1

with g for each individual q, giving∫
P∗

1E(Λ(g)D[q]p>)θ(gh−1)ϑ(g) dg =
∫

P∗
1E(Λ(g)q)θ(gh−1)ϑ(g) dg. (4.101)

So,

Π(· · ·) =
∫

P∗
θ(gh−1)ϑ(g)Π(1E ◦ Λ(g)) dg =

∫
P∗
θ(gh−1)ϑ(g)ρ(g−1)Π(1E)ρ(g) dg. (4.102)

Plugging this into the above, we have arrived at:∫
O

1E(p)
∫

P∗
〈φ0, ρ(h)Π(fp[h])ψ0〉dhdµ(p) =

∫
P∗

∫
P∗
θ(gh−1)ϑ(g)〈φ0, ρ(hg−1)Π(1E)ρ(g)ψ0〉 dg dh.

(4.103)
We can now use Fubini’s theorem to swap the order of integration, making the integral over h
the inner integral, and then defining t = gh−1; then dt = dh (using the bi-invariance of the Haar
measure), and the right-hand side above becomes∫

P∗

∫
P∗
θ(t)ϑ(g)〈φ0, ρ(t−1)Π(1E)ρ(g)ψ0〉 dg dt = 〈φ,Π(1E)ψ〉 = µφ,ψ(E). (4.104)

�

B. Casimir operators [*]

Problems and exercises

Exercise 4.1: Prove that, if p, q lie in the same Lorentz orbitO, then, for eitherG = SO(1, d),Spin(1, d),
the stabilizers of p, q in G are conjugate.
Exercise 4.2: Let p, q ∈ R1,d be nonzero elements in distinct Lorentz orbits.

(a) Show that, if p ∈ V± and q ∈ V∓, then no Lorentz-closed subsets U 3 p, V 3 q satisfy
U ∩ V = ∅.

(b) Prove that, excepting the case noted in the previous part, U, V can be chosen such that
U ∩ V = ∅.

Exercise 4.3: Check carefully that the induced representation π, eq. (4.48), has spectrum σ = Ō
and little group representation ς.
Exercise 4.4: Show that the induced representation eq. (4.48) does not depend on the choice of
reference momentum p> in the following sense: if p>,j ∈ O, j = 1, 2 are two choices of reference
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momenta with little groups L[p>,j ], then, given a continuous unitary representation ς : L[p>,1]→
U(V), if we define

ς ′ : L[p>,2]→ U(V)
A 7→ ς(D[p>,2]−1AD[p>,2]),

then the induced representation constructed using the data (p>,2, ς ′) is unitarily equivalent to that
using the data (p>,1, ς).
Exercise 4.5: Check that the matrix Λ in eq. (6.45) lies in O(2, 1).
Exercise 4.6: Explain how the irreps of P∗(1, d) with spectrum σ = Xm,−, V− are related to those
with spectrum Xm,+, V+.

Problem 4.1: Show that the conclusion of Proposition 4.1 holds under the weaker assumption that
ρ is primary.
Problem 4.2: (i) Show that the induced representation π (eq. (4.48)) is primary if and only

if ς is.
(ii) Conclude that every finite-spin primary representation of P∗(1, d) with spectrum σ 6=
{0}, YΓ. can be decomposed into a countable direct sum of copies of the same irrep.

(iii) (Optional.) Repeat the above for the remaining cases. You may use without proof any
facts you want about the representation theory of Spin(1, d).

Problem 4.3 (Tachyons): Classify the irreps of P∗(1, 3) whose spectrum is YΓ for some Γ > 0.
Hint: the little group is Spin(1, 2), so you need the (unitary) irreps of this group. Problem 2.2

says Spin(1, 2) ∼= SL(2,R), and you can just look up the irreps of this group.
Problem 4.4 (Exotic vacua): Classify the nontrivial irreps of P∗(1, 3) whose spectrum is {0}.

Hint: look up the irreps of SL(2,C).



CHAPTER 5

Relativistic wave mechanics: massive case

Wigner’s classification of particles in terms of irreps of the Poincaré group

P∗(1, d) = R1,d o ˜SO(1, d), d ≥ 1 (5.1)

is highly abstract. For each m ≥ 0 and little group representation s : L→ U(V), we have constructed
an irrep πm,s describing particles of mass m and spin s. The Hilbert space consists of certain
vector-valued functions

Ψ : Xm,+ → V (5.2)

on the “mass shell”
Xm,+ = {(E,p) ∈ R1,d : E2 = m2 + ‖p‖2, E ≥ 0}. (5.3)

The effect of a Lorentz transformation combines an action on the argument with a complicated
action on the values via the little group representation.

Ψ(t,x)

v

Figure 5.1. A schematic scalar wavefunc-
tion Ψ, shown on one time slice.

A more down-to-earth approach is wave me-
chanics. In wave mechanics, particles are described
via wavefunctions on spacetime, satisfying some lin-
ear first- or second-order PDE. The wavefunctions
are valued in some finite-dimensional representation
T of the Lorentz group, all of which arise as suitably
symmetrized/anti-symmetrized spaces of tensors. In
physicists’ parlance, wavefunctions may have Lorentz
or spinor indices.

The (actual, not abstract) inverse Fourier trans-
form converts functions on momentum space to func-
tions on spacetime. This immediately yields a realiza-
tion of πm,s as a space of functions on spacetime, but
valued in the space V on which the little group representation acts, not T , acting on those indices in
an unnatural way. The missing mathematical ingredient needed for the wave-mechanical realization
of πm,s is the “method of polarization tensors,” which will involve a p-dependent embedding V ↪→ T
to “untwist” the Lorentz action. The p-dependence is predetermined by the standard boosts D[p]
used to construct πm,s, so the only representation-theoretic input required is the decomposition of
T into irreps of the little group. Thus:

The wave-mechanical realizations of the πm,s are constructed using two things:
(I) the inverse Fourier transform,
(II) knowledge of the equivariant embeddings V ↪→ T ,

where equivariant means equivariant with respect to the little group L.

Let
S : ˜SO(1, d)→ GL(T ) (5.4)

denote the actual representation acting on T .
81
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Warning: Note that S is not required to be unitary and will typically not be, except for the trivial
case. Because the Lorentz group is non-compact, its finite-dimensional representations need not be
unitarizable, and in fact never are, unless trivial.

The set of T -valued functions Ψ : R1,d → T carries a natural P∗-action:
TΨ(x) = S(Λ)Ψ ◦ T−1

= S(Λ)Ψ(Λ−1(x− a))
(5.5)

for any Poincaré transformation T = (a,Λ) ∈ P∗. A PDE is said to be relativistic (a “relativistic wave
equation”) if TΨ solves it whenever Ψ does, for all T ∈ P∗. Synonyms include Poincaré-invariant1.

The set X of weak solutions of a relativistic wave equation constitutes a representation of P∗.
Since X does not come with an inner product, it is not a Hilbert space, and so it does not make
sense to ask whether our representation is unitary. In fact, X is much too large, containing some
very irregular distributions. A goal is to find a dense Hilbertizable Poincaré-closed subspace

H ⊆ X (5.6)
on which the representation is unitarizable. That is, for some choice of inner product making H into
a Hilbert space, the action of P∗ is unitary. Then, analyzing this representation, we may decompose
it into irreps:

H ∼=
⊕

π•. (5.7)
This is what it means to understand the “particle content” of a relativistic wave equation. In the
massive examples that we consider here, a suitable H ⊆ X can always be found. This is not always
so when massless fields are involved. Thus, this lecture is devoted to the massive case, though we
will handle the massless case when it is costless to do so.

One minor caveat is that we choose to restrict attention to positive energy representations
of the Poincaré group, but relativistic wave equations admit both positive and negative energy
solutions. “Positive-energy” just means that the Fourier transform FΨ ∈ S ′ is supported in the
E ≥ 0 half-space

{E ≥ 0} = {(E,p) ∈ R1,d : E ≥ 0}, (5.8)
and analogously for negative energy. The negative energy π•’s are in bijection with the positive
energy π•’s, so one could easily analyze their contribution to the solution space of any relativistic
wave equation. We find it a bit simpler just to restrict X to contain only positive-energy solutions.
Then H only contains positive energy irreps.

This lecture consists of two threads.
(1) In the first, we begin with specific examples of relativistic wave equations, and then try

to analyze their particle content, the πm,s’s that appear. We only consider second-order
equations (including first-order).

Second-order relativistic wave equations imply that each component solves the massive
wave equation (with the same mass), so it will suffice to restrict attention to the T -valued
wave equation, for various T .

(2) In the second thread, we begin with an irrep of P∗ and try to engineer a relativistic wave
equation containing that particle content.

The upshot is that, for m > 0, all of the irreps πm,s arise from wave mechanics.
The quantum mechanical analysis of relativistic wave equations is a rich topic. We will see below

a diversity of behavior. The source of this diversity is the interplay between the finite-dimensional
representation theory of the Lorentz group and the unitary representation theory of the Poincaré
group, governed by the little group. We covered the latter in previous lectures. The former we
discuss below, in §5.B.

1“Covariant” and “equivariant” may also be used.
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Fields transform under finite-dimensional representations of the Lorentz group Spin(1, d), whereas
particles transform according to infinite-dimensional unitary representations of the Poincaré group
P∗(1, d).

To appreciate this distinction, keep in mind that the restriction of a unitary representation
of the Poincaré group P∗(1, d) to the Lorentz subgroup Spin(1, d) is some highly reducible direct
integral of unitary representations of the latter group, and these representations are either trivial or
infinite-dimensional. We are still doing quantum mechanics, but the Lorentz representation S is
playing an auxiliary role, so there is no reason for it to be unitary.
Remark: Actually, rather than functions on spacetime, it is technically simpler to work with
distributions on spacetime. Wavefunctions are therefore T -valued (tempered) distributions,

Ψ ∈ S ′(R1,3; T ) = S(R1,3; T ∗)∗. (5.9)

Given a (constant-coefficient) differential operator P , we use X ⊆ S ′(R1,3; T ) to denote the set of
positive-energy distributional solutions Ψ of PΨ = 0.

Thus, the PDE is relativistic if X is closed under the action of the Poincaré group.
Remark: When S descends to a representation of SO(1, d), then P∗ can be replaced by P in the
preceding paragraphs.

Remark 5.1. It turns out that any finite-dimensional representation of

˜SO(1, 2) = ˜SL(2,R) (5.10)

automatically descends to a representation of the double cover

Spin(1, 2) ∼= SL(2,R). (5.11)

Since ˜SO(1, d) = Spin(1, d) for d ≥ 3, we can stop writing tildes and declare that the object of
interest is a finite-dimensional representation of the double cover Spin(1, d), regardless of d. We
actually already did this above. �

1. Basic examples (Klein–Gordon, Dirac)

1.1. Scalar fields. The simplest example is that of the scalar field. The scalar wave equation
with mass m ≥ 0 reads

�φ+m2φ = 0, φ ∈ D′(R1,d) (5.12)
where � = ∂2

t −4 is the d’Alembertian. If m > 0, this is also known as the Klein–Fock–Gordon
equation.2 If m = 0, it is known as the d’Alembert equation. In either case, we will refer to the
equation as the massive/massless wave equation.

The representation S : SO(1, 3)→ T here is just the trivial one. The transformation law is the
simplest possible:

(Tφ)(x) = φ(Λ−1(x− a)) (5.13)
for T = (a,Λ) ∈ P. Scalar fields have no additional indices. Everyone agrees about the values a
scalar field takes.

Proposition 5.2. The scalar wave equation is Poincaré-covariant:

�φ+m2φ = 0 =⇒ (�+m2)(φ ◦ T−1) = 0, (5.14)

for any Poincaré transformation T ∈ P. �

2In the West, Fock is usually given short shrift and omitted from the name, despite publishing his work in the
same journal as Klein and Gordon and doing so before Gordon. Guiltily, we will follow suit and refer to the equation
as that of “Klein–Gordon.”
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We use this opportunity to practice physicists’ index notation. Skip to §5.A if you have not
seen this before, or need a brush-up.

Proof. Let x̃ = T−1(x) = Λ−1(x− a). Thus,

x̃µ = (Λ−1)µν(xν − aν), (5.15)
∂x̃µ/∂xν = (Λ−1)µν . (5.16)

Via the chain rule,

�(φ ◦ T−1(x)) = −ηµν ∂2

∂xµ∂xν
φ(x̃) = −ηµν ∂x̃

σ

∂xµ
∂x̃τ

∂xν
∂2φ(x̃)
∂x̃σ∂x̃τ

= −ηµν(Λ−1)σµ(Λ−1)τ ν
∂2φ(x̃)
∂x̃σ∂x̃τ

= −ηστ ∂
2φ(x̃)

∂x̃σ∂x̃τ
= (�φ)(x̃),

(5.17)

where in going from one line to the next we used eq. (5.95).
So, (�+m2)(φ ◦ T−1) = ((�+m2)φ) ◦ T−1. �

The solution space
X = {positive energy φ ∈ S ′(R1,d) : (�+m2)φ = 0}, (5.18)

which we now know to host a representation of P, can be described explicitly using the Fourier
transform: it consists of those φ of the form

φ(x) =
∫
Xm,+

e−i〈p,x〉a(p) dµXm,+(p)

=
∫
Rd
eip0t−ip·xa(p) ddp

2
√
m2 + ‖p‖2

, p0 =
√
m2 + ‖p‖2

(5.19)

for a ∈ S ′(Rd). Let H ⊂ X consist of those φ of this form for

a ∈ (m2 + ‖p‖2)1/4L2(Rdp). (5.20)

Proposition 5.3. The subspace H ⊆ X is Poincaré-closed. �

Proof. The action of a spacetime translation Ta on φ is (Taφ)(x) = φ(x− a), and

φ(x− a) =
∫
Rd

eip0t−ip·x(ei〈p,a〉a(p)) ddp
2
√
m2 + ‖p‖2

. (5.21)

The product ei〈p,a〉a(p) lies in (m2 + ‖p‖2)1/4L2(Rdp) if and only if a does.
Similarly, the action of a Lorentz transformation TΛ on φ is (TΛφ)(x) = φ(Λ−1x), and

φ(Λ−1x) =
∫
Xm,+

e−i〈p,Λ
−1x〉a(p) dµXm,+(p) =

∫
Xm,+

e−i〈Λp,x〉a(p) dµXm,+(p)

=
∫
Xm,+

e−i〈p,x〉a(q(p)) dµXm,+(p)
(5.22)

for q(p) the spatial part of q = Λ−1p. So, we want to show that

a(q(p)) ∈ (m2 + ‖p‖2)1/4L2(Rdp), (5.23)
assuming that the same holds for a. That is,∫

Rd

|a(q(p))|2 ddp√
m2 + ‖p‖2

<∞. (5.24)
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The left-hand side is ∫
Rd
|a(q(p))|2 dµXm,+(p) =

∫
Rd
|a(p)|2 dµXm,+(p), (5.25)

which is finite by virtue of the assumption φ ∈ H. �

We can make H into a Hilbert space by endowing it with the norm

‖φ‖H = ‖a‖L2(Xm,+) ∝
∥∥∥∥ a(p)

(m2 + ‖p‖2)1/4

∥∥∥∥
L2(Rdp)

. (5.26)

The computation above shows that this norm is Poincaré invariant, so H becomes a unitary
representation of the Poincaré group.

Claim: the map φ 7→ a defines a unitary equivalence between ρ and πm,0. Indeed,

πm,0 = L2(Xm,+, µXm,+) = L2
(
Rd,

ddp√
m2 + ‖p‖2

)
= (m2 + ‖p‖2)1/4L2(Rd),

(5.27)

so
‖φ‖H = ‖a‖πm,0 ; (5.28)

the map is unitary. Above, in eq. (5.21), eq. (5.22), we calculated the effect of spacetime translations
and Lorentz transformations on a, and the result was precisely the same thing as the action in πm,0.
That things work out this way should not be surprising, because the actual Fourier transform used
here is accomplishing the same thing as the abstract Fourier transform used in the construction of
πm,0. They must interact with Poincaré transformations in the same way.

1.2. The spinor-valued Klein–Gordon equation. Next, we turn to Weyl spinors. For
simplicity, we only discuss the d = 3 case, though any odd d is similar.

Let S = S0,1,S1,0 denote one of the two basic spinorial representations of SL(2,C), either the
defining representation or the conjugate representation. The simplest spinorial relativistic wave
equation is

(�+m2)ψ = 0 (5.29)
for ψ ∈ S ′(R1,3;S). Here, ψ is a two-component object, with two components denoted ψα if S is
the fundamental representation and ψα̇ if S is the anti-fundamental representation. Given that � is
Poincaré-covariant, the spinor-valued wave equation is manifestly Poincaré-covariant as well.

Proposition 5.4. For each m > 0, the particle content in (�+m2)Ψ = 0 is πm,1/2. �

Proof. As before, we can use the Fourier transform. The solution space
X = {positive energy ψ ∈ S ′(R1,3;S) : (�+m2)ψ = 0} (5.30)

consists of those ψ of the form eq. (5.19), except now a is S-valued (so two-component spinors).
Now restrict to the subspace H ⊂ X consisting of those ψ where

a ∈ (m2 + ‖p‖2)1/4L2(Xm,+, µXm,+ ;E). (5.31)

Here, E is just the trivial bundle over Rdp with fiber S, except we need to use a p-dependent inner
product, namely that such that

S(D[p]) : E0 → Ep (5.32)
is unitary. The inner product on E0 is the one making the restriction of S to Spin(d) ⊂ Spin(1, d)
unitary.

This is endowed with the L2 norm:

‖ψ‖L2 = ‖a‖L2(Xm,+,µXm,+ ;E) ∝
∥∥∥ S(D[p])−1a(p)

(m2 + ‖p‖2)1/4

∥∥∥
L2(R3

p;E0)
. (5.33)
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Then, ψ 7→ a is a unitary map. To see that it intertwines the natural P∗(1, 3)-action on ψ with the
πm,1/2 action on L2(Xm,+, µXm,+ ;E) is left as an exercise. �[Exercise 5.2.]

Alternatively, use the method of polarization tensors with T = S, the representation of SL(2,C)
on which, when restricted to the little group SU(2), is the spin-1/2 representation thereof.

1.3. Dirac equation [*].

2. Example: the massive vector field and Proca’s equation

The scalar example above is almost misleadingly easy. A meatier example is the massive
vector-valued wave equation

�A+m2A = 0, (5.34)

A ∈ S ′(R1,d; T 1), m > 0, and the closely related Proca equation. Here, T 1 stands for the defining
representation of the Lorentz group SO(1, d). In physicists’ parlance, a vector field A “carries a
Lorentz index.” Under a Poincaré transformation T = (a,Λ), it transforms in the following way:

T :A 7→ ΛA ◦ T−1,

(TA)µ(x) = ΛµνAν(Λ−1(x− a)).
(5.35)

Given that � is Poincaré-covariant, the vector-valued wave equation is manifestly Poincaré-covariant
as well.

Note the distinction between a vector field and a quadruple of scalars. The latter describes an
element of S ′(R1,d; (T 0)⊕D) = S ′(R1,d;CD), D = 1 + d. These transform differently under Lorentz
transformations; if A = (A0, · · · , Ad) were a tuple of scalars,

T :A 7→ A ◦ T−1,

(TA)µ(x) = Aµ(Λ−1(x− a))
(5.36)

would be the transformation law. The individual scalar components would transform individually,
rather than being mixed up as they are in eq. (5.35). So, even if we identify

S ′(R1,d; T 1) = S ′(R1,d; (T 0)⊕D) (5.37)

at the level of underlying sets,

S ′(R1,d; T 1) 6= S ′(R1,d; (T 0)⊕D) (5.38)

as representations of the Poincaré group.
Even for an equation as simple as the vector-valued wave equation, analyzing its particle content

is non-trivial, and, unlike for the scalar wave equation, the m > 0 and m = 0 cases need to be
distinguished. The natural expectation is for the massive spin-1 particle, πm,1 to show up — one
source of this expectation is that the spin degrees-of-freedom of a phonon are described by the
(d-dimensional) vector representation of SO(d). It would be surprising if the particle content of a
vector field did not involve a vector particle. But A has D = 1 + d components, not d; an element
of the defining representation of SO(d) is a spatial vector, whereas A is a spacetime vector. This
will serve as an introduction to the important method of polarization tensors, described in detail in
§3. It is key in understanding all examples with spin ≥ 1. When it comes time to construct free
quantum fields, the method of polarization tensors is a main tool.
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2.1. Scalar phonons, the Lorenz gauge condition, and Proca’s equation. As men-
tioned above, the vector field A has one more degree-of-freedom than an element of πm,1. Unless
the PDE constrains A’s components so that they are not all essentially independent (it does not),
we should expect another particle in the content of the PDE. It should have one internal degree-
of-freedom, which means it has to be a scalar, πm,0. The total particle content should therefore
be

πm,0 ⊕ πm,1. (5.39)
Particles described by the πm,0 here are called “scalar phonons.”

Intuitively, the scalar phonon arises because there is a Poincaré-invariant way to construct
solutions of the vector-valued massive wave equation from solutions of the scalar wave equation:
if φ satisfies the scalar equation �φ + m2φ = 0, then the gradient A, Aµ = ∂µφ, satisfies the
vector-valued equation. Indeed,

(�+m2)∂µφ = ∂µ(�+m2)φ = 0. (5.40)
Such solutions are “secretly scalars.” Not all of their components are independent.

Let X ⊂ S ′(R1,d; T 1) denote the set of positive-energy solutions of eq. (5.34), and let Y ⊂ X
denote the set of scalar phonons:

Y = {∇φ : positive energy φ ∈ S ′(R1,d) s.t. �φ+m2φ = 0} = ∇X0, (5.41)
where X0 = {positive energy φ ∈ S ′(R1,d) : �φ+m2φ = 0}. Then, ordinary phonons, described by
πm,1, should morally be the orthogonal complement to Y in X — but X is not a Hilbert space, so
this does not make sense.

Instead, we should attempt to identify a Poincaré-closed linear-algebraic complement Z ⊂ X to
Y. This can be done using the Lorenz3 gauge condition

∂µA
µ = 0, (5.42)

which says that A is divergence-free. So, let
Z = {A ∈ X : ∂µAµ = 0} (5.43)

denote the set of solutions satisfying Lorenz gauge.

Proposition 5.5. • Each of Y,Z is closed under the action of the Poincaré group.
• X = Y ⊕ Z. That is, Y ∩ Z = {0}, and Y + Z = X .

�

Proof. • The definitions of Y,Z are manifestly Poincaré invariant, owing to the invari-
ance of the gradient and divergence operators.
• First, consider φ ∈ X0, and let A = ∇φ ∈ Y. Then, ∂µAµ = ∂µ∂

µφ = �φ = −m2φ. So,
since m > 0, A satisfies the Lorenz gauge condition if and only if φ = 0. This shows that
Y ∩ Z = {0}.4

Next, consider arbitrary A ∈ X , and let ϕ = ∂µA
µ denote its divergence. This satisfies

�ϕ+m2ϕ = 0, so ϕ ∈ X0, and its gradient is ∂µϕ = ∂µ∂νA
ν ∈ Y. Now consider

Bµ = Aµ +m−2∂µϕ = Aµ +m−2∂µ∂νA
ν ∈ X . (5.44)

This satisfies
∂µB

µ = ∂µA
µ +m−2�∂νA

ν = ∂µA
µ +m−2∂ν�A

ν

= ∂µA
µ − ∂νAν = 0.

(5.45)

That is, B is divergence free: B ∈ Z. So, A = B −m−2∇ϕ ∈ Y + Z.
3Hendrik Lorentz (with the transformations) and Ludvig Lorenz are two different physicists. Because Lorenz’s

gauge constraint is the Lorentz-invariant one, no confusion should arise from conflating the two physicists.
4This is our first hint that something goes wrong when m = 0.
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�

The wave equation �A+m2A = 0 and the Lorenz gauge condition divA = 0 can be combined
into a single PDE

QA = 0, (5.46)
for

Q =
(

(�+m2)ID
∇ᵀ

)
∈ Diff2(R1,d;C(D+1)×D), (5.47)

where ∇ᵀ = (−∂0, ∂1, · · · , ∂d). Perhaps surprisingly, this is equivalent to a PDE of the form PA = 0
for P ∈ Diff2(R1,d;CD×D). Proca’s equation reads

�Aµ − ∂µ∂νAν +m2Aµ = 0. (5.48)

It is manifestly Poincaré-invariant.

Proposition 5.6. Proca’s equation is equivalent to the conjunction{
�A+m2A = 0,
divA = 0

(5.49)

of �A+m2A and ∂µAµ = 0. �

Proof. Equation (5.49) immediately implies Proca’s equation. The converse follows from
taking the divergence of both sides of Proca’s equation:

∂µ(�Aµ − ∂µ∂νAν +m2Aµ) = 0, (5.50)

which yields the Lorenz gauge condition divA. Once the Lorenz gauge condition is known, Proca’s
equation simplifies to �A+m2A. �

So, the set Z defined by eq. (5.43) is

Z = {positive energy A ∈ S ′(R1,d; T 1) : �Aµ − ∂µ∂νAν +m2Aµ = 0}, (5.51)

the set of tempered distributional solutions of Proca’s equation. Notice that the constraint ∂µAµ = 0
removes exactly one degree of freedom from the D available in Aµ. Thus, the solution space Z has
D− 1 = d independent components. This matches the dimension of the spin-1 representation of the
massive little group SO(d). This suggests very strongly that the particle content of Proca’s equation
is πm,1.

2.2. Finding πm,1. As a reminder: our goal is to find a Poincaré-closed subspace H ⊆ Z on
which the representation of the Poincaré group is unitarizable, and we are expecting one unitarily
equivalent to the spin-1 representation πm,1. We already know how to find in X0 and thus Y a copy
of πm,0 (by our discussion of the Klein–Fock–Gordon equation), so once we have found πm,1, our
analysis of the particle content of the massive vector-valued wave equation will be complete.

As in the treatment of the scalar field, the PDE will be solved via the Fourier transform, F ,
which maps Z bijectively onto the set of f ∈ S ′(R1,d;CD) such that

• (p2 +m2)f(p) = 0 (wave equation),
• p · f(p) = 0 (Lorenz gauge condition).

These can be combined to
(p2 +m2)f(p)− p(p · f(p)) = 0. (Proca)

As usual, we restrict attention to positive energy solutions: let

S ′(Xm,+;E) = {f ∈ S ′(R1,d;CD) : (p2 +m2)f = p · f = 0, supp f ⊂ R+ × Rd}. (5.52)
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Thus, F maps Z onto S ′(Xm,+;E). As the notation suggests, we can think of S ′(Xm,+;E) as
consisting of distributional sections of a bundle E → Xm,+ whose total space,

E ⊂ Xm,+ × CD, (5.53)

is defined by
E = {(p,A) ∈ Xm,+ × CD : p ·A = 0}, (5.54)

This is a Cd-bundle over Xm,+.

Figure 5.2. The fiber Ep over p, depicted in the d = 2 case.

Consider p = ((m2 + ‖p‖2)1/2,p) for p 6= 0. Consider the element

ε‖ = (‖p‖2(m2 + ‖p‖2)−1/2,p) (5.55)

of the fiber Ep of E over p. Since its spatial component is parallel to p, this is known as a longitudinal
polarization vector. A direct complement to ε‖ within Ep is the set of ε⊥ ∈ R4 of the form (0,q) for
q ⊥ p. These are known as transverse polarization vectors.

A basis of the fiber of E → Xm,+ over the rest vector ρ = (m,0) ∈ Xm,+ is given by the three
polarization vectors

ε1(ρ) = (0, 1, 0, · · · , 0),
ε2(ρ) = (0, 0, 1, 0, · · · , 0),

...

(5.56)

and so on. More generally, for any p ∈ Xm,+, let εj(p) = D[p]εj(ρ) for each j ∈ {1, . . . , d}, where
D[p] is the pure boost taking ρ to p. Each polarization vector ε1, · · · , εd is a smooth section of
Xm,+ × CD, and in fact of E, since

p · εj(p) = (D[p]ρ) · (D[p]εj(ρ))
= ρ · εj(ρ) = 0

(5.57)

for each p ∈ Xm,+. Since ε1(p), · · · , εd(p) are linearly independent for each p ∈ Xm,+, {εj}dj=1 is a
section of the frame bundle of E, providing a trivialization

E ∼= Xm,+ × Cd (5.58)

of E.
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Proposition 5.7. For f ∈ S ′(Xm,+)d, let f j ∈ S ′(Xm,+) denote the jth component of f . Then,

S ′(Xm,+)d 3 f 7→
∫
Xm,+

e−ip·xf j(p)εj(p) dµXm,+(p) ∈ Z (5.59)

defines a bijection S ′(Xm,+)d → Z. �

Proof. We have a bijection S ′(Xm,+)d → S ′(Xm,+;E) which sends a tuplef of tempered
distributions f j to

δXm,+(p)f j(p)εj(p) ∈ S ′(Xm,+;E). (5.60)
Composing this with F−1 : S ′(Xm,+;E) → Z, we get a bijection S ′(Xm,+;C)d → Z. This is the
map described above. �

Let us now transport the action of the Poincaré group on Z back to S ′(Xm,+;Rd) via this
bijection.

Proposition 5.8. For each Poincaré transformation T = (a,Λ), we have a commutative diagram

Z A 7→TA // Z

S ′(Xm,+)d

OO

// S ′(Xm,+)d

OO (5.61)

in which the vertical maps are eq. (5.59) and the bottom horizontal map sends f to
eip·aW (Λ, p)` jε`(p)f j(Λ−1p)δXm,+ , (5.62)

where W (Λ, p) ∈ SO(d) is the Wigner rotation, defined by

D[p]−1ΛD[Λ−1p] =
(

1 0
0 W (Λ, p)

)
. (5.63)

�

Proof. The image of f under the composition of the left vertical map and the top horizontal
map is∫

Xm,+
e−ip·(Λ

−1(x−a))f j(p)Λεj(p) dµ(p) =
∫
Xm,+

e−i(Λp)·(x−a)f j(p)ΛD[p]εj(ρ) dµ(p)

=
∫
Xm,+

e−ip·(x−a)f j(Λ−1p)ΛD[Λ−1p]εj(ρ) dµ(p).
(5.64)

Now applying the Fourier transform, we get
eip·af j(Λ−1p)ΛD[Λ−1p]εj(ρ)δXm,+ . (5.65)

We need to figure out how to write ΛD[Λ−1p]εj(ρ) as a linear combination of D[p]ε`(ρ):

ΛD[Λ−1p]εj(ρ) = c `j D[p]ε`(ρ) (5.66)

for some c `j . That is,
D[p]−1ΛD[Λ−1p]εj(ρ) = c `j ε`(ρ). (5.67)

So, c `j is the `th component of the D-vector D[p]−1ΛD[Λ−1p]εj(ρ), which is the `th entry in the
jth column of the matrix D[p]−1ΛD[Λ−1p]. (Note that we are counting starting from 0, but
j, ` ∈ {1, · · · , d}.)

The conclusion is
eip·af j(Λ−1p)ΛD[Λ−1p]εj(ρ)δXm,+ = eip·af j(Λ−1p)(D[p]−1ΛD[Λ−1p])` jD[p]ε`(ρ)δXm,+ . (5.68)

�
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Proposition 5.9. Let H ⊂ Z denote the image under eq. (5.59) of L2(Xm,+, µXm,+)d. This
set is closed under the action of the Poincaré group. Endowing H with the pushforward of the
inner product on L2(Xm,+, µXm,+)d, the resultant representation of the Poincaré group is unitarily
equivalent to πm,1. �

Proof. The map eq. (5.59) is unitary, and it defines a unitary equivalence between the
representation of interest and one on L2(Xm,+, µXm,+)d = L2(Xm,+, µXm,+ ;Cd) used to define
πm,1. �

The Proca equation is not just a toy model; it describes the massive W and Z bosons which
carry the electroweak force in the Standard Model.

3. The method of polarization tensors

The central step in the treatment of Proca’s equation was the definition of the polarization
vectors εj(ρ), j = 1, · · · d. These are Lorentz vectors, with D components, but we only have d of
them. Their span V = Cd can be thought of as the vector representation of the little group SO(d)
embedded inside the vector representation T 1 = R1,d of the Lorentz group SO(1, d). Nice solutions
of Proca’s equation were characterized as the (inverse) Fourier transforms of T 1-valued functions ψ
on Xm,+ such that

ψ(p) ∈ D[p]V (5.69)

for all p ∈ Xm,+, i.e. of sections of the vector bundle E ⊂ Xm,+ × T 1 whose fiber Ep over p is
{p} ×D[p]V.

This suggests a general method to construct relativistic wave equations with specified particle
content — beginning with a mass m ≥ 0 and a unitary representation ς : L → U(V) of the little
group

L ∼=
{

SU(2) (m > 0),
E∗(2) (m = 0)

(5.70)

on some finite-dimensional Hilbert space V, find an embedding V ⊆ T of V into some other finite-
dimensional vector space T endowed with a (typically non-unitary) representation S : SL(2,C)→
GL(T ), which is required to extend ς in the sense that

S(Λ)|V = ς(Λ) (5.71)

for all Λ ∈ L. In other words, if W is a linear-algebraic complement to V in T , then S(Λ) has the
block form

S(Λ) =
(
ς(Λ) A :W → V

0 B :W →W

)
(5.72)

with respect to the decomposition T = V ⊕W.
We can now consider the vector bundle E ⊂ Xm,+ × T over Xm,+ defined by

E = {(p, v) ∈ Xm,+ × T : v ∈ S(D[p])V}, (5.73)

where D[p] is the standard boost taking the reference momentum p> to p. Each fiber

Ep = {p} × S(D[p])V (5.74)

of E is isomorphic, as a vector space, to V via V 3 v 7→ (p, S(D[p])v) ∈ Ep; in this way, the inner
product on V can be transported to Ep. This lets us speak of the Hilbert space

L2(Xm,+, µXm,+ ;E) = {ψ ∈ L2(Xm,+, µXm,+ ; T ) : ψ(p) ∈ S(D[p])V a.e.} (5.75)
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of L2-sections of E. The norm here is

‖ψ‖2L2(Xm,+,µXm,+ ;E) =
∫
Xm,+

‖ψ(p)‖2Ep dµXm,+(p),

‖ψ(p)‖Ep = ‖S(D[p])−1ψ(p)‖V .
(5.76)

Let
H = F−1L2(Xm,+, µXm,+ ;E), (5.77)

which we endow with the inner product for which F−1 : L2(Xm,+, µXm,+ ;E)→ H is unitary. Note
that u ∈ H =⇒ (�+m2)u = 0.

Theorem. The Hilbert space H is a Poincaré-closed subspace of S ′(R1,3; T ). The representation
of P∗(1, 3) on H is unitary. If ς is irreducible, the representation just defined is unitarily equivalent
to the irrep πm,s constructed using the little group representation ς. �

Proof. See [Tal22, §9.5]. �

Above, we required for clarity’s sake that V literally be a subset of T , but this is unnecessary.
All we needed was for V to be equivalent to a subspace of T . More precisely, this means that we
possess an L-equivariant embedding

ι : V ↪→ T . (5.78)
This means that the diagram

V ι //

ς(g)
��

T
S(g)
��

V ι
// T

(5.79)

commutes for all little group elements g ∈ L.
The construction of relativistic wave equations having πm,s as particle content is thereby reduced

to finding embeddings V ↪→ T , realizing ς as S|L. The following proposition may be of use in
determining for which pairs (V, T ) such an embedding exists. We will mostly make use of it in the
massless case.

Proposition 5.10. Fix groups L ⊆ G. Let V be a finite-dimensional Hilbert space and
ς : L→ U(V) an irreducible unitary representation of L. Additionally, let T be a finite-dimensional
vector space and S : G→ GL(T ) denote a representation of G. Then:

(a) ∃ an embedding ι : V ↪→ T of L-representations if and only if the representation T ⊗ V∗ of
L has the trivial representation as a subrepresentation.

(b) If there are N ∈ N+ copies of the trivial representation, then we have a U(N)’s worth of
possible embeddings.

�

Proof.
(a) Note that the vector space T ⊗ V∗ can be identified with the space of linear maps V → T .

For example, a pure tensor has the form ψ ⊗ λ for ψ ∈ T and λ ∈ V∗, so
V 3 v 7→ ψλ(v) (5.80)

is a linear map V → T . Identifying a general Ψ ∈ T ⊗ V∗ with a linear map in this way,
the action of Λ ∈ L on Ψ is (LΨ)(v) = S(L)Ψ(ς(L)−1v).
• ‘If:’ Suppose that T ⊗ V∗ has a nonzero vector Ψ invariant under L. Now consider
the map V → T given by v 7→ Ψ(v); L-invariance says Ψ(v) = S(L)Ψ(ς(L)−1v), i.e.

Ψ(ς(L)v) = S(L)Ψ(v). (5.81)
So, Ψ is a morphism of L-representations.
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Equation (5.81) implies that ker Ψ ⊂ V is a subrepresentation of ς. Because ς is
assumed to be irreducible, it must be {0} or all of V. It cannot be all of V, since
Ψ 6= 0. So, ker Ψ = {0}.
• ‘Only if:’ Suppose that we are given an embedding ι : V ↪→ T of L-representations. We
can interpret this as a Ψ ∈ T ⊗ V∗, and via the same calculation above, L-invariance
follows from eq. (5.81).

(b) Exercise. [Link]
�

Now let us carry this out for m > 0. (The m = 0 case will appear later.) Then, the relevant
little group is L = SU(2).

Proposition 5.11. Let j, k, ` ∈ 2−1N. An embedding S` → Sj,k exists if and only if
• the parity of 2j + 2k matches that of 2`
• |j − k| ≤ ` ≤ j + k

both hold. �

Proof. Via Clebsch–Gordan,

Sj,k =
j+k⊕

κ=|j−k|
κ−|j−k|∈N

Sκ. (5.82)

So, we only have a copy of S` under the stated conditions. �

Proof two. The question is whether Sj,k⊗S`∗ = Sj,k⊗S`, when considered as a representation
of the little group SU(2) ⊂ SL(2,C), has a copy of the trivial representation S0 = C. By Clebsch–
Gordan,

Sj,k ⊗ S` =
j+k⊕

κ=|j−k|
κ−|j−k|∈N

(Sκ ⊗ S`). (5.83)

Again by Clebsch–Gordan, Sκ ⊗ S` has the trivial representation in it if and only if κ = `. So, the
question is whether one of the κ’s in the direct sum above is equal to `, which holds if and only if
the parity of 2(j + k) matches that of 2` and |j − k| ≤ ` ≤ j + k holds. �

Theorem. Fix j, k ∈ 2−1N and m > 0. The particle content of the Sj,k-valued massive wave
equation �φ+m2φ = 0 is given by

j+k⊕
s=|j−k|,
s−|j−k|∈N

πm,s. (5.84)

�

Proof. Via the method of polarization tensors, the particle content is the same as the decom-
position of Sj,k into irreps of the little group SU(2). This is described by Proposition 5.17. �

Example 5.12. For any j ∈ 2−1N, the particle content of the Sj,0- or S0,j-valued massive wave
equation is πm,j . We already saw this when j ∈ {0, 1/2} (using the notation T 0 in place of S0,0).
The first novel case is j = 1, when S1,0 and S0,1 are the representations of the Lorentz group
describing left/right-handed anti-symmetric four-by-four matrices, respectively. The particle content
of either theory is a single πm,1. �

Example 5.13. The particle content of the S1/2,1/2-valued massive wave equation is πm,0⊕πm,1.
This confirms what we already knew from our study of Proca’s equation, since S1/2,1/2 ∼= T 1. �
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Example 5.14. Consider the representation T = Sym2
0 T 1 of the Lorentz group consisting

of symmetric traceless four-by-four matrices. This is S1,1. The particle content of the T -valued
Klein–Gordon equation (�+m2)g = 0 with mass m > 0 is

πm,0 ⊕ πm,1 ⊕ πm,2; (5.85)
we have a scalar graviton, a vector graviton, and an ordinary (albeit massive) graviton, these having
spins 0, 1, 2 respectively. �

4. Derivative fields (?) [*]

5.A. Primer on index notation

Physicists’ index notation consists of the convention that certain symbols (“indices”) are reserved
to denote components of vectors, covectors, matrices, tensors, etc. of fixed size, with repeated indices
summed in accordance with the Einstein summation convention. This means that, in any expression,
each index appears at most twice on each side of the ‘=’ sign. When an index appears twice, it
must appear once as a superscript and once as a subscript and it is to be summed over its allowed
values. This is the Einstein summation convention. Its provenance is Einstein’s seminal paper on
general relativity, in which the

∑
’s became unwieldy. When an index appears once in an expression

(that is, when it is unpaired), it must appear on both sides of the equation, and it must appear at
the same height on both sides. Then, the equation is read as stating that, for all possible values of
the unpaired indices, equality holds.

Mathematically, the distinction between raised indices and lowered indices reflects the distinction
between vectors ∈ T and covectors ∈ T ∗. An isomorphism T ∼= T ∗ is the same thing as a non-
degenerate bilinear pairing T 2 → C. When a canonical isomorphism exists, the distinction between
the two sorts of indices can be dropped, and they can freely be written as superscripts or subscripts.
In special relativity, where T = R1,d, there exist two different isomorphisms:

• The “usual” isomorphism identifies T = T ∗ via the pairing
T 2 3 (x, y) 7→ xᵀy. (5.86)

That is, a vector x ∈ R1,d is identified as covector y 7→ xᵀy.
• The “natural” isomorphism uses instead the pairing

T 2 3 (x, y) 7→ xᵀηy, η =
[
−1 0
0 Id

]
. (5.87)

That is, a vector x ∈ R1,d is identified as a covector y 7→ xᵀηy.
The latter identification is the natural one in Lorentzian geometry, but the former is the one implicit
in matrix arithmetic — just turn the vector on its side. When we speak of the “components” of a
covector, it is that one we are using. It is the existence of these two distinct duality pairings that
merits distinguishing raised from lower indices in relativity. Otherwise one loses track of the signs
introduced by η.

Usually, the meaning of any index can be inferred from the object on which it appears.
Remark: A rule of thumb is that mid-alphabet Greek letters

µ, ν, σ, λ, τ ∈ {0, . . . , d} (5.88)
refer to Lorentz indices and mid-alphabet Roman letters

i, j, k, `,m, n ∈ {1, . . . , d} (5.89)

refer to spatial indices. When working with spinors, α, β, α̇, β̇ are common choices; the dotted indices
are usually used for distinguishing the indices of a right-handed Weyl spinor from a left-handed
Weyl spinor. When labeling the generators of a Lie algebra, early-alphabet Roman letters a, b, c · · ·
are standard.
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5.A.1. Notation for matrices. Let D ∈ N. Given a D-by-D matrix M , the notation used
to denote its entries depends on whether we want to think of M as a linear map CD 3 x 7→Mx or
a bilinear form (CD)2 3 (x, y) 7→ xᵀMy.

• In the former case, its entries are labeled “Mµ
ν .” Specifically, Mµ

ν denotes the entry in
the µth row and νth column of M . Assuming that µ, ν are Lorentz indices, so that we
start counting at µ, ν = 0, then

M =

M
0

0 M0
1 · · ·

M1
0 M1

1 · · ·
...

... . . .

 . (5.90)

Thus, (Mx)µ = Mµ
ν x

ν , for all x ∈ CD.
• When the matrix is being used to represent a bilinear form, the entry in the µth row and
νth column is denoted Mµν , so that

M =

M00 M01 · · ·
M10 M11 · · ·
...

... . . .

 . (5.91)

Thus, xᵀMy = xµMµνy
ν .

Despite being closely related, bilinear forms and linear transformations are not the same thing.
Mathematically, this tracks the distinction between T ⊗ T ∗ (the space of linear transformations)
and T ∗ ⊗ T ∗ (the space of bilinear forms). Of course, the distinction loses its bite if we have a
canonical isomorphism T ∼= T ∗, which we usually do not.
Warning: Remember the space in front of ‘ν’ in “Mµ

ν ;” indices on matrices are conventionally
placed northwest to southeast:

M .

This is to accommodate conventions physicists have about raising and lowering indices using η. We
need to leave space to lower µ into. Great caution is required if you abbreviate ‘Mµ

ν ,’ though you can
sometimes get away with it. Incaution can give rise to ambiguous notation, or even a contradiction.

A Lorentz matrix Λ is (of course) thought of as a linear transformation, and the Minkowski
metric η is thought of as a quadratic form. So, the matrix identity ΛᵀηΛ = η reads

(Λᵀ)µσηστΛτν = ηµν , (5.92)
where, per the Einstein summation convention, repeated indices are summed over their possible
values. For a physicist, eq. (5.92) throws a syntax error. There are two breaches of proper index
notation:

(i) repeated indices are supposed to appear in pairs in which one member is in the superscript
and one is in the subscript, but here σ appears twice as a subscript,

(ii) µ appears as a superscript on the left-hand side and a subscript on the right-hand side,
violating the requirement that unpaired indices appear at the same height on both sides of
the equation.

Nevertheless, the equation is true. Both oddities are fixed upon rewriting the expression without
using ᵀ:

ΛσµηστΛτν = ηµν . (5.93)

This is the condition for Λ to be a Lorentz matrix, written in standard index notation.
We will need a slight variant of the previous identity. Because Λᵀ is Lorentz whenever Λ is

Lorentz, we can apply eq. (5.93) to Λᵀ to get (Λᵀ)σµηστ (Λᵀ)τν = ηµν , i.e.

ΛµσηστΛντ = ηµν . (5.94)
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Again, we have gotten something that looks syntactically weird (though it is correct), with mis-
matched index structure. To fix this, physicists define ηµν = ηµν , and then the identity becomes

ΛµσηστΛντ = ηµν . (5.95)

Let us emphasize that this is equivalent to eq. (5.93), but via non-trivial algebra (that any one-sided
inverse of a finite matrix is a two-sided inverse).

5.A.2. Raising and lowering indices. Given some expression M ··· ······ µ ··· ∈ C with various
indices, physicists use the shorthand

M ··· µ ······ ···
def= ηµνM ··· ······ ν ···, (5.96)

“raising” the index µ, and similarly for lowering an index (using ηµν). This notation is self-consistent,
and consistent with the dual notation used for η, owing to

ηµνηνσ = δµσ . (5.97)

For instance, ηµν should be related to ηµν by a lowering of two indices:

ηµν
?= ηµτη

τσησν . (5.98)

Indeed, the right-hand side is δσµησν = ηµν .
For example, if x ∈ R1,d is a vector, and xµ denotes its components, then

xµ =
{
−x0 (µ = 0),
xj (µ = j),

(5.99)

where j ∈ {1, . . . , d} is any spatial index. Similarly, if M is the matrix representing a bilinear form,
then

Mµν =
{
−Mµν (µ = 0 XOR ν = 0),
Mµν (otherwise).

(5.100)

(The same formula applies whenever we raise/lower both indices on a two-index object.) The reason
why ηµν = ηµν is that η has no entries in the zeroth row or column except the −1 on the diagonal,
so the ‘XOR’ case of eq. (5.100) never applies.

If Λ is a Lorentz transformation, then the entries of Λ−1 can be expressed by raising and lowering
indices of Λ:

(Λ−1)µν = Λ µ
ν . (5.101)

See the exercises at the end of this lecture.[Exercise 5.1]
Warning: This illustrates the danger of ignoring whitespace; if you write “Λµν ,” do you mean the
entries of Λ or the entries of Λ−1?
Remark: Here, we discussed raising and lowering Lorentz indices, but similar remarks apply in other
settings, e.g. when working with a non-chiral representation of the Lorentz group, or when working
with the adjoint representation of a semisimple Lie algebra. All that is needed is a distinguished
bilinear form (filling the role of η) to do the raising and lowering.

The raising/lowering conventions reach peak usefulness when the distinguished bilinear form is
equivariant under some relevant symmetry group. The reason why raising and lowering indices is
useful in Lorentzian geometry is that η is Lorentz-equivariant. The reason why raising and lowering
indices is useful in the theory of semisimple Lie algebras is that the Killing form is equivariant with
respect to the adjoint action of the Lie group. The existence of an equivariant bilinear form means
that the representation under investigation is self-dual. It is therefore fortunate that all non-chiral
representations of the Lorentz group are self-dual.
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5.B. Finite-dimensional representations of the Lorentz group

Now we recall some facts about the (continuous) finite-dimensional representations of SL(2,C).
Because this group is simply connected, it suffices to consider representations of the Lie algebra
sl(2,C) = o(1, 3), which can be considered either as a six-dimensional real Lie algebra or a three-
dimensional complex Lie algebra. The complexification sl(2,C)C is a six-dimensional complex
Lie algebra. Continuous finite-dimensional representations of SL(2,C) are the same thing as
finite-dimensional representations of sl(2,C)C.

Proposition 5.15. sl(2,C)C ∼= su(2)C ⊕ su(2)C �

Note that this is not true without the complexification!

Proof. [*] �

So, an irrep of sl(2,C)C is a pair of irreps of su(2)C. For each j, k ∈ 2−1N, we have an irrep Sj,k,
also denoted (j, k), in which the left su(2)C is represented using the spin-j irrep and the right copy
is represented using the spin-k irrep.

Modulo sign conventions:

Proposition 5.16. (a) S1/2,0 is equivalent to the defining representation of SL(2,C),
(b) S0,1/2 is equivalent to the anti-defining representation S 7→ S∗,
(c) Sj,k is equivalent to S(j,0) ⊗ S(0,k).
(d) S(j,0) ⊂ (S(1/2,0))⊗2j, and S(0,k) ⊂ (S(0,1/2))⊗2k

�

An object transforming according to Sj,k is a tensor

T =
{
Tα1···αj ,α̇1···α̇k}

α•,α̇•=0,1 (5.102)

with j “undotted indices” and k “dotted indices,” obeying certain symmetrization conditions on its
indices. The transformation law is

(ST )β1···βj ,β̇1···β̇k = Sα1
β1
· · ·Sαjβj (S

∗)α̇1
β̇1
· · · (S∗)α̇k

β̇k
T β1···βj ,β̇1···β̇k . (5.103)

Proposition 5.17. Let j, k ∈ 2−1N. The irrep Sj,k of SL(2,C), when considered as a represen-
tation of the subgroup SU(2), decomposes in the following way:

Sj,k ∼=
j+k⊕

`=|j−k|
`−|j−k|∈N

S` (5.104)

where, for ` ∈ 2−1N, S` is the 2`+ 1-dimensional irrep of SU(2). �

Proof. As an SU(2) irrep, S(j,k) ∼= Sj ⊗ Sk. Now we use the Clebsch–Gordan decomposition,
which tells us that a tensor product of Sj , k �

Example 5.18. As a representation of SU(2):
• S1/2,0 = S1/2,
• T 1 = S1/2,1/2 ∼= S0 ⊕ S1

• S1,0 ∼= S0 ⊕ S1.
• S1,1 ∼= S1 ⊗ S1 ∼= S0 ⊕ S1 ⊗ S2.

�
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Exercises and problems

Exercise 5.1: To get some practice with raising and lowering indices, prove that, for any Lorentz
matrix Λ ∈ O(1, 3), the identity (Λ−1)µν = Λ µ

ν holds.
Exercise 5.2: Check the final claim in §1.2.
Problem 5.1: Consider the bundle E ⊂ Xm,+ × CD used in our discussion of Proca’s equation.
We defined the longitudinal polarization vector ε‖, which is a smooth section of E, except at
p> = (m, 0, · · · , 0). We also defined the spaces of transverse polarizations (0,q), q ⊥ p over p. This
forms a sub-bundle E⊥ (punctured at p>). Does E⊥ admit a smooth non-vanishing section?

Hint. The answer depends on the number d of spatial dimensions.



CHAPTER 6

Relativistic wave mechanics: massless case

The previous lecture analyzed the particle content of relativistic wave equations with mass. One
might expect that the massless case is similar. It is not, except for examples with few indices (scalar
and spinor fields), owing to the great differences in the representation theory of SU(2), E∗(2), the
massive and massless little groups, respectively. The simplest example illustrating the discrepancy
is the vector-valued wave equation

(�+m2)A = 0, A ∈ D′(R1,3; T 1) (6.1)
with mass m ≥ 0. The m > 0 case, describing phonons and the W±, Z-bosons, has already been
discussed. The m = 0 case

�A = 0 (6.2)
is of central importance in electrodynamics, where it describes the photon, and in chromodynamics,
where it describes the gluon (sans self-interactions). The difficulties involved in treating it are not
merely technical. Rather, they are closely related to the fundamental notion of gauge invariance.
For both photons and gluons, the relevant Poincaré representation is π0,−1⊕π0,+1; the photon/gluon
has helicity ±1. But identifying this Poincaré representation in the solution space of the massless
wave equation requires understanding gauge invariance. This lecture is devoted to this problem.
In the final section, we present the application of the method of polarization tensors to general
massless wave equations.

We only discuss d = 3 here.

1. Example: the massless vector field, first attempt

We saw in the previous lecture that, when m > 0, the particle content of the vector-valued wave
equation is πm,0 ⊕ πm,1, describing a scalar and a phonon. The phonon accounts for three internal
degrees-of-freedom, one longitudinal polarization and two transverse polarizations. The scalar
phonon accounts for a single internal degree-of-freedom. Since 3 + 1 = 4, all four degrees-of-freedom
present in the four-vector A are accounted for.

Now consider the m = 0 case. A natural guess would be that the particle content is related
to the particle content in the m > 0 case, by taking some sort of m→ 0+ limit. Indeed, the πm,0
limits to a π0,0 (scalar photon); the former consisted of the gradients

Aµ = ∂µφ (6.3)
of (nice) solutions of the scalar equation (�+m2)φ = 0. This works equally well if m = 0, so we
have found a π0,0 in the particle content of the massless equation. This accounts for 1 out of the 4
components of A.

The m→ 0+ limit of the πm,1 in the particle content of the massive equation is more complicated.
Keeping in mind that the massless irreps π0,h, h ∈ 2−1Z, are all one-dimensional, the natural
expectation would be that the representation “splits”

πm,1  π0,−1 ⊕ π0,0 ⊕ π0,1 (6.4)
in the m → 0+ limit. The photon is supposed to be described by π0,−1 ⊕ π0,+1, so this looks
promising. Unfortunately, the proposed splitting is completely wrong. Instead, the πm,1 will limit to

99



100 6. RELATIVISTIC WAVE MECHANICS: MASSLESS CASE

a non-unitarizable representation of the Poincaré group, which, owing to its non-unitarizability, has
no quantum-mechanical interpretation at all.

The problem is not difficult to understand. By the method of polarization tensors, we know
that the particle content of �A = 0 can be found by finding the copies of the various unitarizable
little group representations in the Lorentz representation T 1. Since this representation is finite-
dimensional, the only possibilities are the finite-dimensional representations of the little group,
L ∼= E∗(2). Finite-dimensionality required that the null rotations N ∈ L act trivially. But on T 1,
null rotations do not act trivially. Indeed, this is the defining representation, and the null rotations
are matrices N 6= I4, so they do not act like I4. This means that T 1 does not decompose into
unitarizable representations of E∗(2).

Why did we not encounter this pathology in the massive case? The reason ultimately has to do
with the fact that the massive little group ∼= SU(2) is compact, whereas the massless little group
∼= E∗(2) is non-compact. Finite-dimensional representations of compact Lie groups are automatically
unitarizable, and consequently irreducibility is equivalent to indecomposability, but this is not
true for non-compact groups. E.g. the Lorentz group has no nontrivial finite-dimensional unitary
representations.

Returning to T 1, the particle content has to be found within the subspace N ⊆ T 1 on which
null rotations act trivially. This obviously includes the fiducial momentum p>, since the little group
L 3 N is the stabilizer of this vector. In fact,

N = spanR p>. (6.5)

That is, the only vectors fixed by all null rotations are multiples of p>. To prove this, it suffices
to prove the analogous statement when there are two spatial dimensions, since given any vector
p ∈ R1,3 the spatial parts p>,p ∈ R3 are contained together in a two-dimensional subspace. The
formula for a null rotation of R1,2 fixing p> = (1, 0, 1) was

Λ =

1 + e2/2 e −e2/2
e 1 −e

e2/2 e 1− e2/2

 (6.6)

for e > 0. So,

Λ

ab
c

 =

a+ be+ (a− c)e2/2
b+ (a− c)e

c+ be+ (a− c)e2/2

 . (6.7)

This is equal to (a, b, c) if and only if a = c and b = 0. Therefore (a, b, c) = (a, 0, a) = ap>.
Returning to the particle content of the massless vector-valued wave equation, this means that

the only particle content is the copy of π0,0 we have already found, the scalar photon. Indeed, recall
that the correspondence between Lorentz subrepresentations of T 1 and Poincaré subrepresentations
of the solution space of �A = 0 is specifying the allowed polarization vectors ε(p>) ∈ T 1. The
polarization vector of a gradient A = dφ at p> ∈ V+ is exactly p>.

2. Example: Maxwell’s equations

We have failed to find the expected photon in the solution space of �A = 0. This disaster forces
us to reconsider A as the object hosting the photon. Recall that, in classical electrodynamics, the
four-potential plays an auxiliary role. The dynamical equations, Maxwell’s equations, are formulated
in terms of the field-strength tensor F = dA. The description in terms of A has some built-in
redundancy. If we change A A+ dφ, by adding to it a gradient, then

F = d(A+ dφ) = dA (6.8)

remains unchanged, owing to d2 = 0. This suggests we directly analyze Maxwell’s equations.
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The field strength tensor F can be regarded as a (distributional) differential form F ∈
D′(R1,3;∧2T 1∗), i.e. an anti-symmetric matrix

F =


0 F01 F02 F03
F10 0 F12 F13
F20 F21 0 F23
F30 F31 F32 0

 (6.9)

whose entries Fµν = −Fνµ are numerical distributions. Maxwell’s equations read{
∂µFµν = 0,
∂[µFντ ] = 0,

(6.10)

where
∂[µFντ ] = 1

3(∂µFντ + ∂νFτµ + ∂τFµν) (6.11)

is the complete anti-symmetrization of ∂µFντ in its three Lorentz indices µ, ν.τ . Maxwell’s equations
are manifestly relativistically covariant when presented in this way. (See also ??) We will discuss two
reformulations of Maxwell’s equations below, one in terms of the electric and magnetic fields E,B
(in §2.1) and one in terms of differential forms (in §2.2). Each reformulation has its advantages and
its disadvantages. The reformulation in terms of electric and magnetic fields is the most elementary,
but at the cost of obscuring relativistic covariance. The reformulation in terms of differential forms
is particularly elegant, but it takes some work to unpack.

Our main goal in this section (carried out in §2.2) is to prove that the particle content of
Maxwell’s equations is exactly π0,−1 ⊕ π0,+1. We will see that the two possible helicities h = ±1
correspond to the two circular polarizations of light.

2.1. The electric and magnetic fields: E,B (?). The electric and magnetic fields E =
{Ej}3j=1, B = {Bj}3j=1 are defined by

F =


0 −E1 −E2 −E3
E1 0 B3 −B2
E2 −B3 0 B1
E3 B2 −B1 0

 =
(

0 −Eᵀ
E F

)
, (6.12)

where F is the matrix whose (j, k)th entry is εjk`B`. In terms of the electric and magnetic fields,
the Maxwell equation ∂µFµν = 0 reads:

∇ ·E = 0, (6.13)
∂tE1 = ∂2B3 − ∂3B2, ∂tE2 = −∂1B3 + ∂3B1, ∂tE3 = ∂1B2 − ∂2B1. (6.14)

The first of these, ∇·E, is Gauss’s law (in vacuo). The remaining three equations can be summarized
as

∇×B = ∂tE. (6.15)
This is known as the Ampère–Maxwell law. Ampère’s original form was ∇×B = 0 (in vacuo, or
more generally in the absence of electric currents). The ∂tE on the right-hand side was a correction
due to Maxwell.

The remaining Maxwell equation ∂[µFντ ] = 0 consists of
(4
3
)

= 4 independent equations. The
four are:

∂[1F23] = 0 ⇐⇒ ∇ ·B = 0, (6.16)
∂[0F12] = 0 ⇐⇒ ∂tB3 + ∂1E2 − ∂2E1 = 0,
∂[0F31] = 0 ⇐⇒ ∂tB2 + ∂3E1 − ∂1E3 = 0,
∂[0F23] = 0 ⇐⇒ ∂tB1 + ∂2E3 − ∂3E2 = 0.

(6.17)
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The first of these, ∇ ·B = 0, is the magnetic analogue of Gauss’s law. It is usually stated to hold
everywhere, not just in vacuo, which has the significance of excluding the existence of magnetic
monopoles. (Even if magnetic monopoles were to exist, the equation would hold in vacuo.) The
remaining three equations can be summarized as

∇×E = −∂tB. (6.18)

This is Faraday’s law of induction.
To summarize, Maxwell’s equations, eq. (6.10), when written in terms of the electric and

magnetic fields (defined by eq. (6.12)), are equivalent to
∇ ·E = 0,
∇ ·B = 0,
∇×E = −∂tB,
∇×B = ∂tE.

(6.19)

This is the form of Maxwell’s equations presented to young students.

Proposition 6.1 (Electromagnetic duality). If the pair (E,B) solves Maxwell’s equations, in
the form eq. (6.19), then so does the pair (B,−E). �

Proof. Let E′ = B and B′ = −E. Then, eq. (6.19) says that
∇ ·B′ = 0,
∇ ·E′ = 0,
∇×B′ = ∂tE′,
∇×E′ = −∂tB′.

(6.20)

These are just Maxwell’s equations for the pair (E′,B′), except written out of order relative to the
presentation in eq. (6.19). �

Remark: Electromagnetic duality may surprise the reader, since electric effects are much more
prominent than magnetic effects in everyday life. Apparently, this is due not to an asymmetry in
the laws of electromagnetism but rather the fact that electric monopoles are abundant, whereas
magnetic monopoles do not exist at all, or are rare enough to have escaped unambiguous detection
so far.

The sign in the duality transformation F : (E,B) 7→ (B,−E) has a consequence: F2 : (E,B) 7→
(−E,−B), i.e.

F2 = − id . (6.21)
Its eigenvalues are purely imaginary, specifically ±i, and its eigenvectors are necessarily complex-
valued. Say that a pair F = (E,B) is left-handed if FF = iF and right-handed if FF = −iF.
Left-handedness means that B = iE and right-handedness means B = −iE. Any F can be
decomposed

F = F+ + F− (6.22)
into left- and right-handed parts, F± = 2−1(F± iFF).

In terms of F ,

F :


0 −E1 −E2 −E3
E1 0 B3 −B2
E2 −B3 0 B1
E3 B2 −B1 0

 7→


0 −B1 −B2 −B3
B1 0 −E3 E2
B2 E3 0 −E1
B3 −E2 E1 0

 . (6.23)
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2.2. Reformulation in terms of differential forms (?). The Faraday tensor F can be
associated with a (distributional) two-form

F̄ = 2−1Fµν dxµ ∧ dxν . (6.24)

The action of a Poincaré transformation T on F is equivalent to pulling-back F̄ by T :

Proposition 6.2. TF = T−1∗F̄ , where (•)∗ denotes the operation that pulls-back differential
forms via the transformation •. �

Proof. If T = (a,Λ) is a Poincaré transformation, T : x 7→ Λx + a, then its inverse is
T−1 : x 7→ Λ−1(x− a), so

T−1∗F̄ = 2−1Fµν(Λ−1(x− a)) d(Λ−1(x+ a))µ ∧ d(Λ−1(x− a))ν

= 2−1Fµν(Λ−1(x− a)) d(Λ−1x)µ ∧ d(Λ−1x)ν

= 2−1Fµν(Λ−1(x− a))(Λ−1)µµ′(Λ
−1)ν ν′ dxµ

′ ∧ dxν′

= 2−1Fµν(Λ−1(x− a))Λ µ
µ′ Λ ν

ν′ dxµ′ ∧ dxν′ = TF .

(6.25)

�

Going forwards, no confusion will arise from conflating F with F̄ , so we just drop the ¯ over F̄ .
The economy provided by the language of differential forms can be seen from the second of

Maxwell’s equations ∂[µFν]τ , which just says dF = 0, where d is the exterior derivative. In order to
recast the remaining of Maxwell’s equations, we need to introduce the Minkowski–Hodge star F.
This is the unique linear operator F on distributional forms, sending p-forms to (4− p)-forms for
each p ∈ {0, 1, 2, 3}, such that

• Fcω = cFω
• ω ∧Fζ = −(ω, ζ)∧T 1∗ dt ∧ dx1 ∧ dx2 ∧ dx3

for any constant-coefficient forms ω, ζ ∈ ∧T 1∗ and numerical distribution c ∈ D′(R1,3). Here,
(−,−)∧T 1∗ denotes the bilinear form on ∧T 1∗ induced by the Minkowski pairing on T 1.
Remark: The fact that there exists an operator F with the claimed properties, and the fact that
it is unique, follows from the fact that the map f : ∧pT 1∗ × ∧4−pT 1∗ → C defined by

f(ω, ζ) dt ∧ dx1 ∧ dx2 ∧ dx3 = ω ∧ ζ (6.26)
for ω ∈ ∧pT 1∗, ζ ∈ ∧4−pT 1∗ is a duality pairing.

Explicitly, the action of the Minkowski–Hodge star on 2-forms is given by

F dxµ ∧ dxν = 1
2εµντση

τλησς dxλ ∧ dxς , (6.27)

where

εµντσ =
{

0 (µ, ν, τ, σ not all distinct)
sgn(µ, ν, τ, σ) (otherwise)

(6.28)

is the four-dimensional Levi–Civita symbol. (Here, sgn(µ, ν, τ, σ) is the sign of the permutation
(µ+ 1, ν + 1, τ + 1, σ + 1) ∈ S4. So, sgn(µ, ν, τ, σ) is +1 if an even number of its arguments are out
of order and −1 otherwise.)

Lemma 6.3. For any restricted Poincaré transformation T , the identity T ∗F =FT ∗ holds. �

That is, F is Poincaré-invariant.

Proof. This is almost obvious from the characterization of F given above. Indeed, the wedge
product is invariant under all coordinate transformations whatsoever, the vector space of constant-
coefficient forms is invariant under all affine transformations, the volume form dt∧ dx1 ∧ dx2 ∧ dx3
is invariant under all volume-preserving transformations (including all affine transformations whose
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linear part has determinant one, such as restricted Poincaré transformations), and the form
〈−,−〉∧T 1∗ is Lorentz-invariant, essentially by definition. �

Let us verify directly, using the formula eq. (6.27), that F commutes with Λ∗ when applied to
2-forms, for any Lorentz transformation Λ. Then:

FΛ∗(dxµ ∧ dxν) =F(d(Λ λ
µ xλ) ∧ d(Λ ρ

ν xρ)) = Λ λ
µ Λ ρ

ν F(dxλ ∧ dxρ)

= 1
2Λ λ

µ Λ ρ
ν ελρτση

τ%ησς dx% ∧ dxς

= 1
2Λ λ

µ Λ ρ
ν ελρτσΛ τ

τ ′ η
τ ′%′Λ %

%′ Λ
σ
σ′ η

σ′ς′Λ ς
ς′ dx% ∧ dxς

= det(Λ−1)
2 εµντ ′σ′η

τ ′%′Λ %
%′ η

σ′ς′Λ ς
ς′ dx% ∧ dxς

= 1
2εµντ

′σ′η
τ ′%′Λ %

%′ η
σ′ς′Λ ς

ς′ dx% ∧ dxς

= 1
2Λ∗(εµντ ′σ′ητ

′%′ησ
′ς′ dx%′ ∧ dxς′) = Λ∗F(dxµ ∧ dxν).

(6.29)

Let us calculate the effect of the Hodge star on the electric and magnetic fields. (This should
agree with the notation used in the previous subsection, where F : (E,B) 7→ (B,−E).) Since
Fdxk ∧ dt = −2−1εk`m dx` ∧ dxm and Fdxk ∧ dx` = εk`m dxm ∧ dt (note that t = x0, not x0),
and since

F = 2−1Fµν dxµ ∧ dxν = Ej dxj ∧ dt+ 2−1εjk`Bj dxk ∧ dx` (6.30)

we have

FF = −2−1Ekεk`m dx` ∧ dxm + 2−1εjk`εk`mBj dxm ∧ dt
= Bj dxj ∧ dt− 2−1Ejεjk` dxk ∧ dx` = F (B,−E).

(6.31)

So, the effect of the Hodge star is to reverse the electric field and then swap the electric and magnetic
fields, as desired.

We can now reformulate Maxwell’s equations in terms of differential forms.

Proposition 6.4. Maxwell’s equations are equivalent to{
dF = 0
dFF = 0.

(6.32)

�

Proof. By definition, dF = 2−1∂µFντ dxµ ∧ dxν ∧ dxτ , so

dF = 0 ⇐⇒ ∂[µFντ ] = 0. (6.33)

This is the second of Maxwell’s equations in Equation (6.10). We saw in our discussion of E,B that
the other equation in eq. (6.10), ∂µFµν = 0, is equivalent to the other with (E,B) replaced with
(B,−E). Thus,

dFF = 0 ⇐⇒ ∂µFµν = 0. (6.34)

�

This formulation of Maxwell’s equations makes electromagnetic duality obvious: F satisfies
eq. (6.32) if and only if FF does (since F2F = −F ).
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2.3. Particle content of Maxwell’s equations. Let

X = {positive energy F ∈ S ′(R1,3;∧2T 1∗) : ∂µFµν , ∂[µFντ ] = 0} (6.35)

denote the space of positive-energy tempered solutions of Maxwell’s equations. Via the Fourier
transform, X consists of the inverse Fourier transforms of ∧2T 1∗-valued functions F̂ (p) on V+
satisfying

pµF̂µν(p) = p[µF̂ντ ](p) = 0 (6.36)
for each p ∈ V±, or more generally distributional sections of the bundle E ⊂ V+ × ∧2T 1∗ whose
fiber over p is specified by these equations. The fiber over p consists of generalized plane waves with
four-momentum exactly p. As discussed earlier, this is two-dimensional (as a complex vector space).

Because F solving Maxwell implies FF solving Maxwell, the space of distributional solutions
of Maxwell’s equations decomposes into left-handed and right-handed subspaces, characterized by
FF = ∓iF . Thus, each of the fibers, defined by eq. (6.36), must split into two one-dimensional
subspaces of left/right-handed tensors:

E = C− ⊕ C+. (6.37)

The points in C±(p) ⊂ ∧2T 1∗ are the field-strength tensors describing circularly polarized plane
waves. The L2-sections of C± can be shown to be π0,±1. Indeed, circularly polarized plane waves are
multiplied by a factor of e±iθ upon rotating them by θ-degrees about their direction of propagation.

3. Example: the massless vector field, revisited

When it comes to building interacting theories, physicists want to work with A, not F . We
saw that we cannot find the photon Hilbert space π0,−1 ⊕ π0,+1 as a subspace H ⊆ X of the space
X = {positive energy A ∈ S ′(R1,3; T 1) : �A = 0} of solutions of �A = 0. But an alternative
construction, exploiting gauge invariance, works. The idea is to find Poincaré-closed subspaces
B ⊆ Z ⊆ X and form the quotient

Q = Z/B. (6.38)
Then, H ⊆ Q will be a dense Hilbertizable subspace of Q. Roughly, Z is the set of vector fields
satisfying a certain “gauge condition,” the Lorenz1 gauge condition, and B is the set of “pure gauge”
vector fields, corresponding to the subspace π0,0 of scalar photons. The quotient H inherits an
action of the Poincaré group. This representation will be unitarizable and unitarily equivalent to
π0,−1 ⊕ π0,1. No additional π0,0 appears.

Concretely, let
Z = {A ∈ X : ∂µAµ = 0}
B = {A ∈ X : ∃φ ∈ X0 s.t. Aµ = ∂µφ}.

(6.39)

That each of these is closed under the action of the Poincaré group is obvious from their manifestly
covariant definition. The important inclusion B ⊆ Z follows immediately from the definition of
X0 = {positive energy φ ∈ S ′(R1,3) : �φ = 0}. So the definition of Q = Z/B makes sense.

Consider the map Q 3 A mod B 7→ F = dA[. This is well-defined, because changing A by an
element ∂µφ changes A[ by dφ, and d2φ = 0. For F = dA[, the Maxwell equation dF = 0 holds
automatically. The other Maxwell equation dFF = 0 reads dFdA[ = 0, and this is equivalent to
�A = 0. So, the map above lands in the solution space XMaxwell of Maxwell’s equations. In fact, the [Exercise 6.1]
Poincaré lemma (that closed forms on RN are exact) tells us that this map is surjective. It is also
evidently Poincaré-equivariant. So, we can conclude that the particle content of Q is π0,−1 ⊕ π0,+1
from the fact that this is the particle content of Maxwell’s equations.

1Lorenz and Lorentz are different physicists.
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4. The method of polarization tensors (massless case)

Let us use Rj : E∗(2) → C to refer to the unitary representation of E∗(2) = R2 o Spin(2),
Spin(2) = R/4πZ, given by (a, [θ mod 4πZ]) 7→ eijθ. This kills the subgroup {(a, [0 mod 4πZ]) : a ∈
R2} ⊂ E*(2) consisting of null rotations Note that Rj∗ = R−j .

We want to find the subspaces of Sj,k equivalent to the irreps R•. Let N j,k ⊆ Sj,k denote
the subspace of Sj,k on which null rotations (in the little group) act trivially. This subspace is
important, because all of the copies of R• have to sit inside it.

In order to compute N j,k, it is useful to realize Sj,k, as a vector space, as a tensor product
Sj,k = Sj ⊗ Sk, where S` is the spin-` representation of SU(2). Then, letting |`,m〉 denote the
element of S` with eigenvalue m under J3 ∈ su(2)C, the vectors

|j,m, k,m′〉 = |j,m〉 ⊗ |k,m′〉 (6.40)
give a basis for Sj,k. The action of the Lorentz generators J•,K• on Sj,k are given by

Ji = J
(j)
i ⊗ Ik + Ij ⊗ J (k)

i

Ki = −iJ (j)
i ⊗ Ik + iIj ⊗ J (k)

i ,
(6.41)

where J (`)
i is the matrix representing Ji on S`.

Proposition 6.5. Fix j, k ∈ 2−1N. The subspace N j,k is one-dimensional, being spanned by
the element |j,−j, k, k〉 of Sj,k. �

Proof. The null rotations are generated by K1 + J13 = K1−J2 and K2 + J23 = K2 + J1. Suppose
v ⊗ w ∈ Sj,k is killed by K1 − J2. Compute

(K1 − J2)v ⊗ w = −i((J(j)
1 − iJ

(j)
2 )v)⊗ w + iv ⊗ ((J(k)

1 + iJ(k)
2 )w)

(K2 + J1)v ⊗ w = ((J(j)
1 − iJ

(j)
2 )v)⊗ w + v ⊗ ((J(k)

1 + iJ(k)
2 )w).

(6.42)

These vanish together if and only if

(J(j)
1 − iJ

(j)
2 )v = 0

(J(k)
1 + iJ(k)

2 )w = 0
(6.43)

Note that iJ1 ± J2 are ladder operators. For the above vanishings, v must be lowest weight, and w
must be highest weight. �

Example 6.6. Consider the vector representation T 1 ∼= S1/2,1/2. Then, N consists of the
vectors p ∈ R1,3 that are fixed by null rotations fixing p> = (1, 0, 0, 1). Almost by construction,

N = spanR p>. (6.44)
The inclusion ⊇ really is by construction. To prove ⊆, it suffices to prove the analogous inclusion
on R1,2, that the only eigenspace fixed by

Λ =

1 + e2/2 e −e2/2
e 1 −e

e2/2 e 1− e2/2

 (6.45)

for e > 0 is (1, 0, 1). You are asked to prove this as an exercise. �

Consequently, a Sj,k-valued massless equation can have at most one π0,• in it. This mismatch
between the number of degrees-of-freedom in a Sj,k valued object and the one degree-of-freedom
described by π0,• is due to the presence of null rotations. Most of the degrees-of-freedom in a
Sj,k-valued equation give a non-unitarizable representation of the Poincaré group and so admit no
quantum mechanical interpretation.

The only remaining thing is to figure out which π0,• can be present.
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Proposition 6.7. The subspace N j,k, when regarded as a representation of L[p>], is a copy of
Rk−j. �

Proof. Recalling that p> = (1, 0, 0, 1), the remaining generator of the little group is J3. On
the tensor representation Sj,k = Sj ⊗ Sk,

J3 = J(j)
3 ⊗ Ik + Ij ⊗ J(k)

3 . (6.46)
The z-component of angular momentum of |j,m, k,m′〉 is thereforem+m′. For the vector |j,−j, k, k〉
which spans Nj,k, this is k − j. �

6.A. Example: the Weyl equations

The simplest wave equation whose particle content includes spinors is the Weyl equation. This
is a first-order PDE whose solutions are two-component spinors ψ. Actually there are two Weyl
equations:

σµ∂µψL = 0,
σ̄µ∂µψR = 0, (6.47)

where σ = (I2, σ1, σ2, σ3) and σ̄ = (−I2, σ1, σ2, σ3). The ψR, ψL are spinor-valued:

ψL ∈ D′(R1,3;S1/2,0) and ψR ∈ D′(R1,3;S0,1/2), (6.48)

where S1/2,0 is the fundamental representation of SL(2,C), while S0,1/2 is the conjugate-fundamental
representation. Consequently, under a spinorial Lorentz transformation S ∈ SL(2,C),

ψL  SψL,

ψR  S−1†ψR.
(6.49)

Given these two transformation laws, the Weyl equations are Poincaré invariant. In demonstrating
this, the key observation is that σ, σ̄ “transform like a four-vector.” The meaning of this slightly
mysterious phrase is:

Lemma 6.8. For any S ∈ SL(2,C), let Λ = π(S) be the corresponding Lorentz matrix. Then,

S−1σ̄µS−1† = Λµν σ̄ν

S†σµS = Λµνσν .
(6.50)

�

Proof. The Bloch map Σ has the form Σ(x) = σ̄µx
µ (note the lowered index). So, the definition

of Λ = π(S) can be written σ̄ν(Λx)ν = Sσ̄µS
†xµ. For this to hold for all x means

Λνµσ̄ν = Sσ̄µS
†. (6.51)

Noting that σ̄µ = σµ, this last identity can be written Λνµσν = SσνS†. Writing Λνµ = (Λᵀ)µν and
using π(S†) = π(S)ᵀ finishes the proof of the second identity.

Raising the indices in eq. (6.51) gives Sσ̄µS† = Λ µ
ν σ̄ν . Using Λ µ

ν = (Λ−1)µν finishes the
proof. �

We can now prove the Poincaré-invariance of the Weyl equations:

Proposition 6.9. Let T = (a, S) ∈ P∗(1, 3) denote a spinorial Poincaré transformation. Then,

σµ∂µψL = 0 ⇐⇒ σµ∂µ(SψL ◦ Λ−1) = 0,
σ̄µ∂µψR = 0 ⇐⇒ σ̄µ∂µ(S−1†ψR ◦ Λ−1) = 0

(6.52)

for Λ = π(S). �
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Proof. The two computations are similar, so we just do the left-handed version. We have
σµ∂µ(SψL ◦ Λ−1) = σµS∂µ(ψL ◦ Λ−1) = (Λ−1)νµσµS(∂νψL) ◦ Λ−1

= (Λ−1)νµS−1†(S†σµS)(∂νψL) ◦ Λ−1

= (Λ−1)νµS−1†(Λµτστ )(∂νψL) ◦ Λ−1

= S−1†(σν∂νψL) ◦ Λ−1.

(6.53)

So ψL solves the Weyl equation if and only if SψL ◦ Λ−1 does. �

What is the particle content of the Weyl equation? The natural guess is π0,±1/2, with one sign
for the left-handed equation and one for the right-handed equation.

At this point, the reader may be wondering if it possible to add a “mass term” to the Weyl
equation to get πm,1/2,± – that is, to model a massive spin-1/2 particle. Something should prevent
this, because massive spin-1/2 particles have two internal spin degrees-of-freedom, whereas massless
spin-1/2 particles only have one, so it would seem that Weyl spinors do not possess enough
components to host a copy of πm,1/2. But why not just consider

(σµ∂µ +m)ψL = 0, (6.54)
or the left-handed analogue? The problem is that this does not transform properly under Lorentz
transformations: if S ∈ SL(2,C), then

(σµ∂µ +m)(SψL ◦ Λ−1) = S−1†(σν∂ν)ψL ◦ Λ−1 + SmψL ◦ Λ−1. (6.55)
Consequently, we only get relativistic invariance if m = 0.
Warning: The left vs. right conventions in this subsection are dependent on the sign conventions
used for the metric. Notes that use (+,−,−,−) signature (Peskin & Schroeder, Weinberg, etc.) will
disagree with those that use (−,+,+,+) signature (us).

Exercises and problems

Exercise 6.1: Prove that, for A ∈ D′(R1,3; T 1) satisfying the Lorenz gauge condition, dFd(A[) is
equivalent to �A = 0.



CHAPTER 7

The Schrödinger picture

The formalism of defining a Hilbert space structure directly on a space of wavefunctions on
spacetime is known as the Heisenberg picture. In the competing Schrödinger picture, one
instead considers a Hilbert space of wavefunctions depending on x ∈ Rd alone. These are then
taken to represent the state of a particle at some moment in time. The wavefunction is then taken
to evolve in time. Usually, students are more comfortable with the Schrödinger picture than the
Heisenberg picture, but the Heisenberg picture is often preferable in relativistic quantum mechanics.
This is because it comes closer to treating time and space on equal footing, as it makes no reference
to a preferred foliation of spacetime via spacelike hypersurfaces.

Let π denote a (positive-energy, finite spin) irrep of the Poincaré group P∗(1, d), d ∈ N≥2,
describing a particle of some mass m ≥ 0, realized wave-mechanically. So,

π ⊆ {positive energy Ψ ∈ S ′(R1,d; T ) : (�+m2)Ψ = 0} (7.1)

for some Lorentz representation S : ˜SO(1, d)→ GL(T ). As we discussed previously, this involves
finding a subspace V ⊆ T , closed under the action of the little group L, on which S|L is equivalent
to π’s little group representation.

Recall that any element Ψ ∈ π has the form

Ψ(x) =
∫
Rd
ψ(p)e

−it
√
m2+‖p‖2+ix·p ddp

(m2 + ‖p‖2)1/4 (7.2)

for some ψ ∈ S ′(Rd; T ). Consequently,

π ⊆ C0(Rt;S ′(Rd; T )) (?)

Consider, for each t ∈ R, the evaluation map evalt : π → S ′(Rd; T ), sending Ψ ∈ π to evalt Ψ =
Ψ(t,−). This is a linear injection (as follows from the injectivity of the Fourier transform), so we
can port all of the structure on π, the inner product and the Poincaré representation, to the image
evalt(π) ⊂ S ′(Rd; T ). Because the norm ‖Ψ‖π does not depend on the phase of ψ(p), the subspace
evalt(π) does not depend on t, and so we write

slice(π) = eval0(π). (7.3)

The map evalt lets us identify elements of π with their constant time slices ∈ slice(π), which
transform in a certain way among themselves under Poincaré transformations.

Spatial translations and rotations work in the expected way — S ′(Rd; T ) carries a manifest
action of the group E∗(d) of spatial isometries. However, S ′(Rd; T ) admits no “obvious” action
under the generator H ∈ p of time translations nor under boosts, so the action ported from π is
doing something nontrivial. The effect of a boost is to mix the solution at different times. A moving
observer will not agree with the laboratory frame about what the “constant time” slices eval∗(Ψ)
are, because they will not agree about which spacetime loci are simultaneous. This is the tradeoff
between the Heisenberg picture, in which the Hilbert space consists of solutions of a relativistic
PDE on spacetime, and the Schrödinger picture, in which the Hilbert space consists of time-slices
of those solutions. The latter consists of simpler objects, but the cost of choosing a distinguished
spacelike hyperplane Σt = {(t,x) : x ∈ Rd} is breaking manifest Lorentz covariance.
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Figure 7.1. Restricting a scalar wave-
function Ψ : R1,d → C to different space-
like hyperplanes Σ,Σ′ (which can differ
by a time-translation and/or a boost)
gives different ways of extracting from Ψ
a function on space Rd. In special rela-
tivity, nothing is special about the labo-
ratory time slices Σt = {(t,x) : x ∈ Rd},
and so the manifestly covariant Heisen-
berg picture is usually preferred to the
Schrödinger picture.

t

x

Σ

Σ′

Ψ(0,x)

Ψ ◦ T (0,x)

The effect of time translation, which induces a flow on slice(π), involves solving a first-order
partial/pseudodifferential equation with specified initial data. Indeed, a positive-energy solution
φ ∈ S ′(R1,d; T ) is a solution of the half-Klein–Gordon equation(

− i∂t +
√
m2 −∆

)
Ψ = 0. (7.4)

The object
√
m2 −∆ is not a partial differential operator but rather a pseudodifferential operator

(and more specifically a Fourier multiplier):√
m2 −∆Φ(x) = F−1

p→x

(√
m2 + ‖p‖2Fy→pΦ(y)

)
, (7.5)

where F : S ′(Rd)→ S ′(Rd) denotes the spatial Fourier transform.
Now let’s consider the function space evalt(π) in more detail.

1. Scalar case

When T = C, the distribution ψ in eq. (7.2) lies in L2(Rd), and the norm on π is ‖Ψ‖π = ‖ψ‖L2 .
Consequently, we can refine (?) to

π ⊆
{
C0(Rt;H1/2(Rdx)) (m > 0),
C0(Rt; Ḣ1/2(Rdx)) (m = 0),

(??)

where Hs denotes the usual order s ∈ R L2-based Sobolev space, and Ḣs is its homogeneous
counterpart. So

Hs(Rd) = (−∆ + 1)−s/2L2(Rd). (7.6)

Thus, Ψ(t,−) ∈ H1/2 means that it is half an order smoother than a generic element of L2. The
homogeneous space is similar but without the requirement that f itself lies in L2. For simplicity, we
restrict attention to s < d/2 (recall that d ≥ 2).1 Then:

Ḣs(Rd) = {ǧ ∈ S ′(Rd) : g ∈ ‖p‖−sL2(Rdp) ⊂ L1
loc(Rd)}. (7.7)

1Generally, the spaces Ḣs(Rd) are defined as equivalence classes of elements of S ′(Rd) modulo polynomials. The
problem is that constants want to lie in the space whenever s > 0, because ‖p‖sδ = 0. The problem just gets worse as
s increases, because any fixed derivative of δ is killed by ‖p‖s if s is large enough. This is why the quotienting is done.
When s < d/2, the same effect as quotienting is achieved by requiring that Fourier transforms lie in L1

loc. This is what
we did above.
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We can endow Hs and Ḣs with norms in many ways. For Ḣs, one choice of norm (modulo
arbitrary constants of proportionality) is

‖f‖Ḣ1/2 =
∥∥∥∥√‖p‖f̂(p)

∥∥∥∥
L2(Rd)

=
[ ∫

Rd
‖p‖|f̂(p)|2 ddp

]1/2
. (7.8)

This makes Ḣ1/2 a Hilbert space. For H1/2, we have one natural choice for each m > 0:

‖f‖H1/2;m = ‖(m2 + ‖p‖2)1/4f̂(p)‖L2 =
[ ∫

Rd
(m2 + ‖p‖2)1/2|f̂(p)|2 ddp

]1/2
. (7.9)

Each of these makes H1/2 into a Hilbert space. Let ‖−‖H1/2;0 = ‖−‖Ḣ1/2 .
These norms correspond to the norm on π:

‖Ψ‖π = ‖ψ‖L2(Rd) = ‖(m2 + ‖p‖2)1/4Ψ̂(t,−)‖L2(Rd)

= ‖Ψ(t,−)‖H1/2;m.
(7.10)

Thus, it is with respect to the H1/2 or Ḣ1/2 norm on evalt(π) that the Poincaré representation,
ported from π, is unitary.

Born’s rule, in its abstract form, tells us that the expectation value of any observable O when
measured, while the system is in state Ψ, is 〈O〉 = 〈Ψ, OΨ〉H, where H is the system’s Hilbert space.
A natural sort of observable is the location of the particle. The probability that the particle is found
in some open region U ⊂ Rd when its position is measured should be 〈1U 〉, but this does not quite
make sense, because multiplication by 1U is not a bounded operator on H1/2. If χ ∈ C∞c (Rd) then
〈χ〉 is well-defined; so, we can take

χ = ρε ∗ 1U ≈ 1U , 0 < ε� 1, (7.11)

where ρε ∈ C∞c (Rd) is a standard mollifier (a smooth approximation of δ), and then use 〈χ〉 as a
proxy for the ill-defined 〈1U 〉. Unfortunately, because of the fractional 1/2 derivative in the definition
of the H1/2 inner product, the quantity 〈χ〉 depends on the values of Ψ(t,−) outside suppχ.

This “nonlocality” is an unpalatable conclusion to some. It has even led to the insistence that the
Klein–Gordon equation does not constitute a physically acceptable one-particle theory, necessitating
an embedding into a quantum field theory. Nevertheless, scalar particles do exist. The Higgs boson
is an elementary example, albeit unstable. Composite examples, like the Helium-4 nucleus in its
ground state (α-particle), or pions, are modeled by the one-particle theory. This conclusion is
not vitiated by the existence of internal degrees-of-freedom, which are relevant to the spectrum of
excited states. Moreover, the spectrum of any quantum field theory decomposes as a direct integral
of Poincaré irreps, and some of these will likely be spin-0. The conclusions above therefore apply,
unpalatable or not.

Remark 7.1 (Comparison with non-relativistic QM). In Schrödinger’s non-relativistic wave
mechanics, the wavefunction of a particle at time t ∈ R is an element

Ψ(t,−) ∈ L2(Rd), (7.12)

and Born’s rule tells us that the probability of finding the particle in an open set U ⊂ Rd at that
time is ∫

U
|Ψ(t,x)|2 ddx = 〈Ψ(t,−), 1UΨ(t,−)〉L2(Rd). (7.13)

Thus, the probability of finding a particle at x ∈ Rd only has to do with the value of Ψ(t,−) at x, a
very intuitive result.

The reason why non-relativistic quantum mechanics uses the L2 inner product and relativistic
quantum mechanics uses the H1/2 inner product has to do with the difference between their
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symmetry groups (Galilean vs. Poincaré) and corresponding “dispersion relations.” The origin of
the ‘1/2’ is the denominator in the Lorentz-invariant measure

dµXm,+ = δ(p2 +m2) d1+dp = ddp
2
√
m2 + ‖p‖2

(7.14)

on the Lorentz orbit Xm,+. In non-relativistic quantum mechanics, the place of the hyperboloid
Xm,+ is taken by

Wm = {p ∈ R1,d : p0 = ‖p‖2/2m}. (7.15)
The Galilean-invariant measure on this paraboloid is

dµWm = δ(2mp0 − ‖p‖2) d1+dp = ddp/2m. (7.16)

Notice the absence of a power of ‖p‖ in the denominator. So, L2(Rd) is the right Hilbert space to
describe the time-slices of wavefunctions in non-relativistic quantum mechanics. This is how Born’s
rule, in its original form, follows from Galilean symmetry. �

The problem with the L2 norm vis-à-vis Lorentzian relativity is not difficult to understand.
Consider a solution φ ∈ π to the Klein–Gordon equation trapped in a box [−1, 1]d, which is stationary
in the laboratory frame, and whose worldtube is Rt× [−1, 1]d ⊂ R1,d. For simplicity, we assume that
φ is in a standing wave state, so |φ(t,x)|2 is independent of t. From the perspective of a moving
observer, the volume of the box is contracted by a factor of γ = 1/

√
1− v2, where v is the speed of

the observer. But all observers agree about the values of scalar fields at fixed spacetime loci, so,
from the perspective of the moving observer, the L2-norm of φ has been contracted by a factor of
γ1/2.

2. General representations

The discussion above requires modification when T is nontrivial. Then, since the Lorentz group
has no nontrivial unitary finite-dimensional representations, T is not unitary. It comes with no
canonical norm, so “‖−‖L2(Rd;T )” is not automatically defined. Of course, T is finite-dimensional,
so there exists some norm on it. This is good enough as far as defining the topology is concerned,
as all norms on a finite-dimensional vector space give the same topology. But for Born’s rule
E[O] = 〈Ψ, OΨ〉π, we need to find the exact norm that matches π.

Returning to the definition of π, it appears we need a different norm for each momentum p.
The function ψ : Ṙd → T in eq. (7.2) is a section of some vector bundle

E ⊂ Rd × T (7.17)

over Rd if m > 0 or Ṙd if m = 0. The fiber of this bundle over p is Ep = D[p]V, where V ⊂ T
is the (unitary!) little group representation used in the wave-mechanical realization of π and
D[p] : p> 7→ p is the standard boost taking the reference momentum p> ∈ Xm,+ to p. The norm on
Ep is transported from V, meaning

‖ψ‖Ep = ‖S(D[p])−1ψ‖V . (7.18)

Here we are using the norm on V that makes the little group representation S|L[p>] unitary. The
norm ‖−‖π can now be written

‖Ψ‖π = ‖ψ‖L2(Rd;E) =
[ ∫

Rd

∥∥∥S(D[√m2 + ‖p‖2,p
])−1

ψ
∥∥∥2

V
ddp

]1/2
(7.19)

(up to constants of proportionality).
Annoyingly, V is not generally closed under the Lorentz group, so ‖−‖V cannot be used to define

a norm on T ⊃ V. Suppose we have a (not necessarily definite) Hermitian form Q : T → R on T .
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We can define a quasinorm ‖−‖H1/2(Rd;T );m by

‖f‖Hs(Rd;T );m =
[ ∫

Rd
(m2 + ‖p‖2)sQ(f̂(p)) ddp

]1/2
. (7.20)

If Q is not definite, then this is not really a norm, because it is not positive definite on all of
Hs(Rd; T ).

Suppose that Q restricts to v 7→ ‖v‖2V on V. Additionally, let us suppose that Q transforms
under Lorentz boosts in the following sensible way: ∃k ∈ N such that

Q(S(D[p])−1v) =
( m2 + ‖p‖2

m2 + ‖p>‖2
)−k/2

Q(v)

=
{
γ−kQ(v) (m > 0),
‖p‖−kQ(v) (m = 0),

(7.21)

equivalently

Q(S(D[p])v) =
{
γkQ(v) (m > 0),
‖p‖kQ(v) (m = 0)

(7.22)

for all p ∈ Xm,+ and v ∈ T . Here, γ is the Lorentz factor associated with the boosts D[p], D[p]−1.
The term k has physical significance:
(k = 0) If k = 0, then Q “transforms like a scalar,” i.e. it is Lorentz invariant.2 Examples in the

d = 3 case include
|φ|2, ψ̄ψ, ψ̄γ5ψ, Aµ∗Aµ, F ∗µνF

µν (7.23)

where φ ∈ C is a scalar, ψ ∈ C4 is a Dirac spinor, A ∈ C4 is a four-vector, and F ∈ ∧C4 is
an anti-symmetric matrix, respectively. These are known as (invariant) mass terms.

(k = 1) If k = 1, then Q transforms like the 0th component ρ of a vector j = (ρ, j), that is a charge
density. Indeed, the Λ0

0 matrix element of a boost is exactly γ. Examples include

ψ†ψ = ψ̄γ0ψ, (7.24)
where ψ is a Dirac spinor as before. (Examples can also be constructed using Rarita–
Schwinger fields.)

(k = 2) By the same reasoning as for k = 1, if k = 2 then Q transforms like the 00th component
T 00 of a symmetric traceless tensor Tµν , that is like an energy density. An example is the
electromagnetic energy density

T 00 = F 0αF 0
α + 1

4FαβF
αβ, (7.25)

where F ∈ ∧C4.
(k = 3) Et cetera.
Now let’s evaluate the norm eq. (7.19). Explicitly,

‖Ψ‖2π =
∫
Rd
Q
(
S
(
D
[√

m2 + ‖p‖2,p
])−1

ψ
)

ddp

=
∫
Rd

(
1 + ‖p‖

2

m2

)−k/2
Q(ψ) ddp =

∫
Rd
Q
((

1 + ‖p‖
2

m2

)−k/4
ψ
)

ddp

∝
∫
Rd
Q

(
(m2 −4)

1−k
4 Ψ(t,x)

)
ddx = ‖Ψ(t,−)‖2

H
1−k

2 (Rd;T );m
,

(7.26)

2Because the Lorentz group has no nontrivial unitary finite-dimensional representations, the only way (besides
trivial cases) this is possible is if Q is not definite.
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where the last line used Parseval–Plancherel. In summary, the time slices of an element of π have
(1− k)/2 orders of L2-based Sobolev regularity:

π ⊆
{
C0(Rt;H

1−k
2 (Rd; T )) (m > 0),

C0(Rt; Ḣ
1−k

2 (Rd; T )) (m = 0),
(7.27)

and
‖Ψ‖π = ‖Ψ(t,−)‖2

H
1−k

2 (Rd;T );m
(7.28)

for all t ∈ R.
Something special happens when k = 1:

‖Ψ‖π = ‖Ψ(t,−)‖L2(Rd;T ). (7.29)

Then, the π norm is just the L2 norm on the time slices. Born’s rule, in its original local form,
is recovered, and |Ψ(t,x)|2 can be interpreted as the probability density of finding the particle at
x. The fact that the Dirac representation admits a Q with k = 1 is one reason why the Dirac
equation is more palatable than the Klein–Gordon equation as a one-particle theory — we have a
local probability density.
Remark: Often, one T admits multiple Q with different k. We saw this above for Dirac bispinors,
two quadratic forms being ψ 7→ ψ̄ψ, ψ†ψ. But how can the right norm be H1/2(Rd; T ) with respect
to one choice of Q and L2(Rd; T ) with respect to another? The key thing to remember is that
ψ 7→ ψ̄ψ is not positive definite. The actual components of ψ(t,−) are generically no better than
L2, but when we form the difference ψ̄ψ between the norm-squared of various components, the most
singular parts cancel, leaving a remainder with an extra half-order of regularity. This generalizes
beyond the Dirac representation.



CHAPTER 8

The second-quantization functor and the CCR/CAR

First quantization is a mystery, but second quantization is a functor! [Attributed
to Edward Nelson]

In ordinary quantum mechanics, the ket space of a multipartite system is the tensor product of
the Hilbert spaces describing the individual systems. When all of the systems are described by the
same “one-particle” Hilbert space H, the Hilbert space describing the multi-particle system is the
tensor space

T H =
⊕∞

j=0
H⊗j = C⊕H⊕H⊗2 ⊕H⊗3 ⊕ · · ·, (8.1)

in which the subspace
H⊗j = Hj-particle, (8.2)

consisting of all j-tensors, is interpreted as the space of all j-particle configurations.1 The zero-
particle Hilbert space C = H⊗0 is spanned by a vector Ω ∈ T H representing the vacuum.

Nature does not seem to make much use of this possibility. Physicists attribute this to the
indistinguishability of different instances of the same particle species. Multi-particle states like
φ⊗ ψ, ψ ⊗ φ, which differ only in which particles are in which states, are not considered distinct. It
makes sense to say that “one electron is here and another over there,” but not that “electron one is
over here and electron two over there.” So, physicists prescribe restricting attention to one of two
subspaces,

SymH,∧H ⊆ T H, (8.3)
the subspace of totally symmetric tensors and the subspace of totally anti-symmetric tensors,
respectively:

SymH =
⊕∞

j=0
Symj H,

∧H =
⊕∞

j=0
∧j H,

(8.4)

where Symj H = SH⊗j , ∧jH = AH⊗j respectively. Here,

S : φ1 ⊗ · · · ⊗ φj 7→
1
j!
∑
σ∈Sj

φσ(1) ⊗ · · · ⊗ φσ(j) (8.5)

is the symmetrization operator (initially defined on pure tensors and then extended to all of T H
linearly) and

A : φ1 ⊗ · · · ⊗ φj 7→
1
j!
∑
σ∈Sj

(−1)σφσ(1) ⊗ · · · ⊗ φσ(j) (8.6)

is the anti-symmetrization operator (also initially defined on pure tensors and then extended to all
of T H linearly ); Sj is the symmetric group on j objects. The maps S,A are orthogonal projections
onto SymH, ∧H, respectively. The two Hilbert spaces SymH, ∧H are called the bosonic Fock space [Exercise 8.1]
and the fermionic Fock space, respectively. A “boson” is a particle species whose multi-particle

1 The bar over the orthogonal sum in eq. (8.1) denotes a completion, so T H consists of sequences {ψj}∞j=0 of
ψj ∈ H⊗j such that

∑∞
j=0‖ψj‖

2
H⊗j <∞.

115
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configurations are described by elements of SymH. Such particles are said to obey Bose–Einstein
statistics. Likewise, a “fermion” is a particle species whose multi-particle configurations are described
by elements of ∧H. Such particles are said to obey Fermi–Dirac statistics.

This lecture is about the functors H 7→ SymH,∧H, the bosonic and fermionic Fock functors.

The Fock spaces will be shown to host “creation/annihilation” operators (a.k.a. “ladder” operators)
a(f), a(f)† : D → D, (8.7)

defined on some dense domain D, which satisfy the canonical commutation relations (CCR) or
canonical anti-commutation relations (CAR):

[a(f), a(g)†]± = 〈f, g〉HI,
[a(f), a(g)]± = [a(f)†, a(g)†]± = 0,

(8.8)

where [A,B]± is either the commutator [A,B] = AB−BA or anti-commutator {A,B} = AB+BA
of A,B, depending on whether the Fock space is bosonic (commutator) or fermionic (anti-
commutator).

Remark 8.1. The reader may not find the “metaphysical” justification above, the argument
from indistinguishability, entirely convincing. For bosonic particles, an alternative justification can
be given later: free bosonic particles are the quantized perturbations of a free quantized field. From
this perspective, the ontologically basic entity is the quantum field — it just so happens that the
bosonic Fock space is naturally isomorphic to the Hilbert space consisting of wavefunctions on the
space of field configurations.

Parallel remarks apply to fermionic particles, except one has to talk about Grassmann-valued
fields. If we are willing to countenance that, then we might as well bite the bullet and accept the
argument from indistinguishability. For this reason, I personally prefer to take the Fock spaces as
basic and fields as derived, at least in the discussion of free fields. �

0.1. Low-dimensional examples.
Example 8.2 (j = 2). Sym2H⊕ ∧2H = H⊗2, and

Sym2H = {φ⊗ ψ + ψ ⊗ φ : φ, ψ ∈ H}
∧2H = {φ⊗ ψ − ψ ⊗ φ : φ, ψ ∈ H}.

(8.9)

So, Sym2H ⊥ ∧2H, and every 2-particle state can be decomposed into a symmetric part and an
anti-symmetric part. �

Example 8.3 (j = 3). We still have Sym3H ⊥ ∧3H, with
Sym3H = {ϕ⊗ φ⊗ ψ + permutations : ϕ, φ, ψ ∈ H} (8.10)
∧3H = {ϕ⊗ φ⊗ ψ + φ⊗ ψ ⊗ ϕ+ ψ ⊗ ϕ⊗ φ− (ϕ↔ φ) : ϕ, φ, ψ ∈ H}. (8.11)

Note that Sym3H⊕∧3H ( H⊗3; three-tensors cannot be decomposed into a purely symmetric part
and a purely anti-symmetric part. �

0.2. Some notation. We assume throughout this section that H is infinite-dimensional, but
everything applies in the finite-dimensional case, with minor notational adjustments.

Let D =
⊕∞
j=0H⊗j denote the subspace of T H consisting of multi-particle configurations with

boundedly many particles. Here, the direct sum is the one in the category of inner product spaces
which are not necessarily complete. So if ψ ∈ D, then ψ is a linear combination of elements of
H⊗0, · · · ,H⊗N for some finite N (depending on ψ).

On D, we can define an operator N : D → D by setting Nψ = jψ whenever ψ ∈ H⊗j is a pure
j-tensor and then extending this definition to all of D via linearity. This is the “number operator”.
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It extends continuously to a map D(N)→ T H, where D(N) consists of those ψ ∈ H such that
∞∑
j=0

j2‖ψj‖2H⊗j <∞, (8.12)

where ψj is the component of ψ in H⊗j , and where D(N) is endowed with the norm

‖ψ‖D(N) =

√√√√ ∞∑
j=0

(j + 1)2‖ψj‖2H⊗j . (8.13)

Considered as an unbounded operator on T H, the number operator N is self-adjoint, with domain
D(N). [Problem 8.1]

If φ, ψ ∈ D, let

φ� ψ = S(φ⊗ ψ)
φ ∧ ψ = A(φ⊗ ψ).

(8.14)

Then, � defines an associative product on SymH, and ∧ defines an associative (but non-commutative)
product on ∧H.

Let φ1, φ2, · · · ∈ H denote any orthonormal basis for H. If n1, n2, n3, · · · ∈ N and only a finite
number of n1, n2, n3, . . . are nonzero, then let

|n1, n2, n3, . . . 〉SymH =
√

N !
n1!n2! · · ·φ

⊗n1
1 � φ⊗n2

2 � · · · ∈ SymH (8.15)

for n1, n2, n3, · · · ∈ N. Similarly, if n1, n2, n3, · · · ∈ {0, 1} and only a finite number of these are
nonzero, then let

|n1, n2, n3, . . . 〉∧H =
√
N !φ⊗n1

1 ∧ φ⊗n2
2 ∧ · · · ∈ ∧H (8.16)

denote the wedge product of those finitely many φj for which nj 6= 0.

Proposition 8.4. These are orthonormal bases of SymH,∧H, respectively. �

Proof. The orthogonality follows immediately from the form of the inner product on T H. The
more nontrivial thing is that each of the vectors above has unit norm.

The symmetric product φ⊗n1
1 � φ⊗n2

2 � · · · can be written as the average over pure N -tensors
ψ1⊗ψ2⊗· · · with the constraint that each ψ• is some φ•, with φj appearing among the ψ•’s exactly
nj times:

φ⊗n1
1 � φ⊗n2

2 � · · · = 1
#
∑

ψ1 ⊗ ψ2 ⊗ · · · (8.17)

where # =
( N
n1,n2,···

)
= N !/n1!n2! · · · is the number of terms in the sum. Because the distinct

ψ1 ⊗ ψ2 ⊗ · · · are orthonormal (owing to the orthonormality of the φj ’s),

‖φ⊗n1
1 � φ⊗n2

2 � · · ·‖ =
√

1
#2

∑
1 =

√
1
# . (8.18)

This shows that |n1, n2, n3, . . . 〉SymH, with the normalization constant appearing in eq. (8.15), is a
unit vector.

The argument for the anti-symmetric product is completely analogous, except for some signs
(in front of orthonormal vectors), and the relevant ψ1 ⊗ ψ2 ⊗ · · · are those in which the φj ’s for
which nj = 1 appear in some order. The number # of distinct possible ψ1 ⊗ ψ2 ⊗ · · · is therefore
# = N !. �
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1. Creation/annihilation operators

First, for f ∈ H, define a(f) on all of D by specifying its action on pure tensors:

a(f)Ω = 0
a(f)ψ ⊗ φ =

√
N + 1〈f, ψ〉Hφ

(8.19)

for any finite tensor φ ∈ T H, ψ ∈ H, and then extending linearly and continuously to each H⊗j .
Our convention on 〈−,−〉 is that it is anti-linear in the first slot and linear in the second. That
is why ψ appears second — it has to appear in the linear slot, for a(f) to be a well-defined linear
operator.

So, a(f) annihilates the vacuum and maps

a(f) : H⊗j → H⊗(j−1) (8.20)

for each j ∈ N+, with a(f)|H⊗j = 〈f,−〉H ⊗ id⊗(j−1)
H . Thus, a(f) “annihilates” an instance of f

from the state to which it’s applied, which is why it is called an annihilation operator. Modulo the
particular choice of normalization

√
N + 1 (which is chosen to make the algebra nicer later), its

definition is natural.

1.1. Bosonic case. Note that if ψ is a totally symmetric tensor, then so is a(f)ψ. For example,

a(f)(ψ � φ� ϕ) = 1√
3

(〈f, ψ〉Hφ� ϕ+ 〈f, φ〉Hϕ� ψ + 〈f, ϕ〉Hψ � φ). (8.21)

So, a(f) restricts to an operator on the finite-particle subspace D ∩ SymH of the bosonic Fock
space.

On the other hand, the creation operator a(f)† : D ∩ SymH → D ∩ SymH is defined by

a(f)† : D 3 ψ 7→ f � (
√
N + 1ψ) =

√
N(f � ψ). (8.22)

So, a(f)† “creates” an instance of f . Modulo the choice of normalization, its definition is natural.
Do not yet interpret the ‘†’ as an adjoint operation.

Note that a(f) depends anti-linearly on f , whereas a(f)† depends linearly on f :

a(λf + g) = λ∗a(f) + a(g),
a(λf + g)† = λa(f)† + a(g)†.

(8.23)

They are linear operators on Fock space, however.
Lemma 8.5.

a(φ1)|n1, n2, n3, . . . 〉SymH =
{

0 (n1 = 0),
√
n1|n1 − 1, n2, n3, . . . 〉SymH (otherwise).

(8.24)

�

Proof. The n1 = 0 case is tautological, so assume n1 ≥ 1. Recall that we are using φ1, φ2, . . .
to denote an orthonormal basis for H. Let # = n1 +n2 + . . . (i.e. the value of N on |n1, n2, · · · 〉SymH
), and let ψ1, . . . , ψ# ∈ {φ1, φ2, . . . } be n1 copies of φ1, followed by n2 copies of φ2, and so on (in
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that order!). Then,

a(φ1)|n1, n2, . . . 〉SymH =
√

#!
n1!n2! . . .

1
#!

∑
σ∈S#

a(φ1)ψσ(1) ⊗ · · · ⊗ ψσ(#)

=
√

(#− 1)!
n1!n2! . . .

1
(#− 1)!

∑
σ∈S#

〈φ1, ψσ(1)〉H · ψσ(2) ⊗ · · · ⊗ ψσ(#)

=
√

(#− 1)!
n1!n2! . . .

n1
(#− 1)!

∑
σ∈S#−1

ψ̃σ(1) ⊗ · · · ⊗ ψ̃σ(#),

(8.25)

where ψ̃j = ψ1+j , using the fact that φ1 ⊥ ψσ(1) unless ψσ(1) = φ1, which holds if and only if σ(1)
is one of 1, . . . , n1. Recognizing the right-hand side of eq. (8.25) as proportional to the symmetric
product of ψ2, . . . , ψ#:

a(φ1)|n1, n2, . . . 〉SymH = n1

√
(#− 1)!
n1!n2! . . .ψ2 � · · · � ψ#

=
√
n1 ·

√
(#− 1)!

(n1 − 1)!n2! . . .ψ2 � · · · � ψ# =
√
n1|n1 − 1, n2, . . . 〉SymH, (8.26)

as claimed. �

Lemma 8.6. a(φ1)†|m1,m2, . . . 〉SymH =
√
m1 + 1|m1 + 1,m2, . . . 〉SymH. �

Proof. Let # = m1 +m2 + . . . .

a(φ1)†|m1,m2, . . . 〉SymH =
√

#!
m1!m2! . . .a(φ1)(φ⊗m1

1 � φ⊗m2
2 � · · · )

=
√

(# + 1)!
m1!m2! . . .φ

⊗(m1+1)
1 � φ⊗m2

2 � · · · =
√
m1 + 1|m1 + 1,m2, . . . 〉SymH.

(8.27)
�

|0〉 |1〉 |2〉 . . .

a† a†/
√

2 a†/
√

3

a a/
√

2 a/
√

3

N

Figure 8.1. The action of creation/annihilation operators.

Proposition 8.7. For any f ∈ H, the (unbounded) operators a(f), a(f)† are adjoints (as the
notation suggests), in the sense that

〈a(f)ψ, φ〉SymH = 〈ψ, a(f)†φ〉SymH, (8.28)
for all φ, ψ ∈ D ∩ SymH and f ∈ H. �

Proof. It suffices to prove the identity for φ = |m1,m2, . . . 〉SymH and ψ = |n1, n2, . . . 〉SymH,
for some m1, n1,m2, n2, · · · ∈ N, only finitely many of which are nonzero. Moreover, using the
linearity/anti-linearity of the maps f 7→ a(f), a(f)†, it suffices to consider the case when f ∈
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{φ1, φ2, . . . }, i.e. when f is an element of our preferred orthonormal basis for H. Without loss of
generality, we can order the φj ’s such that f = φ1.

Lemma 8.5 says

〈a(f)ψ, φ〉SymH =
{

0 (n1 = 0)
√
n1〈n1 − 1, n2, . . . |m1,m2, . . . 〉 (otherwise)

=
{

0 (m1 6= n1 − 1 or mk 6= nk for some k ∈ N≥2)
√
n1 (otherwise).

(8.29)

Lemma 8.6 says
〈ψ, a(f)†φ〉SymH =

√
m1 + 1〈n1, n2, . . . |m1 + 1,m2, . . . 〉

=
{

0 (m1 + 1 6= n1 or mk 6= nk for some k ∈ N≥2)√
m1 + 1 (otherwise).

(8.30)

The conditions for 〈a(f)ψ, φ〉SymH, 〈ψ, a(f)†φ〉SymH to be 0 coincide, and otherwise
√
n1 =

√
m1 + 1, (8.31)

so 〈a(f)ψ, φ〉SymH, 〈ψ, a(f)†φ〉SymH coincide then as well. �

Proposition 8.8 (CCR). For all f, g ∈ H,

[a(f), a(g)†] = 〈f, g〉H idSymH, (8.32)
[a(f), a(g)] = [a(f)†, a(g)†] = 0, (8.33)

as operators on D. �

Proof. The fact that a(f)†, a(g)† commute follows from the definition eq. (8.22):

a(f)†a(g)†ψ = f � (g � ψ) = f � g � ψ

a(g)†a(f)†ψ = g � (f � ψ) = g � f � ψ,
(8.34)

and the right-hand sides are equal because � is a commutative multiplication operator.
Once it is known that a(f)†, a(g)† commute, it follows (using Proposition 8.7) that a(f), a(g)

commute. So, eq. (8.33) holds.
It only remains to check eq. (8.32). Using the linearity/anti-linearity of the maps f 7→ a(f), a(f)†,

it suffices to consider the case when f, g ∈ {φ1, φ2, . . . }, and then it suffices to consider f = φ1,
g ∈ {φ1, φ2}. We check that

[a(f), a(g)†]ψ =
{

0 (f 6= g)
ψ (f = g)

(8.35)

for ψ = |n1, n2, . . . 〉SymH.
Indeed, if g, f = φ1, then Lemma 8.5, Lemma 8.6 give

a(f)a(g)†ψ =
√
n1 + 1a(f)|n1 + 1, n2, . . . 〉SymH = (n1 + 1)|n1, n2, . . . 〉SymH,

a(g)†a(f)ψ =
√
n1a(f)|n1 − 1, n2, . . . 〉SymH = n1|n1, n2, . . . 〉SymH,

(8.36)

so eq. (8.32) holds, in this case. On the other hand, if f = φ1 and g = φ2, then Lemma 8.5,
Lemma 8.6 instead give

a(f)a(g)†ψ =
√
n2 + 1a(f)|n1, n2 + 1, . . . 〉SymH =

√
n1(n2 + 1)|n1 − 1, n2 + 1, . . . 〉SymH,

a(g)†a(f)ψ =
√
n1a(g)†|n1 − 1, n2, . . . 〉SymH =

√
n1(n2 + 1)|n1 − 1, n2 + 1, . . . 〉SymH,

(8.37)

so a(f), a(g)† commute. �
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Proposition 8.9. Unless f = 0, then a(f), a(f)† are both unbounded. However, the bound

‖a(f)ψ‖SymH, ‖a(f)†ψ‖SymH . ‖
√

1 +Nψ‖H (8.38)

holds. Thus, a(f), a†(f) are continuous maps D(N)→ SymH. �

Proof. Follows immediately from above. �

1.2. Fermionic case. If ψ is a totally anti-symmetric tensor, then so is a(f)ψ. So, a(f)
restricts to an operator on the finite-particle subspace D ∩ ∧H of the fermionic Fock space.

The creation operator
a(f)† : D ∩ ∧H → D ∩ ∧H (8.39)

is defined by the same formula as in the bosonic case, but switching the symmetric product � out
for ∧:

a(f)† : D 3 ψ 7→ f ∧ (
√
N + 1ψ) =

√
N(f ∧ ψ). (8.40)

Modulo the choice of normalization, this definition is natural.
Lemma 8.10.

a(φ1)|n1, n2, n3, · · · 〉∧H =
{

0 (n1 = 0),
|0, n2, n3, · · · 〉∧H (n1 = 1),

(8.41)

a(φ1)†|n1, n2, n3, · · · 〉∧H =
{
|1, n2, n3, · · · 〉∧H (n1 = 0),
0 (n1 = 1).

(8.42)

�

Proof. The cases where the result is 0 are all clear. Also, the identity in eq. (8.42) follows
immediately from the definitions:

a(φ1)†|0, n2, n3, · · · 〉∧H = a(φ1)†
√
N !φ⊗n2

2 ∧ =
√

(N + 1)!φ1 ∧ φ⊗n2
2 ∧ · · ·

= |1, n2, n3, · · · 〉∧H,
(8.43)

as claimed.
Let # = 1 + n2 + · · · . Then:

a(φ1)|1, n2, n3, · · · 〉∧H =
√

#!a(φ1)φ1 ∧ φ⊗n2
2 ∧ · · · =

√
(#− 1)!a(φ1)φ⊗n2

2 ∧ · · ·
= |0, n2, n3, · · · 〉∧H,

(8.44)

where the key point is that when we evaluate a(φ1)φ1 ∧ φ⊗n2
2 ∧ · · · , we get one factor of

√
# from

the
√
N + 1 in eq. (8.19) and another factor of 1/# from when we write the wedge product as the

anti-symmetrization of permuted tensor products; the only permutations which give a non-vanishing
contribution are those where φ1 appears first, and these comprise 1/# of all permutations. �

Proposition 8.11. For any f ∈ H, the (unbounded) operators a(f), a(f)† are adjoints (as the
notation suggests), in the sense that

〈a(f)ψ, φ〉∧H = 〈ψ, a(f)†φ〉∧H, (8.45)

for all φ, ψ ∈ D ∩ ∧H and f ∈ H. �

Proof. It suffices to consider f = φ1, ψ = |n1, n2, · · · 〉∧H, φ = |m1,m2, · · · 〉∧H. Then, both
sides of eq. (8.45) are zero unless n1 = 1, m1 = 0 and nj = mj for all j ≥ 2, in which case both
sides are = 1. �
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Proposition 8.12 (CAR). For all f, g ∈ H,
{a(f), a(g)†} = 〈f, g〉H id∧H, (8.46)
{a(f), a(g)} = {a(f)†, a(g)†} = 0, (8.47)

as operators on D. �

Proof. The fact that a(f)†, a(g)† anti-commute follows immediately from the anti-commutation
of the wedge product: f ∧ g∧φ = −g∧ f ∧φ, for all φ ∈ ∧H. The fact that a(f), a(g) anti-commute
as well follows. Thus, it only remains to check eq. (8.46). As in the proof that the bosonic
creation/annihilation operators satisfy the CCR, it suffices to check f = φ1 and g ∈ {φ1, φ2}. When
g = φ1, then applying a(f)a(g)†, a(g)†a(f) to |n1, n2, · · · 〉∧H either kills it or leaves it unchanged.
Specifically, if n1 = 0, then a(g)†a(f) kills it, and a(f)a(g)† preserves it. If n1 = 1, the roles are
reversed. So, in either case,

{a(f), a(g)†}|n1, n2, · · · 〉∧H = |n1, n2, · · · 〉∧H, (8.48)
as desired. On the other hand, if g = φ2, then a(f)a(g)†, a(g)†a(f) both kill |n1, n2, · · · 〉∧H unless
n1 = 1 and n2 = 0. If n1 = 1 and n2 = 0, then the results are

a(f)a(g)†|1, 0, n3, · · · 〉∧H = −a(f)|1, 1, n3, · · · 〉∧H = −|0, 1, n3, · · · 〉∧H (8.49)
and

a(g)†a(f)|1, 0, n3, · · · 〉∧H = a(g)†|0, 0, n3, · · · 〉∧H = |0, 1, n3, · · · 〉∧H. (8.50)

respectively. The sign in eq. (8.49) comes from a(g)†|1, 0, n3, · · · 〉∧H =
√

(N + 1)!φ2∧φ1∧φ⊗n3
3 ∧· · · =

−
√

(N + 1)!φ1 ∧ φ2 ∧ φ⊗n3
3 ∧ · · · = −|1, 1, n3, · · · 〉∧H. �

Unlike in the bosonic case, fermionic creation/annihilation operators are bounded:

Proposition 8.13. For each f ∈ H, the fermionic creation/annihilation operators a(f), a(f)†
are bounded operators on ∧H, with operator norm ‖a(f)‖∧H→∧H, ‖a(f)†‖∧H→∧H = ‖f‖H. �

Proof. Lemma 8.10 gives the case ‖f‖H = 1. Linearity finishes the job. �

So, a(f)† is the adjoint of a(f) in the usual sense.

2. Wick’s formula

The careful bookkeeping required to get normalization factors right in the discussion above
obscures a basic fact: the creation/annihilation operators are uniquely determined by their commu-
tation relations or anti-commutation relations (depending on whether the Fock space is bosonic or
fermionic). Indeed, the states in the Fock space of the form

a(f1)† · · · a(fN )†|Ω〉, N ∈ N, f1, · · · , fN ∈ H (8.51)
are dense in H. This means that any operator on D that is bounded on each <N -particle subspace
is uniquely determined by its matrix elements between states of this form.

In particular, this applies to a(f), a(f)†. Their matrix elements can be computed using only
• the CCR/CAR [a(f), a(g)†]± = 〈f, g〉I,
• the fact that the vacuum vector Ω is annihilated by all annihilation operators. (This is
what we mean in this section when we say that Ω is a vacuum vector.)

Let us consider some simple examples – only in the bosonic case, and only the annihilation
operator a(f) (the other possibilities are all similar). Any matrix element of the form 〈φ|a(f)|Ω〉 is
zero, so the first nontrivial matrix elements are

〈φ|a(f)a(g)†|Ω〉 = 〈φ|[a(f), a(g)†]|Ω〉+((((((((〈φ|a(g)†a(f)|Ω〉
= 〈f, g〉〈φ|Ω〉.

(8.52)
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Similarly,

〈φ|a(f)a(g)†a(g′)†|Ω〉 = 〈φ|[a(f), a(g)†]a(g′)†|Ω〉+ 〈φ|a(g)†a(f)a(g′)†|Ω〉
= 〈f, g〉〈φ|a(g′)†|Ω〉+ 〈φ|a(g)†[a(f), a(g′)†]|Ω〉

+(((((((((((
〈φ|a(g)†a(g′)†a(f)|Ω〉

= 〈f, g〉〈φ|a(g′)†|Ω〉+ 〈f, g′〉〈φ|a(g)†|Ω〉.

(8.53)

Now suppose that φ = a(h)†ψ, for some ψ. Then, the above is

= 〈f, g〉〈ψ|a(h)a(g′)†|Ω〉+ 〈f, g′〉〈ψ|a(h)a(g)†|Ω〉
= (〈f, g〉〈h, g′〉+ 〈f, g′〉〈h, g〉)〈ψ|Ω〉.

(8.54)

This sort of computation evidently generalizes, proving that a(f), a(f)† are the only operators on D
satisfying the two properties above.

A slight variant of this idea gives a uniqueness result on representations of the CCR/CAR “in the
vacuum sector.” By a representation of the CCR, we mean a Hilbert space X and a dense domain
D ⊆ X , and, for each f ∈ H (our original Hilbert space) two operators a(f), a(f)† ∈ End(D), such
that

• a(f)† is the adjoint of a(f), meaning that

〈φ, a(f)†ψ〉 = 〈a(f)φ, ψ〉 (8.55)

for all φ, ψ ∈ D,
• the CCR [a(f), a(g)†] = 〈f, g〉 is satisfied, for all f, g ∈ H,
• each of a(f), a(f)† is bounded on each <N -particle subspace.

A vacuum vector is a unit vector Ω ∈ H annihilated by all annihilation operators:

a(f)|Ω〉 = 0 for all f ∈ H. (8.56)

We say that Ω is cyclic if the vectors that arise by applying a sequence of creation operators to Ω
(as in eq. (8.51)) are dense in X .

Proposition 8.14. Any representation of the CCR/CAR with a cyclic vacuum vector is unitarily
equivalent to the standard one. �

Proof. It suffices to prove that the inner product [Proposition 8.14]

〈a(f1)† · · · a(fN )†Ω, a(g1)† · · · a(gM )†Ω〉 = 〈Ω|a(fN ) · · · a(f1)a(g1)† · · · a(gM )†|Ω〉 (8.57)

is uniquely determined by the listed properties. For simplicity, we assume that N ≥ M . (The
case M ≤ N is just the conjugate computation transpose.) We only consider the CCR case. The
CAR case is analogous, except for some extra signs, and commutators should be replaced by
anti-commutators.

Now we commute each a(f•) to the right, starting with a(f1). The first step is:

〈Ω|a(fN ) · · · a(f1)a(g1)† · · · a(gM )†|Ω〉

=
M∑
m=1

〈
Ω
∣∣∣∣a(fN ) · · · a(f2)

(m−1∏
j=1

a(gj)†
) 〈f1,gm〉I︷ ︸︸ ︷

[a(f1), a(gm)†]
M∏

j=m+1
a(gj)†

∣∣∣∣Ω〉

+
(((((((((((((((((((((

〈Ω|a(fN ) · · · a(f2)a(g1)† · · · a(gM )†a(f1)|Ω〉, (8.58)

where the last term is killed by a(f1)|Ω〉 = 0.
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That is,

〈Ω|a(fN ) · · · a(f1)a(g1)† · · · a(gM )†|Ω〉

=
M∑
m=1
〈f1, gm〉

〈
Ω
∣∣∣∣a(fN ) · · · a(f2)

(m−1∏
j=1

a(gj)†
) M∏
j=m+1

a(gj)†
∣∣∣∣Ω〉. (8.59)

Now repeat with a(f2), a(f3), and so on. In each step, we reduce the number of creation operators
by one and the number of annihilation operators by one. If M is strictly less than N , we end up
with something proportional to

〈Ω|a(fN ) · · · a(fM+1)|Ω〉 = 0. (8.60)

Otherwise, if M = N , we are left with[ ∑
σ∈SN

N∏
j=1
〈fj , gσ(j)〉

]
〈Ω|Ω〉 =

∑
σ∈SN

N∏
j=1
〈fj , gσ(j)〉. (8.61)

�

3. Transformation law

Proposition 8.15. Let ρ : G→ U(H) denote a unitary representation of some group G. Then,
letting U : G→ U(Fock±H) denote the induced representation on the bosonic/fermionic Fock space
Fock±H, the following transformation law holds:

U(g)−1a(f)U(g) = a(ρ(g)f), U(g)−1a(f)†U(g) = a(ρ(g)f)† (8.62)

for all g ∈ G and f ∈ H. �

Proof. By Wick’s formula. �

4. ccr/car

Given a “one-particle” Hilbert space π, let ccr(π) denote the algebra of operators on the algebraic
bosonic Fock space generated by the creation/annihilation operators, and similarly for car(π).

Exercises and problems

Exercise 8.1: Prove that the symmetrization and anti-symmetrization operators S,A are orthogo-
nal projections from T H onto the relevant Fock space SymH,∧H.
Exercise 8.2: If N = dimH is finite, what are the dimensions of Symj H and ∧jH?
Exercise 8.3: Fix d ∈ N+, and let H = L2(Rd). To each pure tensor φ1⊗· · ·⊗φj ∈ H⊗j , associate
the function ι[φ1, . . . , φj ] ∈ L2(Rdj) given by

ι[φ1, . . . , φj ](x1, . . . , xj) = φ(x1) . . . φ(xj) (8.63)

for x1, . . . , xj ∈ Rd.
(a) Prove that ι extends to unitary H⊗j = L2(Rd)⊗j → L2((Rd)j) ∼= L2(Rdj).

Thus, H⊗j consists of “wavefunctions” on a higher-dimensional space.
(b) Check that Symj H is identified with the subspace of L2((Rd)j) consisting of symmet-

ric wavefunctions, and ∧jH is identified with the subspace consisting of ant-symmetric
wavefunctions.
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Exercise 8.4: Complete the proof of Proposition 8.14 by constructing the unitary equivalence
between two reps of the CCR/CAR with a cyclic vacuum.

Hint: you can use the norm calculation to show that the map sending a(f1)† · · · a(fN )†|Ω〉 in
one rep to the corresponding vector in the second rep extends to a well-defined linear map on the
whole algebraic Fock space.
Problem 8.1: Prove that the number operator N is self-adjoint with the claimed domain.





CHAPTER 9

osc

The career of a young theoretical physicist consists of treating the harmonic
oscillator in ever-increasing levels of abstraction. [Attributed to Sidney Coleman.
The version he says in his recorded lectures is slightly different.]

In our discussion of the CCR, the one-particle Hilbert space π had no structure on it, other
than that which it has by virtue of being a Hilbert space. But in physics, we always have some
dynamics: suppose that e−itH : Rt → U(π) denotes a one-parameter group of unitary operators
on π, governing the time-evolution of one-particle states. Hitting this with the Fock functor, we
get a one-parameter group U : Rt → U(H) of unitary operators on the Fock space H = Sym(π).
Under the dynamics thus defined, multi-particle states evolve freely, without seeing what the other
particles are doing. It turns out that the generator

H : D(H)→ H (9.1)

of the multi-particle dynamics U(t) = e−itH, together with creation operators and the identity
matrix, generates an extension

C �
� // osc(π,H) // // ccr(π)

ee
(9.2)

of the CCR algebra ccr(π). This is known as the oscillator algebra, osc(π,H). The goal of this
chapter is to investigate the structure and representation theory of this object. As the name
indicates, it is a highly abstract formulation of the quantum harmonic oscillator, though further
development of that analogy will need to wait until next lecture.

1. osc

The simplest case is osc(C, 1) = osc. The propagator on the one-particle subspace π = C is just
U(t) = eit. Consider the n-particle state |n〉 = 1⊗n. This satisfies

U(t)|n〉 = (U(t)1)⊗n = (eit)⊗n

= eitn|n〉.
(9.3)

Thus, the multi-particle Hamiltonian is just the number operator H|n〉 = n|n〉. That is, H = N =
a†a. Thus,

[H, a] = [a†a, a] = [a†, a]a = −a (9.4)
[H, a†] = [a†a, a†] = a†[a, a†] = a†. (9.5)

The commutator of H = N with a, a† is therefore a creation/annihilation operator. Thus, defining

oscLie = span{I, a, a†,H = N}, (9.6)

what we have is a (complex) four-dimensional Lie algebra. The only other non-trivial Lie bracket is
the CCR. So, oscLie can be written:
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128 9. osc

[a, a†] = I, [I, a] = [I, a†] = [I,H] = 0.
[H, a] = −a, [H, a†] = a†,

(osc1)

Recalling that the (complex) CCR/Heisenberg algebra h is the three-dimensional Lie algebra
h = span{I, a, a†}, the oscillator algebra is a one-dimensional extension:

C �
� // oscLie // // h__ (9.7)

This splits, as indicated, because h ⊂ oscLie, so osc is actually a semidirect product of h and the
one-dimensional Lie algebra.

We use osc(π,H) to denote the enveloping algebra generated by osc(π,H) (endowed with the
∗-operation taking a 7→ a† but preserving H, I).

Representations of the oscillator algebra with a cyclic vacuum vector Ω are uniquely determined
by two pieces of data:

• the restriction of the representation to the Heisenberg algebra h,
• the vacuum energy Z ∈ R (a.k.a. zero point energy), defined by HΩ = ZΩ.

Indeed, the relation [H, a†] = a† forces

H|n〉 = (Z + n)|n〉. (9.8)

However, different choices of vacuum energy result in identical projective representations.

2. osc(π,H)

We now return to the general (possibly infinite-dimensional) case. Let H : π ⊃ D(H) → H
denote the generator of U , so that U(t) = eitH , and let

D∞ =
∞⋂
j=1
D(Hj) (9.9)

denote a Gårding domain thereof.
Let H denote the corresponding operator on Fock space, with domain

D(H) = Fock±D∞; (9.10)

the Fock± on the right-hand side is the algebraic Fock functor, from the category of inner product
spaces, so Fock±D(H) ⊂ H consists of finite particles states in which all of the particles lie in the
finite-energy subspace D(H).

Notice that if f ∈ D(H), then a(f), a(f)† map Fock±D(H)→ Fock±D(H). So, we can consider
the Lie algebra

oscLie(π,H) = spanC{I, a(f), a(f)†,H : f ∈ D(H)} ⊂ End(Fock±D∞(H)) (9.11)

generated by the creation and annihilation operators a(f), a(f)† together with I and the multi-
particle Hamiltonian H. The operator H is essentially self-adjoint with the domain D(H).

Let’s work out the commutation relations of H with a(f), a(f)†.

Proposition 9.1. For any f ∈ D(H),

[H, a(f)†] = a(Hf)†, [H, a(f)] = −a(Hf). (9.12)

�
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Proof. The two identities are adjoints, so we prove only the first. Begin with
U(t)a(f)†U(t)† = a(e−itHf)†, (9.13)

which is a special case of Proposition 8.15. Differentiating both sides with respect to t, and setting
t = 0,

• the left-hand side gives the commutator −i[H, a(f)†], and
• the right-hand side gives

d
dt

∣∣∣
t=0

a(e−itHf)† = a

( d
dt

∣∣∣
t=0

e−itHf

)†
= −a(iHf)† = −ia(Hf)†, (9.14)

using Stone’s theorem/the definition of D(H) and the linearity of a†.
(To make these computations completely rigorous, apply both sides of eq. (9.13) to an arbitrary
element of D(H), and then differentiate. Stone’s theorem guarantees that the relevant derivatives
exist.) �

Consequently, H, together with I, a(f), a(f)† for f ∈ D∞, forms a (complex) Lie algebra of
operators on Fock+(D∞), and this is what we call oscLie(π,H). Drop the subscript to pass to the
enveloping algebra osc(π,H). Evidently, this is an extension

C �
� // osc(π,H) // // ccr(π)

ee
(9.15)

of ccr(π), just as in the simplest case.
The exact same argument as before shows that a representation of osc(π,H) with a cyclic

vacuum vector is uniquely determined by the ccr portion and the vacuum energy.

Exercises and problems

Exercise 9.1: (a) Show that Z = H− a†a is a central element of osc1.
(b) (Optional.) Compute the center of the oscillator algebra.

Problem 9.1: Suppose that the one-particle Hilbert space π comes with a unitary representation
of (Rk,+), for some k ∈ N+. (This includes the case where π is a Poincaré rep.)

(a) Compute, with proof, the spectrum of the representation on the bosonic Fock space Sym π
of the representation induced by the Fock functor.

(b) Repeat for the fermionic Fock space.
Thus, when π is a Poincaré irrep, the Fock representation has exactly the spectrum described back
in Chapter 3.





CHAPTER 10

The oscillator representation

Consider the oscillator algebra osc(π,H) based on some “one-particle” Hilbert space π and
one-particle Hamiltonian H ≥ 0. By Wick’s theorem, all nondegenerate representations of osc(π,H)
with a cyclic vacuum vector are unitarily equivalent to a standard Fock representation.

An example where N = dim π is finite is Schrödinger’s theory of the quantum harmonic oscillator
(QHO) in N spatial dimensions. The ambient Hilbert space is H = L2(RNx ) and the (multi-particle)
Hamiltonian is

H = 1
2

(
−4+ V (x)

)
= 1

2

(
−

N∑
n=1

∂2

∂x2
n

+ xᵀω2x︸ ︷︷ ︸
V (x)

)
, (10.1)

ω ∈ RN×N , ω = ωᵀ > 0. (10.2)
The PDE i∂tψ = Hψ describes the time-evolution of the wavefunction ψ(t,−) ∈ H of a non-
relativistic particle under the influence of a restoring force F = −∇V proportional to x (Hooke’s
law). The QHO is one of the few examples in non-relativistic quantum mechanics where the problem
is exactly solvable. The source of this “integrability” is the existence of ladder operators which, with
H, form a representation of the oscillator algebra. Without loss of generality, we restrict attention
to the case where ω = diag(ω1, · · · , ωN ). Then,

V (x) =
N∑
n=1

ω2
nx

2
n (10.3)

and the ladder operators are defined as

an = 1√
2

(√
ωnxn + 1

√
ωn

∂

∂xn

)
, a†n = 1√

2

(√
ωnxn −

1
√
ωn

∂

∂xn

)
. (10.4)

Proposition 10.1. These satisfy the oscillator algebra relations:
[an, a†m] = δnm, [an,H] = −ωnan, [a†n,H] = ωna

†
n. (10.5)

�

Proof. Straightforward computation. �

This is the oscillator representation of osc. Once we know the existence of a cyclic vacuum
vector (and the value of the vacuum energy), the spectrum of H, including the explicit form of all
eigenfunctions, is uniquely determined. The vacuum vector Ω, the “ground state” of the oscillator,
is characterized by being killed by all annihilation operators. This sets up a system of ODEs which
is easily solved to yield:

Ω(x) =
(detω
πN

)1/4
e−x

ᵀωx/2 (10.6)

Thus, at the level of dynamics:

All bosonic Fock spaces built from a finite-dimensional one-particle Hilbert space are equivalent
to an oscillator.
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Ω(x)

x

Figure 10.1. The ground state of the oscillator.

In this lecture, we review the theory of the oscillator.
The dim π < ∞ case suggests an interpretation of the bosonic Fock space H = Sym π even

when π is infinite-dimensional: it describes an oscillator whose degrees-of-freedom are labeled by
complex lines in π. Perhaps more importantly, we can always approximate, to arbitrary experimental
accuracy, an infinite-dimensional π by a space of large but finite dimension. Consequently, the
Fock space H, and the multi-particle dynamics on that space, can always be approximated by an
oscillator with a large number of degrees-of-freedom.

1. Intertwining the QHO and Fock representations

This section recalls the unitary equivalence
U : SymCN → L2(RN ) (10.7)

which intertwines the Fock and oscillator representations of oscN (ω). For simplicity, we restrict
attention to the N = 1 case. The general case is essentially verbatim, involving only notational
complications. When N = 1, different choices of ω > 0 give isomorphic Lie algebras, so we write
osc1 = hoC. For concreteness, we will take ω = 1. The generators Z, x, p,H ∈ osc1 satisfy

i[p, x] = Z (CCR)

i[H, x] = p, i[H, p] = −x, (10.8)
the other pairs of generators commuting. The case where ω is general is gotten by rescaling x,H.

In both the Fock and oscillator representations, we use a†, a to denote the sole pair of cre-
ation/annihilation operators, representing a = 2−1/2(x + ip), a† = 2−1/2(x − ip) ∈ osc1, and we use
H to denote the representative of H. In either representation, the central charge Z is represented by
the identity operator.

Let |n〉 ∈ SymC, for n ∈ N, denote the standard orthonormal basis. So |0〉 is the vacuum vector,
and

a†|n〉 =
√
n+ 1|n+ 1〉, a|n〉 =

{
0 (n = 0),
√
n|n− 1〉 (otherwise).

(10.9)

The energy 〈n|H|n〉 is just n, and the other matrix elements 〈m|H|n〉 are of course 0. This completely
specifies the Fock representation.

Consider now the oscillator representation, on which H = 1
2(−∂2

x + x2 − 1) and a, a† =
2−1/2(x± ∂x). We can define a sequence of unit vectors φ0 = Ω, φ1, · · · ∈ L2(R) as follows. Let

ψn(x) = (a†)nΩ(x) =
(x− ∂x√

2

)n
Ω(x), (10.10)

where Ω(x) = π−1/4e−x
2/2. Let φn = ψn/

√
n!. Then, φ0, φ1, φ2, · · · is an orthonormal set; this is a

special case of Wick’s theorem. Indeed, we can commute the annihilation operators through creation
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operators, modulo c-numbers to get

〈ψn, ψm〉L2(R) = 〈Ω, an(a†)mΩ〉L2(R)

=
m−1∑
j=0
〈Ω, an−1(a†)j [a, a†](a†)m−j−1Ω〉L2(R) +(((((((((

〈Ω, an−1(a†)maΩ〉

= m〈Ω, an−1(a†)m−1Ω〉L2(R).

(10.11)

Repeat. If n > m (the n < m case is just the conjugate), then we conclude that 〈ψn, ψm〉L2 ∝
〈Ω, an−mΩ〉 = 0. In the m = n case, we arrive at

‖ψn‖2 = n!〈Ω,Ω〉 = n!, (10.12)

so ‖φn‖ = 1.
So, U : |n〉 7→ φn extends to a partial isometry U : SymC→ L2(R). It is an isometry onto its

image, but we do not yet know that it is surjective. (This is the cyclicity of the vacuum.)
The φn can be written in terms of the Hermite polynomials Hn(x) = (−1)nex2

∂nxe
−x2 .

Proposition 10.2. For each n ∈ N,

φn(x) = 1√
2nn!

( 1
π

)1/4
e−x

2/2Hn(x). (10.13)

�

We will prove this using Rodrigues’ formula:
H0(x) = 1

Hn(x) =
(
2x− ∂

∂x

)
Hn−1(x), n ∈ N+.

(10.14) x

φ0
φ1
φ2
φ3

Figure 10.2. The first few φn.

Proof. The definition of ψn is closely related to Rodrigues’s formula. Indeed, since Ω is
nonvanishing, we can write

Ω−1ψn = Ω−1(a†)nΩ = (MΩ−1a†MΩ)n1, (10.15)

where, for clarity, we have written the multiplication map • 7→ Ω±1• as MΩ±1 . The key point is
that, when we take the nth power of MΩ−1a†MΩ, the adjacent powers of Ω cancel.

In order to compute the differential operator MΩ−1a†MΩ = M
ex

2/2a
†M

e−x2/2 , consider applying
it to a function f ∈ C∞(R). The result is

M
ex

2/2

(x− ∂x√
2

)
M
e−x2/2f =

(2x− ∂x√
2

)
f. (10.16)

So, MΩ−1a†MΩ = (2x− ∂x)/
√

2. Equation (10.15) becomes

Ω−1ψn(x) = 1
2n/2

(
2x− ∂

∂x

)n
1︸ ︷︷ ︸

Hn(x), by Rodrigues

. (10.17)

I.e. ψn(x) = 2−n/2π−1/4e−x
2/2Hn(x). Remembering that φn = ψn/

√
n! completes the proof. �

Proposition 10.3 (Completeness). φ0, φ1, φ2, · · · are an orthonormal basis for L2(R). �

Proof. Let C = spanC{φn}∞n=0. We want to show that C⊥ = {0}.
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Because each Hermite polynomial Hν has degree exactly ν, we have xn ∈ spanC{H0, . . . ,Hn}
for each n ∈ N. Consequently,

e−x
2/2xn ∈ spanC{φ0, . . . , φn} ⊂ C. (10.18)

For each s ∈ C,

lim
N→∞

e−x
2/2

N∑
n=0

snxn

n!︸ ︷︷ ︸
∈C

= e−x
2/2

∞∑
n=0

snxn

n! = e−x
2/2+sx, (10.19)

where the limit is in the L2(R) norm; we will prove this momentarily. Assuming it, it follows that
e−x

2/2+sx ∈ C. So, if φ ∈ C⊥, then φ ⊥ e−x2/2+sx for every s ∈ C. That is,∫
R
φ(x)e−x2/2+s∗x dx = 0 (10.20)

for every s ∈ C. That this holds for all s ∈ iRmeans that the Fourier transform of φ(x)e−x2/2 ∈ L1(R)
vanishes identically. Since the Fourier transform F : L1(R)→ C0(R) is injective, we conclude φ = 0.

Now let us prove eq. (10.19). We want to estimate∥∥∥∥e−x2/2
∞∑
n=N

snxn

n!

∥∥∥∥
L2(Rx)

≤ ‖e−x2/4‖L2(Rx)

∥∥∥∥ ∞∑
n=N

snxn

n! e−x
2/4
∥∥∥∥
L∞(Rx)

≤ ‖e−x2/4‖L2(Rx) sup
x∈R

∞∑
n=N

|sx|n

n! e−x
2/4.

(10.21)

Since e−x2/4 is in L2(Rx), it suffices to show that

lim
N→∞

[
sup
x∈R

∞∑
n=N

|sx|n

n! e−x
2/4
]

= 0. (10.22)

The function fn(x) = |x|ne−x2/4 is maximized at x = ±
√

2n, where it equals (2n)n/2e−n/2. So,
∞∑
n=N

|sx|n

n! e−x
2/4 ≤

∞∑
n=N

1
n!

(
|s|
√

2n
e

)n
. (10.23)

The series
∑∞
n=1(n!)−1(|s|√2n/e

)n is convergent, the n! in the denominator beating the nn/2 in the
numerator. So, the right-hand side of eq. (10.23) is the tail of a convergent series, which therefore
converges to 0 as N →∞. �

So, the map U , eq. (10.7), is onto L2(R). This completes the proof of the equivalence of the Fock
and oscillator representations of osc1. Essentially the same argument applies verbatim to oscN (ω).

2. The position and momentum operators

In Schrödinger’s QHO, the position and momentum operators xn, pn = −i∂xn can be solved
for:
√

2xn = (an + a†n),
√

2ipn = an − a†n. This suggests defining on the Fock space H = Sym π, for
arbitrary (possibly infinite-dimensional!) π, the “position” and “momentum” operators

x(f) = a(f) + a(f)†√
2

, p(f) = a(f)− a(f)†√
2i

. (10.24)

These are operators on the finite-particle subspace D ⊆ H. They are manifestly symmetric on this
domain.

Note that x(f), p(f) do not depend complex-linearly on f ; indeed, p(f) = x(if). Hence, we only
consider x below.
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Proposition 10.4. For all f ∈ π, the operator x(f) is essentially self-adjoint with domain
D. �

Proof. A ψ ∈ D is called analytic if
∞∑
k=0

sk‖x(f)kψ‖/k! <∞ (10.25)

for some s > 0. One version of Nelson’s analytic vector theorem [RS75, Thm. X.39] states that a
symmetric operator D → D on a dense domain D is essentially self-adjoint if its domain contains
a dense subspace of analytic vectors. (This allows you to directly define the strongly-continuous
one-parameter group of unitary operators s 7→ eisx(t) whose generator ends up being x(f).) In the
case at hand, every ψ ∈ D is analytic. Indeed, if ψ is in the ≤ N -particle subspace of the Fock
space, then

‖x(f)kψ‖ ≤ 2k/2‖f‖k‖ψ‖
√

(N + k)!, (10.26)

as follows from the bounds on a(f), a(f)† acting on the ≤ (N + j)-particle subspace for j ≤ k. The
k! in the denominator of the power series in eq. (10.25) beats out the ≤ Ck

√
k! growth of ‖x(f)kψ‖.

Consequently, the power series in eq. (10.25) has infinite radius of convergence. �

Proposition 10.5. The position and momentum operators satisfy the commutation relations

[x(f), x(g)] = 2i=〈f, g〉πI (10.27)

for all f, g ∈ π. �

Proof. By the CCR,

2[x(f), x(g)] = [a(f), a(g)†]− [a(g), a(f)†]
= (〈f, g〉π − 〈g, f〉π)I = 2i=〈f, g〉I.

(10.28)

�

Consider a vector ψ ∈ H = Sym π of the form

ψ = a(f1)† · · · a(fN )†Ω, (10.29)

N ∈ N, for f1, · · · , fN ∈ π.

3. The Wiener–Itô–Segal isomorphism (?)

Suppose that π is infinite-dimensional. What would it mean to have an “oscillator” representation
of osc(π,H)? The Hilbert space should take the form

H = L2(X , µ), µ : Borel(X )→ [0, 1] (10.30)

for some infinite-dimensional real vector space1 X in place of RN , and the abstract position operators
on the Fock space should be realized as concrete position-like operators on X .

A linear coordinate on X is the same thing as a R-valued linear functional. So, we should have
one position operator Q(f) for each f ∈ X ∗.

1Let’s assume that it is a Hausdorff locally convex topological vector space (LCTVS).
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3.1. Discussion of the Hilbert space. When π was finite-dimensional, we could just take
X = π, since all vector spaces (say, over R) of the same finite dimension are isomorphic. The obvious
choice for µ is the Lebesgue measure. Of course the Lebesgue measure is only unique up to scale,
but this is unimportant — it corresponds to the freedom to measure the oscillator’s displacement in
whatever units we wish.

When π is infinite-dimensional, matters are less clear. For one thing, there is no “Lebesgue
measure” in infinite dimensions:

Proposition 10.6 (Weil ’40). Any locally-finite translation-invariant Radon measure on an
infinite-dimensional (Hausdorff) LCTVS X must be trivial. �

See e.g. [Yamasaki ’85].
The fix is to incorporate the Gaussian factors present in the QHO eigenfunctions ∝ Hn(x)e−x2/2

into the measure. Consider the QHO in N ∈ N+ dimensions, and let

M : L2(RNx )→ L2(RNx , µ), dµ = e−x
ᵀωx dNx

: φ(x) 7→ ex
ᵀωx/2φ(x)

(10.31)

denote the unitary operation that strips away the Gaussian factors. The new Hamiltonian on
L2(RN , µ) is

MHM−1 =
N∑
n=1

(
− ∂2

∂x2
n

+ 2ωnxn
∂

∂xn
+ ωn

)
(10.32)

(the “Ornstein–Uhlenbeck operator”). Understanding the spectrum of the original Hamiltonian H
on L2(RN ) is equivalent to understanding the spectrum of MHM−1 on L2(RN , µ). All we have
done is translate the original problem into slightly different language. However, this translation
does accomplish something — while the Lebesgue measure does not exist in infinite dimensions,
Gaussian measures do. It is the “conjugated” description of the oscillator that generalizes to the
dim π =∞ case.

So, when dim π =∞, a natural thing to try is X = π with a Gaussian measure on X , something
like

dµ(f) ∝ e−〈f,f〉π , f ∈ π. (10.33)
This does not quite work, because in infinite-dimensions Gaussian measures live on a bigger space
than the Hilbert space whose inner product determines the covariance matrix. For this reason, one
typically embeds

X ↪→ S ′ (10.34)
into the dual S ′ of a nuclear space S. As long as 〈−,−〉π is continuous with respect to S’s topology,
general theorems, like that of Bochner–Minlos [Simon], guarantee that S ′ is sufficiently large to
host the desired Gaussian measure.

Example 10.7. White noise on the circle S1 = Rθ/2πZ is the Gaussian random variable with
covariance matrix 〈−,−〉L2(S1), i.e. the random series

W =
∞∑
n=0

γn cos(nθ) +
∞∑
n=1

γ̃n sin(nθ), (10.35)

where the γ•, γ̃• are i.i.d. R-valued standard Gaussian random variables. This almost surely converges
unconditionally in D′(S1) to a well-defined distribution. More precisely, it almost surely converges
absolutely in the Sobolev space Hs(S1) if s < −1/2.

However, W almost surely fails to lie in Hs(S1) if s ≥ −1/2 and in particular fails to lie in
L2(S1). White noise is a random distribution, not a random function. �
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Figure 10.3. Band limited white noise WN is white noise limited to a finite number
N � 1 of terms. That is, WN =

∑N
n=0 γn cos(nθ) +

∑N
n=1 γ̃n sin(nθ). Plotted above

is a sample of the random function WN . Of course, WN is smooth, but the manifest
spikiness illustrates how, as N →∞, the random function WN fails to converge in
L2 to a function. The limit W is only a distribution.

Let us now restrict attention to the case when π is a Hilbert subspace of S ′(Rd; T ); for example
the Schrödinger picture wave-mechanical realizations of the Poincaré irreps. Then,

X = S ′(Rd; T ) (10.36)

suffices to host whatever Gaussian measures we cook up. Thus, X hosts a Gaussian measure
∼ e−〈•,•〉π/2.

Note that a state of the quantum field is a wavefunction Ψ : S ′(Rd; T )→ C on the very large
space S ′(Rd; T ). Thus, it is very hard to visualize. However, we can get a better idea of what Ψ
looks like by sampling the measure |Ψ(u)|2 dµ(u). The result will be some random distribution
u ∈ S ′(Rd; T ).

3.2. Discussion of the isomorphism. A monomial of degree N ∈ N+ is an element of
L2(S ′(Rd; T ), µ) of the form

S ′(Rd; T ) 3 u 7→ u(f1) · · ·u(fN ) (10.37)

for some f1, . . . , fN ∈ S(Rd; T ), not necessarily distinct. We will denote this f1 � · · ·� fN . This
is just like a monomial in elementary algebra, except the different variables are labeled by the
f ∈ S(Rd; T ).

A polynomial of degree N is a linear combination of monomials of degree ≤ N . We also consider
the constant function u 7→ c to be a monomial (of degree 0), whatever c ∈ C is.

A Wick monomial of degree N ∈ N+, denoted :f1� · · ·� fN :, is the projection of the monomial
f1 � · · · � fN onto the orthogonal complement of the closure of the subspace of L2(S ′(Rd; T ), µ)
consisting of all polynomials of degree < N .2

2Also let :1 := 1.
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Proposition 10.8 (The Wiener–Itô–Segal isomorphism). There exists a unitary map ι :
Sym π → L2(S ′(Rd), µ) given by

ι : φ⊗n1
1 � φ⊗n2

2 � · · · 7→:
∞∏
j=1

φ�nj : (10.38)

on pure tensors. This isomorphism has the following properties.
(a) Spatial isometries all commute with ι.
(b) The map sends the position operator Q(f) to the multiplication map Mf : L2(S ′(Rd), µ) 	

defined by (MΨ)(u) = 〈u, f〉Ψ(u) for all u ∈ S ′(Rd; T ).
�

Proof. This is a generalization of the proof that the eigenfunctions of the one-dimensional
QHO generated by applying creation operators to the ground state exhaust L2(R). [*] �

10.A. The regularity of gaussian noise [*]

In this appendix, we discuss the support properties of the Gaussian measures used in the
Wiener–Itô–Segal isomorphism. The setup involves the “one-particle” Hilbert space π, which is
sandwiched

S(Rd) ⊂ π ⊆ S ′(Rd) (10.39)
between S,S ′. (Note that this is not a Gelfand triple, because, unless π = L2, the distributional
pairing, which is based on the L2-inner product, does not agree with π’s native inner product.)

Remark 10.9. In finite-dimensions, the covariance of a Gaussian measure with density ∝
e−x

ᵀωx/2 is
σ = ω−1 (10.40)

not ω. Thus, if we are attempting to construct a Gaussian measure ∼ e−〈•,•〉π/2, the covariance
matrix is S2 3 (f, g) 7→ 〈f, g〉π′ where π′ is the dual of π with respect to the distributional duality
pairing.

For example, when π = Hs(Rd), then π′ = H−s(Rd). �

Example 10.10. The Brownian bridge (“pink noise”) is the Gaussian random distribution on
the circle S1 whose derivative is white noise:3

B =
∞∑
n=1

1
n

(γn sin(nθ)− γ̃n cos(nθ)). (10.41)

This is a Gaussian random variable with covariance matrix 〈∂−1•, ∂−1•〉L2 = 〈−,−〉Ḣ−1 ; indeed,
the variance of n−1γ is n−2 for a standard Gaussian γ. Thus, the Brownian bridge “wants” to have
finite energy, which would mean B ∈ H1(S1).

It almost surely lies in the larger space L2(S1). In fact, it almost surely lies in Hs(S1) for any
s < 1/2. But it almost surely fails to lie in Hs(S1) for s ≥ 1/2. �

[*]
The field configurations of a free quantum field with high spin are almost surely more irregular

than the field configurations of a free quantum field with lower spin.

3For any c ∈ R, the shifted Brownian bridge B+ c also has the same derivative. The extra condition that uniquely
specifies the Brownian bridge is that

∫ 2π
0 B(θ) dθ = 0.



APPENDIX A

Notation

Matrices
• σ1, σ2, σ3: the Pauli σ-matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.1)

• P,T : the parity and time-reversal matrices, ∈ O(1, d).

T =
[
−1 0
0 Id

]
.

• C = PT .
Groups.
• O(1, d): The full Lorentz group

O(1, d) =
{

Λ ∈ R(1+d)×(1+d) : Λᵀ
[
−1 0
0 Id

]
Λ =

[
−1 0
0 Id

]}
,

including parity and time-reversal.
• SO(1, d): The identity component of the Lorentz group (restricted Lorentz group).
• P(1, d): The restricted Poincaré group in 1+d spacetime dimensions;

P(1, d) ∼= R1,d o SO(1, d)
naturally.
• Pfull(1, d): The full Poincaré group, including parity and time-reversal.

Spacetime and Geometry.
• x = (t,x): A spacetime coordinate in Minkowski spacetime R1,d.
• z2: the squared Minkowski norm of a vector z (mostly plus convention), z2 = −(z0)2 +‖z‖2.
• η: The Minkowski metric matrix diag(−1, 1, . . . , 1).
• γ = (1− ‖v‖2)−1/2: The Lorentz factor associated with velocity v.

Function spaces.
• S(RNx ): The space of Schwartz functions on RN , i.e. functions which, along with all of their
derivatives, are decaying as ‖x‖ → ∞ faster than any power of ‖x‖.
• S ′(RN ): The space of tempered distributions, i.e. the dual space of S(RN ).
• Hm(RN ), m ∈ R: The Sobolev space (1−∆)−m/2L2(RN ).

For each of these spaces, and for any finite-dimensional vector space T , we have T -valued
analogues, denoted by adding “; T ” between the parentheses.
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