MASSIVE WAVE PROPAGATION NEAR NULL INFINITY

ETHAN SUSSMAN

ABSTRACT. We study, fully microlocally, the propagation of massive waves on the octagonal com-
pactification
0 = [R14;.7;1/2]

of asymptotically Minkowski spacetime, which allows a detailed analysis both at timelike and
spacelike infinity (as previously investigated using Parenti-Shubin—Melrose’s sc-calculus) and, more
novelly, at null infinity, denoted .#. The analysis is closely related to Hintz—Vasy’s recent analysis of
massless wave propagation at null infinity using the “e,b-calculus” on Q. We prove several corollaries
regarding the Klein—Gordon IVP. Our main technical tool is a fully symbolic pseudodifferential
calculus, Waesc(0), the “de,sc-calculus” on O@. The ‘de’ refers to the structure (“double edge”)
of the calculus at null infinity, and the ‘sc’ refers to the structure (“scattering”) at the other
boundary faces. We relate this structure to the hyperbolic coordinates used in other studies of the
Klein—Gordon equation. Unlike hyperbolic coordinates, the de,sc- boundary fibration structure is
Poincaré invariant.
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1. INTRODUCTION

The subject of this paper is the propagation of massive waves on Minkowski-like spacetimes
(M, g). We will be more precise later regarding the meaning of “Minkowski-like” in the previous
sentence — we use the term admissible below — but for now we just note that such spacetimes are

e non-trapping, in the sense that null geodesics asymptote in the usual way,

e globally hyperbolic, with ¢ a smooth time function and each £ = {(T,x) : x € R?} a Cauchy
hypersurface — so that the initial value problem with data specified on ¥ is well-posed —
and

e asymptotically flat, in both the spacelike and timelike directions, with a classical error (see
§7), so that the metric asymptotes to the Minkowski metric at large times and at distances.

The main microlocal estimates below depend only on the asymptotic structure of the metric, but
the global hyperbolicity and non-trapping assumptions are required for the stated applications. It
must stressed that we do not allow stationary or approximately stationary spacetimes besides the
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exact Minkowski spacetime itself, as these do not asymptote to the Minkowski spacetime at large
times. Of course, the exact Minkowski spacetime (RY?, gyr), with

d
v = —dt* + ) da’ (1)
j=1
counts as admissible. Our sign convention for Lorentzian metrics is the mostly positive one. While
the analysis below goes through for somewhat general manifolds M, we focus on the case when M
is R with an admissible metric.
Fix m > 0,d € NT. Given an admissible Lorentzian metric ¢ on RY?, let

0
_ 1/2 jij 2
= ”Zo o6 5]

ox;

(2)
1 9

d d
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denote the associated d’Alembertian, with the sign convention being such that the Laplace—Beltrami
portion A, is positive semidefinite.
Consider the Klein—Gordon equation

Ogu + Qu + m*u = f, (3)

where v is the unknown function or distribution, f is the forcing, and @ is drawn from a subspace of
appropriate first order differential operators whose coefficients decay at infinity (more precisely, are
short range). For instance, ) can be any Schwartz function, considered as a multiplication operator,
so included in this setup is

d
2 —

O+m?+V = W 2‘{ s +m>+V (4)
for V€ S(RV?), which governs the evolution of massive waves on the exact Minkowski spacetime
in the presence of the potential V. Here, O = Oy, = 07 — (92, + -+ + 83 is the exact flat space
d’Alembertian.

The behavior of solutions to the associated IVP

Ogu + Qu + m?u = f,
u|t=0 = U(O), (5)
dpuli=0 = ul,

is a rather classical topic. Nevertheless, it has apparently remained open to establish (beyond the
exact Minkowski case) that, e.g. in the case when the forcing and initial data are Schwartz, the
solution u admits a full asymptotic expansion at infinity. “At infinity” means at the boundary of
the radial compactification

M = RLd = RI+d = R+ U {o0S?} (6)

of the spacetime. Such a result appears below.

For the exact Klein-Gordon operator, a proof of this claim can be found in [HO7, §7.2]. The
proof there, which utilizes the global Fourier transform to produce the solution to the IVP in
terms of oscillatory integrals whose asymptotics can be extracted via the method of stationary
phase, does not generalize to the case when the PDE has variable coefficients. As is well-known,
the Parenti-Shubin-Melrose sc-calculus [Mel94][Vas18] straightforwardly allows us to estimate the
solution to the IVP in weighted L?-based Sobolev spaces, even in the variable coefficient case. The
basic estimates are discussed in [Vas18; Vas20], and standard modifications using module regularity
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FIGURE 1. The sc-Hamiltonian flow within one sheet *°X, | of the sc-characteristic
set, depicted in the case d = 1. The central disk (dark gray) represents one component
of %Y + N*S*M (which is disconnected if d = 1), i.e. one half of the portion of
%Y m,+ at fiber infinity. The other half is hidden from view. The lighter gray annulus
depicts the portion of *¥,  over spatial infinity. The radial sets, at which the
properly scaled Hamiltonian vector field vanishes, are colored red.

[HMVO04; GR+20; GRHG] allow one to establish asymptotic expansions (cf. [Mel94]) away from
null infinity,

S = cly{|t| = r} N OM. (7)
Here, r = ||x|| is the spatial Euclidean radial coordinate. The upshot is that, under appropriate
hypotheses, if u solves the IVP, with f € S(R?), then

e u is Schwartz away from the (closed) past and future caps Cy = cly{£t > r} N IM, and
e within {|t| > r}, we can write

u = |t|_d/26_imm’u, + |t‘—d/2e+immu+ (8)

for uy € C*°(M\.9).
We will assume throughout that the reader is familiar with the sc-calculus. See [Vasl18] for an
exposition of this theory.
Exactly at null infinity, the notion of module regularity needed to extract asymptotics becomes
problematic. The reason for this is that the radial set of the sc-Hamiltonian flow hits fiber infinity
there. Relatedly, the phases in eq. (8) become singular at the light cone:

tdt — rdr
2_ .2
tmdvitz —r2=4m NGCErE (9)
and it is these sc- 1-forms that parametrize the radial sets over C+. Dually, the first order differential
operator that one inverts in C4 = Ci to produce asymptotic expansions (see §3),
1 0 0
—(t=+ r—) im 10
st +75y) Fim (10)
which is related to the hyperbolic symmetries of the PDE, becomes singular at the light cone.
Multiplying by (t2 — 7"2)1/ 2 cures this but causes other problems in the asymptotic extraction process.
At first glance, these issues seem like they should be merely technical. This does not appear to be
the case. Even if it is, the fact remains that the situation at null infinity requires clarification.
That the radial set hits fiber infinity correctly suggests that the solution to the Klein—Gordon
IVP with generic Schwartz initial data and forcing has sc-wavefront set in the corner

SCSEM = 95T oM C T M (11)

of the radially compactified sc-cotangent bundle T M. Such wavefront set is an obstruction to
decay. But, as is well-known at least in the exact Minkowski case [Win&8][K1a93][H97], massive
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waves (unlike massless waves) do not have an associated “radiation field”: the solution to the IVP
is rapidly decaying at null infinity, even though there exists sc-wavefront set over it. What, then, is
the sc-wavefront set detecting? The answer is that it is detecting that any neighborhood of null
infinity in M contains points at timelike infinity, at which solutions to the IVP do not decay rapidly.
This suggests that, in order to study massive wave propagation along null geodesics, we should work
with a compactification of R that separates individual null geodesics from timelike infinity.

One compactification that does the trick is the usual Penrose diagram P <= RY? of Minkowski
space. But, the Penrose diagram does not offer adequate resolution at timelike infinity, where
solutions to Klein—-Gordon display their oscillatory asymptotic tails. Rather, as in [BVW15][HV23],
we use a third compactification @ <= R that refines both the radial and Penrose compactifications
in the sense that one has compatible blowdown maps @ — P,M. The space O can thus be
constructed in two equivalent ways: blowing up .# C M, in which case we write

0= [M;.#;1/2], (12)

or blowing up spacelike and timelike infinity in P in an appropriate way. In the former case, it is
convenient to modify the smooth structure at the front faces of the blowup so that the original bdfs
ont of the front faces of [M;.#] become the squares

Nt = 0% (13)

of the new bdfs gys. This is the ‘1/2’ in “O = [M; .#;1/2]” The manifold-with-corners (mwc) O
is depicted in Figure 2, where we have labeled its faces Pf for past timelike infinity, nPf for past
null infinity, Sf for spacelike infinity, nFf for future null infinity, and Ff for future timelike infinity.
We will refer to O as the octagonal compactification of Minkowski spacetime, as in the d = 1 case
it is literally an octagon, and the faces nPf, Sf, and nFf are disconnected, each consisting of two
components. In this case, it is a slight abuse of terminology to refer to nPf, Sf, and nFf as faces,
but it is a harmless one.

For each face f of O, let pf denote a boundary-definition-function (bdf) of f. The statements below
will mostly not depend on the particular choices of bdfs. One globally-defined choice of o,pf, OnFt iS

t 1\2 1 1/4
_ il - - 14
o ((\/1+t2+7‘2$\/§) +1+t2—|—r2> ’ (14)
where o_ = onpr and oy = oyps. Alternatively, the bdfs ops, onps, Onrf, OFf can be chosen such that,
near Ff and away from clg{r = 0},
t—r _ 1
t+ 7’7 OFf =

OnFf = 5 (15)

t—r
and similarly near Pf, with ¢ replaced by —t. So, to say that some function is smooth at the corner
Ff N nFf means that it admits a joint Taylor series in these coordinates. Similar statements apply
regarding the other corners of Q. Near any point in the interior of nPf or nFf, 1/(r + [t[)'/? can
be taken as a local boundary-defining-function (bdf). Thus, smoothness at nPf® U nFf° is closely
related to the existence of asymptotic expansions with respect to light-cone coordinates.

We discuss O further in §2.

We can now state our main theorem:

Theorem 1. Given the setup above, and given any x € C®(Q) supported in clp{t®> > r?}° =
clo{t? > 72} \ clo{t? = 7} and identically equal to 1 in some neighborhood of Pf UFf, u has the
form

d/2 d/2 _imViZ—r2 d/2 d/2 4imVE—2
u:uo—l—xgp/f ,QF/fe imvit Tu,—l—xgp/f QF/f eTmVIE=TTy, | (16)

for some ug € S(RM) and some uy € 05%;0820%%,C(0) = Nyen 05 proki 0k C(0). [ ]
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FIGURE 2. A mwec diffeomorphic to @ when d = 2, with labeled faces (left). The
union nPf UnFf is the lift of .# to @. The lift of future infinity is Ff, the lift of past
infinity is Pf, and the lift of spacelike infinity is Sf. The support conditions on x in
Theorem 1 (right); supp x is denoted in red crosshatch, and x = 1 identically on the
solid red region. The set clg{t? > r2}° is a slightly darker gray.

In particular, solutions to the Klein—-Gordon IVP with Schwartz initial data and Schwartz forcing
decay rapidly along null geodesics, and the scattering data u_|c, ,u|c, are Schwartz functions on
C+. Likewise, the higher order terms in the asymptotic expansions at C+ are Schwartz functions on
C. The support of y is chosen such that (t2 —72)1/2 is a (one-step) polyhomogeneous function on a
neighborhood of supp x. Theorem 1 therefore shows that v is of exponential-polyhomogeneous type
on O, which is a precise way of saying that the five boundary hypersurfaces of O give a complete set
of asymptotic regimes. The proof of the theorem is in §7, using the results of the preceding sections.

If the initial data is not rapidly decaying, then the solution to the IVP is not necessarily rapidly
decaying at Sf, nor at nPf UnFf. Conversely, if the initial data (u(o), u(l)) and forcing f satisfy

fe Hsng—l,s—l-l(Rl—l-d) _ (1 + r2 + t2)—(s+1)/2Hm—1(R1+d) (17)
(u(0)7u(1)) e HST(CL,S-H(Rd) > H;’:L—].,S'i'l(Rd) (18)

for m € N and s € R, where H™*(R%) = (r)=*H™(R?), then one expects u € H*(R'*9) near the
interior of Sf. So the amount of decay of u in the spacelike region is controlled by the amount of
decay of the initial data and the forcing.

At null infinity, a lack of regularity also obstructs decay. For example, using the vector-field
method, Klainerman [X1a93, Theorems 2 & 3| shows that, in the exact Minkowski case with zero
forcing (and under an assumption about supports), there exists some ¢ = ¢y ¢ > 0 such that

—k/270
Ju(t, x)| < ct=/? (84 7)™ L ey o (W o) (t>0,r=1), (19)
< (t =7+ DF2(t +r)"* 2 log(t —r + 1)I§7k+(d/2w (u,Hy) (t>0,t>r),
where
I8 kv 1) (1 20) = OO s razrisrasat gy + 1 rsiaz -t rarz -1 ga) (20)
ket [d/2] HE: (Rd) Hge (RY)

is a quantity depending on the L?(R?%) norms of u and its derivatives up to order k + [d/2] on
the Cauchy hypersurface 3o = {(¢,x) : t = 0}, and similarly for I ket [d)2] (u, Hy) on Hy = {(t,x) :
t2 —r2 =1}. So,
d+k)/2
_of [Tt =1z o
ut,x)| =0 %50, o - (21)
OnFf  OFf t=>1,t>r)

If our initial data only has a finite amount of Sobolev regularity, we can only conclude decay at null
infinity to some corresponding finite order, with one extra order of decay for every extra order of
regularity.
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As an example of what can happen when our forcing is not smooth, consider the advanced and
retarded propagators Dy, D_ € S'(R%) for [ + m2. The forward and reverse problems for (] + m?
read

{Du(t, X) 4+ m2u(t,x) = 0(t) f(x) 22)

u(t,x) =0 for £t <0,

for f € S(RY), where the positive choice of sign gives the forward problem and the negative choice
gives the reverse problem. The distributions D4 yield solutions to these problems in the sense that
the unique u € D' (R"?) satisfying eq. (22) is f * Dy. A straightforward (but somewhat nontrivial)
calculation reveals that Dy is given by

1 1
Di(t,x) = £ —O(£)8(12 — 1) F = O(££)O(t2 — 1?)———u Jy (mVE2 — 12) (23)
2 47 t2 _ 7,2
if d = 3, where J; denotes the Bessel function of the first kind of order one and © denotes a Heaviside
step function [Sch95, §2.3]. A similar formula holds for other d € N*. Note that Dy solves the
forced Klein—Gordon equation
(O 4 m?)D4(t,x) = 6, (24)
where § € §'(RY3) is a Dirac §-function located at the spacetime origin. The Heaviside step function
O(t) = 14>0 in eq. (23) guarantees

supp D+ (t,x) C {(t,x) € RV : +¢ > 0}. (25)

We highlight the following features of Dy:

e Outside of any neighborhood U C M of cly{|t| < r} (and in particular away from null
infinity), it follows from the large argument asymptotics of the Bessel function [AS64, §9.2]

that
Dy = |t|_3/2€_im\/t2_r2diﬁ + |t|_3/26+im\/t2_r2di,+ (26)

for some dy _,d+ + € C°°(M), just as in eq. (8). In particular, the nonsmoothness of the
forcing does not obstruct decay at timelike infinity, as can already be proven using the
sc-calculus.

e Though the convolution of Dy with any Schwartz function is rapidly decaying at null infinity,
D are themselves not rapidly decaying there:

m2g3 1 mol/2 37 3/2
Di_jF\/ 873 v3/4 COS( 0 _Z>+OU(Q ) (27)

v = [t| —r and ¢ = (|t| + r)~'/2, where the decay rate of the 0,(¢%?) term is uniformly
bounded in v > 0, with a complete asymptotic expansion in p. We therefore have precisely
O(0%/?) decay at null infinity. It is not at all apparent from eq. (23) why solutions to the
forward and reverse problems with f € S(R?) should be rapidly decaying at null infinity,
though this does hold.

e The oscillations in eq. (27) take the form

~ exp(+imv'/2p71), (28)

which implies the presence of sc-wavefront set (at finite frequencies) on the Penrose diagram
P, as long as we use ¢ as a bdf, rather than ¢ = 1/(|t| + r), this being a bdf of OM in M.
Note that, as v — 07, it is not the case that the sc-frequency
1/2 1/2
v 1 dv v dv do

W) =g~ gle= <, g )
in eq. (28) converges to the zero section of the sc-cotangent bundle. The opposite is true —
the sc-frequency approaches fiber infinity. As v — 07, the component of the frequency dual
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1/2 1/2

to o, £ = —v'/? converges to zero in the relevant sense, but the component ¢ = 1/2v
dual to v blows up, so the overall effect is that the frequency gets large.

Since Dy is identically zero and therefore free of any sort of wavefront set over clp{|t| <
r —e} for each € > 0, this example suggests a form of propagation over null infinity, in which
singularities in the interior of the spacetime travel along null geodesics, hit the corner of the
appropriate radially compactified cotangent bundle (see below) over null infinity, and then
propagate down into the fibers of that cotangent bundle while propagating forwards along
null infinity.

Consider now the form of O on Q:

e Since the interiors of the timelike and spacelike caps of M are canonically diffeomorphic
with the interiors of Pf, Sf, Ff, the operator (0 + m? is a sc-differential operator there.

e At the interior of null infinity on the Penrose diagram, [0 has the form 0?0y for an
(unweighted) edge operator Oy [[HV23]. The same can not be said, as though we can write

O4m? = Q2(|:|0 + g*2m2), (30)

072m? is too large as 0 — 0 to be an unweighted edge operator. Nevertheless, 0 + m? can
be regarded as an unweighted “double edge” (abbreviated “de” for short) operator. The
double edge operators were introduced in [LMO1], and we refer to this work for a discussion
of the double edge calculus in a setting without corners. In the d = 1 case, the de-differential
operators are just sc-differential operators, but the angular derivatives arising in the d > 2
case are required to vanish to an extra order. That the angular derivatives in (0 4+ m? have
this property is the ultimate reason why one must work with the de-calculus instead of the
sc-calculus at null infinity.

A key point is that the de-calculus is, like the sc-calculus, under symbolic control. This
means that de-UDOs are controlled via a suitable notion of principal symbol modulo
compact errors. Standard symbolic constructions from the theory of Kohn—Nirenberg ¥DOs
on compact manifolds go through with straightforward modifications.

2

This all suggests that, in order to analyze the Klein-Gordon equation everywhere on O, we define
a pseudodifferential calculus

\I’de,sc = \dee,sc(@) = U U \I}g:,ssc (31)
meR seR>
consisting of pseudodifferential operators that are sc-WDOs at Pf, Sf, Ff and de-WDOs at nPf, nFf,
being in an appropriate sense both simultaneously at the corners of Q. Of course, we have a
corresponding algebra Diff4e sc(0) of de,sc-differential operators with nice coefficients. A precise
definition appears later. In eq. (31),
) »2nPfs »2nkfs - ~—°n - ~°n - 70
gf;’(sscpf SnPf,SSt,SnFf,SFf) — QPFPf an;fpf QSfSSanI;ijfQFfSFf\IJS;SC, (32)
so m is the “differential order” and s € R measures decay at the five different faces of Q. Like the
constituent YDO calculi, the de,sc-calculus is under symbolic control. The relevant symbols are
precisely conormal functions on a compactification

15T Q > TR (33)

of the cotangent bundle of Minkowski space. This is the entire space of a bundle 4¢5¢x : 45T Q — O
over Q. It is canonically diffeomorphic to T M away from null infinity and %7 Q way from
timelike and spacelike infinity. See §2.

The connection between the geometric setup here and the hyperbolic coordinates employed in
[K1a93] is discussed in §3. As far as asymptotic expansions are concerned, the two are not equivalent
in general, but for the application to Theorem 1 we need only consider functions decaying rapidly
at null infinity, for which the distinction is not important. One selling point of O is that, like the
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Klein—Gordon equation itself, it is Poincaré invariant in the sense that the elements of the Poincaré
group lift to diffeomorphisms of @. In contrast, hyperbolic coordinate systems do not interact well
with translations. The Poincaré invariance of the approach here is therefore a feature, though we
still use hyperbolic coordinates to extract the asymptotic expansions at Pf U Tf.

The d’Alembertian [0 = O, lies in Diff*° C v*®  Thisisa consequence of the fact that the

de,sc = T de,sc”
Minkowski metric is a de,sc-metric. Later, we check the claim directly. A complication is that

Oy, 0, € Diff (01010 byl 0

de,sc

(34)

de,sc?

and not 0, 0, € Diff}?

de.sc- This is a computation we will do in §2. The particular linear combination

of 97 and 32 appearing in [ has cancellations at null infinity, and so one gets [ € \Ifde <« and not
merely
2,(0,1,0,1,0
Oe gy %Moo, (35)
The function p € C®(T*R%) defined by
d d
p:Tdt+Zfidxir—>772+Z§?+m2 (36)
i=1 i=1

defines an element of ade SC(D + m?), where aieosc denotes a to-be-defined “de,sc- (joint) principal
symbol map.” This will be checked later. Of course, p is the full symbol of (J + m? in the uniform
Kohn—Nirenberg calculus, and thus p € 02 O(D +m ), but neither of these obviously imply that p is
sufficient to represent the principal de,sc-symbol. A priori, it is not even obvious that p is a symbol
on the de,sc- phase space. These statements must be checked.

A consequence of the fact that p € ai’e?SC(D + m?) is that commutators of (04 m? with de,sc-WDOs
have de,sc- principle symbols given by Poisson brackets of their symbols with p. We can therefore
prove propagation estimates in the usual way, via the construction of a positive commutator, for
which one constructs symbols that are monotone along the (appropriately scaled) de,sc-Hamiltonian

flow
Qdep

H, = € Vo (15T 0) C W, (15T 0), 37

P OPtOnPFOSTONFEOFE ( ) & W ) (87)
204t 0 d 0

H, = Ta; — ia 38

? QPanPfQSanFfQFf[ ot Z-:Zf 855,} (38)

on the de,sc-characteristic set
Ym = Charde (@d4+m ) ’1({0}) N (8de’SCT*@). (39)

Here, p € C(9® sCT ), R) is the function p = Qdfp, where p4r denotes a defining function of fiber
infinity 9°5¢S*Q C 95T Q. We will study the structure of the Hamiltonian flow

Dy = exp(Hp\) : 95T 0 — 45T Q (40)

in §4. In the d =1 case, the ﬂow restricted to one component ¥,  of ¥, is depicted in Figure 3.
More specifically, ¥m + C deseT*(Q) is the sheet of ¥ on which the temporal frequency 7 satisfies
+7 > 0.

As seen in the figure, H,, vanishes at several points on ¥ +. We split the vanishing set of H,, into
several components,

ERE N NE CE CE K KE AT AT C S (41)

our radial sets. We abbrev1ate R = RI URZURTU R and likewise for the other radial sets. The
radial sets T\’,i, R™, R, R depend on m, but we omit this from the notation. The sign in the
superscript denotes which sheet of the characteristic set the component lies in, with a positive sign
denoting positive 7 component, and the sign in the subscript denotes which half-space clp{=£t > 0}
the component lies in. The interpretation of the different radial sets is as follows:
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e The radial sets Rf, ij, located over the timelike caps, are where the de,sc-wavefront set
associated with the temporal tails of massive waves lives,

e N5, N* are the endpoints of the Hamiltonian flow along which singularities (including
singularities in initial data) propagate, thus are the entryway for singularities in the interior
to the fibers over null infinity,

) Cf, Cf, ICiE, KT are the parts of the corners of the de,sc-phase space lying in the characteristic
set X, with zero momentum in the directions dual to the angular coordinates, and not
already in one of the AV’s, with C being over the corner with timelike infinity and K being
over the corner with spacelike infinity, and

° Af, A* are additional radial sets that show up only in the (14-d)-dimensional case for d > 2
and are therefore not depicted in Figure 3 (but see Figure 5 and Figure 6). These can be
probed via families of null geodesics with large angular momentum.

The simplest of the radial sets to define are RE, Rf Identifying de’SCTP*foUTfo(O) with *T¢ o, M,
where C'y are the (open) timelike caps of OM,

R:E = Clde,scT*@(Rgz N scﬁ_l(cf))

42
Ri = Clde,scT*@(RE)t ﬂ SC']T_l(C_I,_)), ( )

where
RE = Graph(+mdv/2 — r2|c_ue, ) (43)

are the two (disconnected) radial sets of the usual sc-Hamiltonian flow on *°7 : ST M — M, one in
each sheet, depicted in Figure 1. In contrast to Rg, the radial set R does not hit fiber infinity. See
Figure 3, where this is indicated. Consequently, we have well-behaved notions of module regularity
associated with R. These are discussed below, in §3.2.

When studying the scattering problem, we propagate control through the radial sets in the
following order:

RE,NF\deser=L(Sf N nPf),ct, K NT AT, AT N\~ (Tf N uFf), KT, CE N, RE, (44)
on the 7 > 0 sheet, and

R;,N;\devscw—l(Sf NnPf),C, K, N, AL, A- N\ (Tf N nFf),K-,C-,N-,R_  (45)

on the other. Note the flow segments — see Figure 3, the black arrows — between the two endpoints
of each component of N. Consequently, we are forced to prove two separate radial point estimates
at A: one in which control is propagated into a proper portion (a “ray,” beginning over spacelike or
timelike infinity, stopping short of the other corner) and another in which the whole is controlled
altogether. For unsurprising technical reasons, the former is somewhat subtle. We only prove the
estimates needed here, though we do not rule out that more can be said.

Hintz and Vasy [HV23] have recently investigated massless wave propagation near null infinity
using fully microlocal tools very similar to those used here. In contrast to the de,sc-calculus employed
below, their e,b-calculus is not symbolic, for the same reason that the e- (“edge”) and b- (“boundary”)
calculi are not symbolic. While this is necessary when studying massless wave propagation (for
which radiation must be understood), this means that the authors do not study propagation at
finite frequencies, which, for the reasons sketched above, is important in understanding massive
wave propagation. The purely symbolic de,sc-calculus turns out to be well-suited for this purpose,
not only away from null infinity as previously understood, but also at null infinity.

The radial sets NV, C, K, A previously appeared in [HV23] under different aliases. The inclusion
S*RL4 y desc§ Q) extends to a diffeomorphism

e,bS*@) N de,scs*@7 (46)

so fiber infinity of the de,sc-cotangent bundle is canonically identifiable with fiber infinity of the
e,b-cotangent bundle. So, besides the fiber radial direction, the situation at fiber infinity is the same
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F1GURE 3. The sc,sc-Hamiltonian flow within one sheet of the sc,sc-characteristic set
Ym +, when d = 1 (with one half of the portion at fiber infinity hidden from view).
As in the previous figure, fiber infinity is depicted in dark gray. Each quadrilateral
panel depicts the portion of ¥y, 4 over one of the faces f € {Pf, nPF, Sf, nFf Ff}.
(Since d = 1, nPf, Sf, nFf each consist of two connected components.) The radial
sets — R1, CI, Ni, K1 — are depicted in various colors. The source of the flow is
R7T, and, correspondingly, the sink is RI The other six radial sets (each of which,
because d = 1, consists of two connected components, only one of which is labeled
above) are saddle points.

here as in [HV23]. In [HV23], the authors use terminology which, while fitting for the analysis at
fiber infinity, is misleading when the flow in the de,sc-fiber radial directions is considered. From their
e,b-perspective, the components of N are global sources and sinks. From the de,sc-perspective, this
role is instead played by R. More confusingly, de,sc-singularities can propagate from N Ndes¢r=1(Sf)
through the interior of the fibers of the de,sc-cotangent bundle back up to K (as can be seen in
Figure 3), so N is not even a source/sink for the flow between the the radial sets in [HV23] once
one considers the fiber radial component of the flow. So, some terminological change is necessary.

Finally, we point out recent work [GRHG] of Gell-Redman, Gomes, and Hassell on the nonlinear
Schrédinger equation. Their regularity theory bears some similarities to the test modules used below,
but it does not appear possible to straightforwardly apply their approach to the Klein—Gordon
equation.

2. THE OCTAGONAL COMPACTIFICATION O

We now discuss the octagonal compactification of R, In §2.1, we describe the compactification
itself. In §2.2, we briefly discuss the de,sc-phase space — here, we will describe some coordinate
systems which will be used in §4. In §2.3, we outline the construction and features of the symbolic
WUDO calculus whose symbols live on that phase space. This includes a discussion of de,sc-based
Sobolev spaces and associated wavefront sets, with respect to which the analysis in §5 will be
phrased.

2.1. The Base Space. Let
Sy =M Nchy{(t,x) € R : +t =7}, (47)

Cy = (OMNcly{(t,x) € RY : £t > r})\ S+, and Cy = (OMNely{(t,x) € RV : 2 < 2\ (S_US,).
(Note that Cy, Cy are relatively open subsets of OM.) “Null infinity,” .#, when referring to a subset
of Ml, then refers to S_ U S, and timelike infinity refers to C_ U C'y. Spacelike infinity is Cj.
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The sets S_, S, are Poincaré invariant in the sense that, if A : Rb® — Rb is an element of the
Poincaré group, then A extends to a diffeomorphism of M the action of which Sy are closed under.
The octagonal compactification R1T? — O = O is defined by

0= [M;{S—a&r};; = [M;J;%], (48)

i.e. we first perform a polar blowup of the boundary p-submanifolds S_, S, — in either order — and
then modify the smooth structure at the front face(s) of the blowups using the coordinate change
o — oY2. That is, if we set

Op = [M; {S-, S+, (49)
then O = Qg at the level of sets, and if ¢ denotes a bdf of the front face (or a front face) of this
blowup, then /2 denotes a bdf of the corresponding face of @. We will only write the “1,d” label
on OY? when necessary. Otherwise, d should be assumed to be arbitrary. The space Q is a mwc
with corners of codimension two.

Proposition 2.1. If A is any element of the Poincaré group, then A extends to an automorphism
of O under which each boundary hypersurface is a closed set. |

Proof. We observe, first of all, that it suffices to prove the proposition for Qg in place of Q. Indeed,
suppose that A extends to an automorphism Aey : Qg — Qg fixing each boundary hypersurface.
We only need to check that this map is actually smooth with respect to the smooth structure of Q.
Then, after applying the same reasoning to the inverse, we can conclude that Aexy € Aut(Q). To see
this, note that, letting of o denote any bdf for f € {Pf, nPf, Sf,nFf, Ff} in O,

0f,0© Aext € Qf,OC’OO ((O)O; R+) (50)

Since we can take gro = of unless f € {nPf,nFf}, of o Aexy € 0C°(0p; RT) C C*°(0) for each
f € {Pf,Sf,Ff}. Taking square roots of eq. (50),

0f © Aext, € 0tC™(Qp; RT) C 0iC™=(0) (51)

for f € {nPf,nFf}. So, indeed, it suffices to prove the claim made in the proposition for “Oy” in
place of “Q.

We recall that any invertible affine transformation extends to a diffeomorphism of M [Mel94] and
that any translation extends to a diffeomorphism under which OM is invariant. In particular, the
Poincaré group can be considered as a group of diffeomorphisms of M. Of course, each of Cy, Cy, S+
is closed under the action of any element of the Lorentz group. The claim of the proposition
then follows from the lemma (which we apply with X = M) that any diffeomorphism of any mwb
X fixing (but not necessarily acting as the identity on) a submanifold S C 90X and each of the
components of 0X\S lifts to a diffeomorphism of the mwe [X;.S] (with the lift fixing each boundary
hypersurface). O

The lemma mentioned in the previous proposition follows from the fact that [X;S] is, in a
neighborhood of the lift of S, diffeomorphic to the outward pointed normal bundle T N*S of S [Mel].

Let bd : O — M denote the blowdown map. For convenience, we can take Q° = M° = R4 with
bd|ge = idgi+a, along with

O\bd'(S_ U Sy) =M\(S_US,), (52)

this all just making literal some conventional abuses of notation. Away from null infinity, @ and M are
“canonically diffeomorphic.” In particular, if 1) € C*°(R'*9) satisfies clysuppy N (S_US,) = @,
then ¢ extends to a smooth function on O if and only if extends to a smooth function on M. We
will use observations like this without comment below.

For the most part, we work away from cly{r = 0}. This allows us to work with (spatial) polar
coordinates. Let @ = O\clg{r = 0}. This is canonically diffeomorphic to @ x S7!, where

x/r”

0 =0"\clgia{(t,7) € Ry} 1+ <O} (53)
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This mwc is noncompact (we do not add a boundary face corresponding to r = 0). The interior is
equal to {(t,r) € R\ : 7 > 0}. Then, we have a diffeomorphism
R x RT x §1 — 0° = RY\{r = 0}, (54)

(t,r,6) — (t,r0), which extends to a diffeomorphism 0 x §1 — 0. We will abuse notation below

and conflate O x S9! with O. .
We will make use of the following coordinate charts for Q:

e For each T > 0, let
aner:t’T = (Cl@{|t| +T >r +t> 0})0, (55)
and let onf : an'[‘f’:t,T — [0, OO) and oy : anrf,:bT — [0, OO) be defined by on = (‘t‘ —r—+

R)1/2/(|t| +7r+ T)l/2 and ot = (|t| —r+ T)~1. Then, (o, ort) : anf’i,T —10,00)? is a
coordinate chart on Q. Solving for r, ¢ in terms of oyf, 0Ty,

t = £((20%0r¢) (1 + 0%) — T)

_ (56)
r = (20%0rs) (1 — 0f).-
For later use in computing coordinate changes, we record the partial derivatives
dory 9 Oonf 1 2
- = 4+_(1— N , 57
ot Fors, ot 2( Onf) Onf OTF (57)
dore Oont 1
o = 0Tt (‘): = —5(1 + 03¢) OnfOTY- (58)
e For each R > 0, let
anSﬂi’R = (Cl@{‘t‘ <r+R,+t > 0})0 (59)

and let opf : anSf,j;R — [0,00) and ps¢ : anSf’:bR — [0, 00) be defined by ons = (r — |t| +

R)l/z/(r + |t| + R)l/2 and ogr = (r — |t| + R)~'. Then, (out, 0st) : Quese,+. R — [0,00)2 is a
coordinate chart on Q. Solving for r,¢ in terms of ou¢, 0s¢, we have

r = (20p081) (1 + 0fy) — R (60)

= +(20%r0sr) M (1 — 03p). (61)

The partial derivatives are

Dost - 2 O0nf - 1 2
ot iQSf? ot - :Fi(l + an)a Onf OSf (62)

Dost o Oont 1 2
oL = (1= . 63
or 0st or 2( an)ganSf ( )

In defining anTf + 7 and ansf + R, we are using the topological notion of interior rather than the
slightly different manifold-theoretic notion. Thus, both sets contain points of d0.
From the computations above, we see that, for any m, s € R,

Diff™* (M) C Diff ™25 ms2s=mss) () (64)

de,sc
Let Q¢ = Q. x §d-1,
Proposition 2.2. On O, the d’Alembertian O is given by the following:

o in Quere 47,
o2 o2 .. 0
0= _anQTfa > + QanQTfa Dore + QanQTfTQ - (65)
n n

and
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o in Qusst + R,
0? 0?2 0
O = +op0ds 75 — 200008 ——— — 20305 ——, 66
nf ¥Sf 8Qif nf YSf agnfaQSf nf YSf 8an ( )

where we are identifying the coordinate patches anTﬂi’T, anSﬂi’R and their images in R? under
the coordinate charts above. [ |

Proof. The first formula is the result of replacing

9 o O Oore O 1 0 )

= =+ (1 — o) ontoTi5— F 0T 5—
BE Ot Bou T Ot pr T2 G, LT Oirg, o
0 _ Oonr O +8QTf 0 __1(1+2) i+2i
or O Do or dorr 2 Onf )Ont OT Dont orf dors
in 0 = 07 — 02. The second is the result of replacing
0 Oonr O doss O 1 9 0 9 O
_— = = g 1 n P — :l: D
dt Ot Do | Ot Dost Fo(l+au)e O ont — % Dgss (68)
0 Oons 0 +305f 9 _+}(1_2) 9 5 0
o - or Dot Or Doss =75 Onf ) Onf OSf Dont OTt dost
U
We can conclude that OJ € lefde (0).

Recall that if M is a compact mwce, F (M) is the set of its faces, and gf denotes a bdf of f € F(M),

then we have an LCTVS
=N I gjccan=NN1] I @f}C’“ (69)

seER  feF(M) seERkeEN feF(M

of “Schwartz” functions. When M = M, then this is just the usual set of Schwartz functions on
RL4 = R1+4, Identifying smooth functions on mwcs with their restrictions to interiors, S(RM) =
S(0), and this holds at the level of TVSs. Indeed, the blowdown map @ — M is smooth, so any
Schwartz function on RY? extends to a Schwartz function on @, and the inclusion S(R4) — S(0)
is continuous. The converse follows straightforwardly from the formulas above.

Consequently, a tempered distribution on O, meaning an element of &'(Q) = S(Q)*, is just a
tempered distribution on R,

2.2. The de,sc-Cotangent Bundle. We now define the de,sc-tangent bundle mqe g : deseTQ — Q.
As an indexed set, this is 95°TQ = {de’SCTp(O)}pe@, whose elements are the vector spaces

42T 0 = Viese (5 R) /Ly Ve sc (O3 R), (70)

where Z, C C*(0O;R) is the ideal of smooth real-valued functions on O vanishing at p, and
Tde,sc - de’SCTp@ S5 a — p. Naturally, we can regard

Tde,sc deserQ — @ (71)

as a real vector bundle over Q. The entire space 95T Q is a mwe diffeomorphic to O x R4, Then,
the de,sc-cotangent bundle
de,sc,/_r . de,scT*@ S50 (72)

is just defined to be the dual vector bundle to mqe g : deseP@ — . For convenience, we can arrange
that de’SCTH’éLd@ = T*RY? at the level of indexed sets (in which case this is identification is a bundle
isomorphism).

Let ¢ : 5*T*M — M denote the sc-cotangent bundle — see [Mel94][Mel95]. It can be shown that
there exists a diffeomorphism

seplr : M = MY N\ elypa {(¢, 2) € RV 2 < 0} x R x R x T*S971 — sT*M\**7~Lely{r = 0} (73)
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such that, for all t,7,Z € R, r € R, and ny. € T*S% 1,
ple((t,r), 7,2, nsc) = 7dt + Edr + reulr™ (1), (74)

where eulr : R;’f(l\{r =0} — S§ ! is the map (¢,x) + x/r. For the comparison with the de,sc-
cotangent bundle, it is slightly better to work with y = 7+ = and v = 7 — E, in terms of which
Tdt +Zdr = p(dt 4+ dr) + v(dt — dr).

Similarly, it can be shown that there exists a diffeomorphism
deseplr s @ x R x R x T*S* 1 — desepQ\deser L clg {r = 0} (75)

such that, for all ¢, u, v € R, r € Rt, and ny. € T*S%1,

AeSCple((t, 1), fty v, Mse) = 2ok pu(dt + dr) + 22F
OnPf OnFf

v(dt — dr) 4+ reulr® (). (76)

As the subscript indicates, the coordinate ng. should be thought of as keeping track of spatial angle
and of the angular component of sc-frequency. We will drop the subscript ‘sc’ in later sections.
With this diffeomorphism in mind, we set

dese*® = O x Ry, X Ry, (77)

So, away from 951 (clg{r = 0}), desT*Q x (T*S471),,., = deseT*Q “canonically.”

As can be seen from the discussion above, 9¢5¢T°Q is, away from null infinity, canonically
diffeomorphic to €T M.

In §4, we will use coordinates &, (, which, over anrf’:bT, are associated to points in 9&5¢T *O via

don d
f@f+C OTt

(Q vaTf»g’ C) = . (78)
" Q?lfQTf an@rsz
Over ansfi, Rr, we use &, ( to denote the coordinates
Edonr | Cdost
(0nf, 031,€,C) = 53— + —— (79)
Ont9Sf Onf 0g¢
on de,scT*@.
Proposition 2.3. The function
d d
po:Tdt+ Y &dw = TP+ & € C°(T'RM) (80)
i=1 i=1
is a representative of Ui'fsc(D). [

Proof. We already know that pg is a representative for the sc-principal symbol of [, so it suffices to
work near null infinity. Passing to polar coordinates, it suffices to consider the d = 1 case, working
on O.
e In terms of the coordinates (gnf, o1¢, &, ¢) on Qnﬁf7i7T, solving for £ and ¢ in ,Q;fQQ%flf dons +
oot oriCdors = Tdt + Edr yields

1 ¢
:l:’T = 1 - 2 T 81
5 an( one)§ > (81)
I C R R S (s2)
2an Onf

Thus, the symbol Z2 — 72 is given by &2 — 2¢¢ with respect to this coordinate system.
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£
4

FIGURE 4. The characteristic set X = Ym —UXn, 4, over a € nFf, depicted using the
momenta dual to (onf, 0sf) (left, if v € Qngsr 4 g) and the momenta dual to (ont, oTf)
(right, if o € Qe+ 7). The vertical axis is oriented so that page-up corresponds to
positive timelike momentum. The ‘@’ marks the submanifolds ./\/'jf,/\/: Over nPf,
the situation is similar.

e In terms of the coordinates (onf, osf, &, ¢) on anSf,i, R, solving for £ and ¢ in Q;fQ Qs_fl ¢ dont +
0= 052¢ dost = 7 dt + Edr yields

1 ¢

+7=— 1+ %)+ =, 83
2an( 0n)€ Ont (83)

1 ¢
== 1— 02— —. 84
2an( 0n6)€ Ont (84)

Thus, =2 — 72 is given by —&2 4 2£¢ with respect to this coordinate system.

2

- . 2
From these formulas, we see that Z2 — 72 is an element of Sdéosc.

Comparing with those in Proposition 2.2, it can be concluded that Z2 — 72 is a representative of

the de,sc-principal symbol of the d’Alembertian. O

Define 9570 to be the radial compactification of 45¢T*Q. Going forwards, let
deseq . 5T - O (85)

denote the extension of 45°r to the radial compactified bundle. So, e.g. 97 ~1(nf) will denote the
set of compactified fibers over null infinity (or over one component of null infinity, depending on
context). Let oqr € C (95T Q; R1) denote a bdf for the new face at fiber infinity, which we label
df. (We will also consider the bdfs gf of the faces of O as bdfs of their lifts to the de,sc-cotangent
bundle and the radial compactification thereof. That is, we conflate of and of o 95°7.)

The diffeomorphisms discussed above extend to radial compactifications. They (and their
extensions) will be left implicit below.

Given m € R and s = (Spf, SnPf, SSf, SnFf, SFf) € RS, Let

Sieie = Steac(*T"0) = 03" 0 * S (86)

where ngaosc is the Fréchet space of conormal functions on de:seT* (). These are “de,sc-symbols,” and,
as usual, the space

Sde,sc = U gél:c (87)
meR,scR>

has the structure of a multigraded Fréchet algebra.
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2.3. The de,sc-calculus. Here, we summarize the basic properties of the calculus Wqe¢.. The
details are analogous to those in the construction of the sc-calculus, so we concentrate on the main
points. (So, for instance, we will not talk about the topologies of de,sc-pseudodifferential operators,
nor about uniform families of operators.) Since the relevant calculi end up being coordinate invariant,
and since the de- and sc-calculi are constructed and exposited in [LMO1] and [Mel94] respectively,
the main order of business is to construct the calculus near the corners of O, which we model (using
local coordinates @ = (0y,...,04_1) on Sg ') by

RIT = [0,00) 0, % [0,00)00, x RY 1, (88)

with the face {ons = 0} of the right-hand side corresponding to null infinity. Here ‘Of” stands for
“other face,” meaning any of Pf, Sf, Ff, depending on which corner of @ is under consideration. Thus,
we discuss the construction of

Vaeseo®S™) = | Tholed (RE™), (89)

m,s,cER

where s is the “de-decay order” at {ons = 0} and ¢ is the “sc-decay order” at {oof = 0}. The
extra ‘c’ denotes that these operators will have properly supported Schwartz kernels K, so that
K(—,x) et (Rg“) whenever y € CSO(R‘ZHI). Roughly speaking, this local de,sc-calculus is the
result of quantizing

0 0 _
Vaese(RFT) = SPan oo gd-+1) {anQOf Do , Onf00F 5—— 900 ,QifQOfV 1V e V(Rg 1)}- (90)

nf

From this Lie algebra, we get the coball-bundle d¢=¢T" Rg“.
For (conormal) symbols a on 95T R4 of sufficiently low order, we can define an element Op(a)
of \Ildeﬁc(RgH) via its Schwartz kernel,

K. 8'(RIT x RIHYY, (91)
given by
X ¢ / . “7] /
Ky (xp,,x :7/ +1 Onf — Onp) £ 00t — 00¢) £ (0,—0
o1, 28) (2m)4tt Jpan [ ( 02 00f (nr = ) Onf 0% ( or) Zl anQOf 7 J))

a(ous, 001, 0, ¢, & m)| dCdgd™ M, (92)

where x € COO((RSH)%) is identically equal to 1 near the diagonal of the b-double space
(RS = ([0, 00)7)” x R*~2 (93)

and identically 0 near boundary faces disjoint from the diagonal. Here, x1, = (gut, 00f, @) and
zr = (0hs, 005, 0'). The choice of sign in the exponent in eq. (92) is to be fixed as a convention.
Actually, in order to establish the basic properties of the calculus, it is useful to introduce spaces of
symbols which depend on both z1, and xR, these being quantized in the same manner. In either
case, these definitions are extended to symbols of arbitrary order using slightly modified versions of
the standard estimates for oscillatory integrals. The initial restriction to a of sufficiently low order
(meaning, sufficiently decaying) is to guarantee that the integral above converges, but standard
estimates show this restriction to be unnecessary. For each m,s,¢ € R and (compactly supported)

a € §mS (ST REH), (94)

let Op(a) = K, as above, and let U}” s (5:6) (RZT!) denote the set of operators whose Schwartz kernels

,SC,C
have the form K, + R for some properly supported remainder kernel

R e S(RIT! x R, (95)
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Elements of Wqe scc (RSH) are initially defined as maps C$° (Rg“) - & (Rg“), but they extend
(uniquely) to maps

S'(RSH) — S'(Rg“), (96)
and elements of \Ifdeﬁc’c(]Rngl) can be identified with the corresponding maps. This completes our

sketch of the definition of \Ilde,SQC(RgH).
We now return to the discussion of the properties of the calculus on @. The calculus Ve g =
Ve sc(0) behaves very similarly to the sc-calculus. This is because we have principal symbol maps

) . ’ ) _ ’ 717 -1
Taeme  Vicae(©) = S50 = S5 (0)/ S5 (0) (97)
fitting into a short exact sequence
0— qu;jsys—l = Whehe = S(BZL’(ES] -0 (98)

of vector spaces. This interacts with Op in the expected way: o> (Op(a) + R) = a mod Sg:scl’sfl,
whenever R is as above.

The set U,,epr sers \Ilg"gssc is a a multi-graded algebra. In particular, this means that

AB € pmtmsts (99)

de,sc

whenever A € U»° and B € \I'ggl’sscl. The principal symbol map is an algebra homomorphism to

leading order, in the sense that

oM st (AB) = Uﬂ’ssc(A)am,75/(B) b mod g st L (100)

de,sc de,sc de,sc

where a,b are any representatives of o3 (A) and Ugf;’si(B), respectively (this equivalence class not
depending on the choice of a,b).
We also have a notion of “de,sc—essential support:”

WF}, o(4) € esssupp(a) N 94T 0 (101)

whenever A = Op(a) + R for R as above. (That is, WFg, ..(A) is the closure of the set of points on
the boundary of the radially-compactified de,sc-cotangent bundle at which a is not rapidly decaying.)
This is well-defined, meaning that if we have Op(a) + R = Op(a’) + R’ for some o', R', then a, a’
have the same essential support. We have

WFiie,sc(AB) - WFiie,sc (A) N WFiie,sc(B) (102)
WF:ie,sc(A + B) - WF:ie,sc (A) U WF&E,SC(B) (103)
for any A, B € Wyesc. In particular, WFy, .. ([4, B]) € WF{, o(A) N WFq, o (B).
The de,sc-characteristic set Charg";’;C(A) of A e \IIQE”ZC is defined as
Chary.; (A) = charg, (a) = 99T O\ elljgse(a), (104)

where the elliptic set is defined in the usual way. We mainly care about the case when « is a classical
symbol. Considering the case m = 0 and s = 0, this means that a is a smooth function on the
radially-compactified cotangent bundle, in which case the de,sc-characteristic set of A = Op(a) is

Charly.(4) = a'({0}) N (29T 0). (105)
An operator A € \I/gé:ssc is said to be elliptic (with respect to the de,sc-calculus!) if Chargz’;C(A) =0.

(Note that this depends implicitly on m,s.) It should be emphasized (though this is likely not
necessary for the reader familiar with the analogous fact about the sc-calculus) that this is stronger
notion than the usual notion of ellipticity in O° = R"?, which is equivalent to

Char}’s (A)NTRY = . (106)

de,sc
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IL.e., the ordinary notion of ellipticity in the interior is ellipticity at fiber infinity over the interior.
De,sc-ellipticity requires ellipticity in the fibers of the de,sc-cotangent bundle over the boundary of
O, as well as at fiber infinity over the boundary.

It follows from the principal symbol short exact sequence and the leading order commutativity of
the principal symbol map that

A, B] e witr e, (107)
It can be shown (using e.g. a reduction formula for the full symbol calculus) that
ot 1N (A, B)) = +i{a, b} mod S E T, (108)

where the sign depends on our sign convention in defining Op, in eq. (92). The right-hand side is
just the usual Poisson bracket for T*RM. (It must, of course, be checked that {a,b} is actually a
de,sc-symbol of the claimed orders.)

It can be shown directly, that, if

Re U 2™ =, Wms (109)

de,sc de,sc?

then R defines a bounded linear map on L?(RY?). (Indeed, R € W ;> OO(RI 4).)

Hoérmander’s square root trick can be used to extend this to A € \IJ desc:

The quantization procedure yields, for each m € R,s € R?, a plethora of elliptic elements of
U™°  Pick one and call it A™S. For m = 0, we can take

de,sc”
A% = opt opptosi ot 0pf” = 07° (110)
We now define Hde '« = L?>(R14) and, for each s € R®, Hg:sc = ste sc- We can now define Sobolev
spaces HQZ’;C as follows:
e if m > 0, then we define
0,0 0,0
dese—{uGHdeSC Au € Hyj , for aHAE\IJdeSC} (111)
={ue HY : A™*u e L*(RM)}, (112)
with norm ||U”Hg”’5 = ||ul|z2 + [|[A™5u|| 12, and
e if m < 0, then we define
Hdesc—{A Sy 4v s u,v € LA(RM)} (113)
= {Au:ue L*(RM), A e U 0%, (114)
with a corresponding norm.
Each element of W = defines a bounded map Hde > Hgg o S8 for any m € R and s’ € R°.
The failure of a u € S’ to lie in Hg; - is measured by a notion of de,sc-wavefront set,

WF(u) = N Charg. (4). (115)
Aexpgﬁsc s.t. Auc H™*

de,sc

Thus, u € H}": <= WF} de. *°.(u) = @. (The = direction is trivial, and the < direction follows via

de,sc

the standard patchmg argument.) Also, let
WFde,sc( ) Clde scT O |: U WFde SC( )] . (]‘16)

m,s

It can be shown that © € § <= WFycs(u) = @, so de,sc-wavefront set measures microlocal
obstructions to being Schwartz on R4, as WFy.(u) does.
De,sc-WDOs are microlocal, which means that

WER ™5 (Au) € WFl, o (A) N WETS (u) (117)

de,sc
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for any u € 8’ and A € \Ifde - On the other hand, the de,sc-version of microlocal elliptic regularity
states that
WE SC( u) CWF ™" s’ (Au) U Charde e (A) (118)

de,sc

3. ASYMPTOTICS, MODULE REGULARITY, AND THE POINCARE CYLINDER

We now discuss module regularity at R (which really means additional regularity outside of R)
and its relation to asymptotic expansions at timelike infinity. In §3.1, we discuss the Poincaré
cylinder, which is the geometrization of the hyperbolic coordinate system. In §3.2, we discuss the
test modules relevant to the rest of the paper. In §3.3, we prove the main result of this section,
which states that if u € S’ solves the Klein—-Gordon equation Pu = f for f € S’ with sufficient
module regularity, then, if u has sufficient module regularity as well (which at this stage of our
analysis is still a hypothesis), then v admits an asymptotic expansion to some specified order on O.

3.1. The Poincaré Cylinder. By the (punctured) Poincaré cylinder, we mean the mwc

R\ {0} x B? = ([—00,0) U (0, +00]), x BY, (119)
equipped with the Lorentzian metric gegsc = — dr? + 7 2gy, where gy € °Sym? T*B is the metric
4Zd 1 dy2~
gu(YL, - Yd) = s (120)
(]' - ] 1 yj)

on the unit ball ]Bd, which makes B? into the Poincaré ball model of hyperbolic bpace It is also
useful to refer to the unpunctured cylinder R x B¢, As the subscript indicates, Je,sc 1S an “e,sc-metric
on R x B¢, where

e the “e” (for “edge”) refers to the structure of the metric at R x B¢, for which 1 — ? 1 yj

is a bdf, and B
e the “sc” refers to the structure at R x B¢, for which (7)~! is a bdf.

The set of e,sc-vector fields on the unpunctured cylinder is defined by
Vese = 5D 500y 107} U () Vo (BD] = span g 050 [0} U 107) 11— )8, 411, (121)

where Vy(B?) is the set of vector fields on B? that vanish at 9B? (considered as vector fields on the
Poincaré cylinder that are constant in 7). Likewise for Vo s((R\ {0}) x B?).

Let X C O denote the relatively open subset (clp{(t,x) € RM : ¢2 > r2})° C Q. This is a
non-compact sub-mwe (it includes part of the boundary of @, but it is disjoint from clg{t? = 7?}).
Then, X° = {(t,x) € R : 2 > r2}. Consider the map

9

v X7, — RA{0} x BY (122)
given by
7= (t* — %) ?sign(t) € R\{0}, (123)
y = x(|t| + (£ — r*)Y?)"Lsign(t) € B®.
The set-theoretic inverse : ! : R-\{0} x B{* — Xp of ¢ is given by
RA{0) X B 3 (r,y) = (r(1 zz) 12722), (124)
where y? = ;l 1 y]

Proposition 3.1. The map ¢ : X7, — R;\{0} x IEB , 15 a diffeomorphism, and it extends to a
smooth map X — R x B, [ |
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Proof. Tt is apparent from the explicit formulas eq. (123), eq. (124) that ¢ and and its set-theoretic
inverse are both smooth, so ¢ is a diffeomorphism between X° and R\{0} x B%. In order to show
that it extends to a smooth map X — R x B, it suffices to work in local coordinate charts near 0O

(I) For ¢ > 0 and o € {—1,+1}, in the set {t* > (14 ¢)r?, ot > +1} we can use the coordinates
p =1/|t| and % = x/[t|, in terms of which
T =op(l— |R]*)712 (125)
y = ox(1+ (1 - [R|3)V2) (126)
In {t? > (1+¢)r?, |t| > +1}, we have p < 1 and ||%|| < (1+¢)"'/2, so 7! and y are smooth
functions of p and X, all the way down to p = 0.
(IT) In the set {t? < (1+ ¢)r?, 0t > +1}, we instead work with the coordinates gpf, onrf, along
with 6 = x/r € S¥1. In terms of these,
Tl = O Onf OnFf (127)
y = 00(1 — ong) (1 + ons) " (128)

Again, we see that, locally, 7~! and y are smooth functions of on¢ and gpp¢, now all the way
tO a([07 oo)@nf X [07 Oo)Qan)'

O
We denote the extension of ¢ using the same symbol.
As a corollary of the previous proposition,
feC™®R\ {0} x BY) = " f € O®(X). (129)

For such f, t*f is constant on each component of null infinity. Smoothness on (R \ {0}) x B% is
therefore stronger than smoothness on X. If f € C>°(X°), then even though we may not have
f =" fo for some fo € C®((R\{0}) x B%®) we can still form

tef € C((R\{0}) x B™), (130)

since ¢ is a diffeomorphism in the interior.
We read off of the proof of the previous proposition that

()" € opronpronrrorrC™ (X RY). (131)
Moreover, from the computation ¢t*(1 — y?) = 4oue(1 + onf) ~2, we get
(1= y?) € onpronrrC™ (X;RY). (132)

Consequently, letting Q! (R x BY) denote the set of e,sc- one-forms (constructed via dualizing
Ve,sc Via ge,sc) on the Poincaré cylinder:

Proposition 3.2. If w € QYR x BY), then 1*w € 40 (X). |

Since ¢ : X7, — R-\{0} x Bg,o is a diffeomorphism, given any vector field V' on R, \{0} x Bf,o
we can pull back V' by ¢ to form a vector field t*V on X7 . likewise for differential operators. We
record for use below that

L 0 t
Yor T (12 — 7nz)l/zaf T (12 — 12)1/2 ijamj, (133)
7=1
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Consequently, as is well-known [H97], O = *[J where

Je,sc?

Oy .. = 0% 4+ dr 720, + 72 A € Diff200(R\ {0} x BY) (135)

YJe,sc e,sc
k)

on R\{0} x B, which is the d’Alembertian of ge s
On the other hand, in Quere + 0,

0
il N 136
Ny or (136)
L0 14 on)? 0 1+ ont)? %)
5?/ 2 Oont 2 Onf Dot
where 9, is shorthand for 9, = y~1 Z?Zl y;j0y;. From these formulas and the observation that

angular derivatives in R x B¢ pull back to angular derivatives on X, we read:

Proposition 3.3. If V € Ve (R x B%), then *V € Vie,se(X), and the elements of {*V : V €
Vesc(R x BN} generate Ve so(X) as a O (X)-module. |

Let
Diff755* (R x BY) = (7)(1 — y*) " Diff 1520 (R x BY) (138)

e,sC

denote the set of e,sc-differential operators of order at most m, weighted by (7)* and (1 — y?)~. In
addition, let

Diff™ m,(8,5+6,54¢6,5) (X) = spange x )lef m, (s, 8+c,00,8+€75)(@). (139)

de,sc de,sc

Proposition 3.4. Given any L € Diff{35°(R x B?),

X¢*L € Diff s+t ), (140)
for any x € C(X). Moreover, the differential operators on X of this form generate the C°(X)-
module Diff)}) (S‘Z SHsFS9) (X). [

Proof. The subset of DiffS%>>(R x B?) consisting of L such that x.*L € Diff’}’ (85465 Hs9) (X)

e,sc de,sc

whenever L € Diff{3o* (R x B?) is a subring of Diff>,>>>°(R x B?). So, in order to prove the first

€,sC
part of the proposmon it suffices to check the case

LeCPRxBHYU{(r) (1 —y*) 5,6 e RYU{DFU{(1) 7 (1 — )0y, }=1, (141)

as the elements of the set on the right-hand side generate Diff;> (R x B?) as a ring. Each of these
cases we have already checked, as recorded in eq. (129), e (131), q. (132), and Proposition 3.3.
Likewise, the second part of the proposition follows from the second clause of Proposition 3.3. [

For each m € N and s,¢ € R, let
HILS (R x BY) = {u e L*(R x BY) : Lu € L*(R x BY) for all L € Diffl%*(R x BY)}.  (142)

e,sc e,sc

Also, let H' m(s,5+, s+<’s)( X) denote the set of distributions which lie in H;" m,(8,5+6,—00,5+,5) (X)) upon

de,sc,loc de,sc
multlphcatlon by an element of C2°(X).

Proposition 3.5. For any m € N and s,¢ € R,
FHTSS(R x BY) € gIesteostes) ), (143)

e,sc de,sc,loc

Conversely, if x € C°(X), thenu € HYy) (s, 8+€’°°’5+§’8)((D)) = toxu € HIG5 (R x BY). [ ]

€,SC
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Proof. We begin with the m,s,c = 0 case. By definition, HIQ(R x BY) = L2 (R x BY) =
L2(R x BY, gesc), 50

VHISO(R x BY) € LA(X°, 07 geyse). (144)
By the computations above, t*gesc € C™°(X;R")gde sc, which implies that
L2(X07 L*ge,SC) < L1200<X7 gde,sc) = Hgé?scjloc(x)- (145)

So, *HOOO(R xBY) C HYC | (X). Conversely, suppose that v € HY°  (X). For any x € C°(X),

e,sc de,sc,loc de,sc,loc

xeetll? 000 = ﬁ leoxul? dVolose = / |2 dVolge se, (146)
Hese Rx B X
where J = dVolese/ dVolgese € C°(X;RT). Since supp x is compact,
/Xlxuﬁj dVolgese < (SUPguppy /) /X Ixu|? dVolge se < (SUPsupp x J)HXUH?‘IESSC(X) <oo.  (147)

Thus, toxu € HOQ(R x B?).
The case of general m € N and s,¢ € R follows from the already considered case along with

Proposition 3.4. (]

1,1
de,sc

3.2. Test Modules. There are six test modules 9,9, C ¥
These are defined by

that we use, where ¢,0 € {—, +}.

ME = {A €Wyl :chary (A) D RS}, (148)
N, ={A¢e \I/(ligsc : char}i’;sc(A) D spang RS} C M Nt (149)

at the level of sets, and we consider them as \Ifg’eosc—bimodules. In eq. (149),

spang Ry, = R* d7(Tt) (150)

is the line subbundle of de’SCTff(O) over the relevant timelike cap containing R¢, where Tf = Ff

or Tf = Pf, depending on o. Here, we are interpreting the de,sc-1-form (*dr as a function
0 — deserQ,
From ot ([A, B)) « {ot (A), ot (B)}:

de,sc de,sc » Y de,sc

Proposition 3.6. Each M. and N, is closed under the taking of commutators. [l

Recall that the sets R¢ were defined in the introduction. A more concrete definition can be found
in the next section. Equation (150) is consistent with these:

Proposition 3.7. The radial set R is given by £m¢*dr(Tf). [

Proof. 1t suffices to check only the Ri case, since the others follow by symmetry. We consider the
situation over the interior of Ff. There, if we parametrize 5°T*M using

(t,r,0,p,q,m) — pdt + qdr + rndb, (151)
the radial set RE from the sc-dynamics is given by seTaMN{n=0,p>—¢®> =m? £p >0, (p, —q) ||
(t,r)}, except at null infinity, where R(jf hits fiber infinity. We have, for 7 > 0,

Tdy

T
pdr + 5 =pdt +qdr (152)

I—y

for p = (p(1+y?)+2qy)(1—y*) " = 7 (pt+qr) and T = 2(1—y*) "' 2py+q(1+y?)) = 277 (pr+qt).
Consequently, on Roi, T vanishes, and p is just +m. We conclude that

me* dr(T°) = R N 9e=r=1(Tf), (153)
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Since dr is a smooth e,sc-form on the Poincaré cylinder, its pullback via ¢ is a smooth de,sc-form,
so mu* d7(Tf) is the graph of a continuous function over the closed set Tf. It is therefore a closed
subset of 4e5°T*Q.

Since m* dr(Tf°) is dense in this graph, we deduce that RT = m¢*dr(Tf). O
We have W30 . C 0y, s0 1 € Ny, M.
Let Mg, Mo denote the C°(R x BY)-modules of elements of Diffé;sl(;o (R x B?) given by
Ny = span G ey {0} U (L= 520, Y. (154)
Mo = Span e @,pa {707} U {(1 = 5°)8y, ). (155)

Fix x € C*(X) that is identically equal to 1 near timelike infinity.
From the computations in the previous subsection, we get:

Proposition 3.8. For each choice of sign o € {—,+}, the 00

de.sc-Module Ny is generated as both a
left and right module by the elements of

{IJU{(l = 1oox)V : V € Diffl!

de,sc

YU {1gesoxt™ Vo : Vo € Mo} (156)

Consequently, M, admits a finite generating set consisting of differential operators. For each choice
of pair of signs o,c € {—,+}, M is generated (as both a left and right module) by the elements of
N, along with

Vi = x7(0r Fim), (157)
where the sign depends on . |

By eq. (133), Vi agrees with the vector field in eq. (10) where y = 1.
We fix a finite generating set of 91, consisting of differential operators. Let
Ag=1
Aj =1g0x0" (1 — yz)ﬁyj forj=1,...,d, (158)
Arpqg = Lot>oxt Or.
In addition, taking N € N sufficiently large, let As. 4, ..., Any be elements of Diﬂ"é’elSC supported away
from Tf that together with Ay, ..., A114 generate MN,. We notationally suppress the o dependence.

Let P denote an arbitrary de,sc-WDO of the form P = [+ A+ R for some R € \Ili’e_si and A € C.
We now show that the module Ny is “P-critical” at R+ = RT URS:

1,0

Proposition 3.9. There exists, for each o € {—,+}, a collection {Cj,k}é'\,[k=1 C V.« depending
on R, such that

o io '[P, Aj]l? >ito Gk Ak,

o ifk#0, Ud:a,sc(cjak) =0 on R,
where 0 = OpfOnpPf Ot OnFf OFf - [

Remark. This version of “P-criticality” is a slightly weaker statement than the one offered in
[GR+20] in the context of the Schrédinger-Helmholtz equation, as they require aééOSC(CLO) =0
on R4, but this is unnecessary for the proof of radial point and propagation estimates involving
module regularity in later sections. Proving only this weaker statement allows us to require slightly
less of R.

Proof. We only consider the ‘+’ case explicitly.
It suffices to consider the case R = 0. Indeed:
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o If we have found Cj(0J) satisfying the conclusion of the proposition when P = [0+ A, then
for general P =0+ A\ + R,

N
io '[P, Aj] = io 'O, Aj] +io ' [R,Aj] = Rj + ) Cj(0) Ay, (159)
k=0
where R; =ip '[R,A;] € ¥ Choose G € ;>0 satisfying

de sc* de,sc

WFde sc( G) N Ri = (160)

which we can do because Ri is disjoint from fiber infinity. Let A € \Ilde < be elliptic and
A€ \Ildesc be a parametrix for A, so that 1 = AA_{+ FE for E € ¥
rewrite eq. (159) as

io '[P, Aj] = (1 — G)AA_1(1 — G)R;

de . °°. Then, we can

N (161)
+ (1= (1=GAA (1 =GR+ C; (D) Ay
k=0
Since A_1(1 — G)R; € \Ifde « C My, we can write
N
A(1-G)Rj = Djipd (162)
k=0
for some D}, € \Ifde «- Also,
(1-(1-GAA (1 -G)R; = (1-GEQ1-G)+(1-G)G+G(1-G)—G*R; (163)
SR e
By eq. (161) and eq. (162), i '[P, A;] = Yn_o C;x(P) A}, holds for
ij(D) + (1 — G)ADJ'D + (1 — (1 — G)AA,1(1 - G))Rj (k‘ = 0)
Cjk(P) = (164)
Cjﬁ(D) + (1 — G)ADj’k (k’ =+ 0)
Since the essential support of 1 — G is disjoint from R, we have, if k #£ 0, oé;gsc(Cj,k(P)) =0
on R,.

Suppose now that P = [0+ A. We focus on the situation for 91y near Ff NnFf, with the situation
in the other regions either similar or strictly easier.
e First consider A € {As,q4,...,An}. Then, o~ ![P, A] € Diff%!

de.sc and is supported away from
R+. We can write this as

AA_10 '[P A]) + Eo [P, A]. (165)
As Ao [P, Al e U}

write

de sc and is microsupported away from R, it lies in 91;. Thus, we can

N
Ao P A=Y O 4, (166)
k=0

for some C(l) = \Ilde s
io™ '[P, Al = 3230 Cy Ay, for Cy, € \I/é;gsc given by

which we can choose to be microsupported away from R,. Thus,
iNCY +iEg Y [P, A] (k= 0),

E=19. (1) (167)
iACy, (k #0),

and these are microsupported away from R .
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e We now check Aq,..., Ay. Using eq. (135) and the fact that Apga is a O-operator (and the
fact that Aq,..., Ay are all O-operators on the Poincaré ball as well),
0 '[P, Aj] € o7 Yxot* T2 Diff3(BY) C opronpt oS onrrori ot Difff(BY) (168)

for each j € {1,...,d}, where xo € C°(X) is identically 1 on the support of x. Observe
that xot*Vo(B?) C M,. Via the same argument using A, A_; as above, this implies that, for
je{l,....d}, ig [P, Aj] = 320, Cj Ay for

1,0 1,-1
Cjk € 0Ptonpr0F onFfOFEX0 ¥ g e © Vb o (169)

which therefore has principal symbol vanishing on R, .
e On the other hand,
d 0 2

which implies that o~ '[P, A1,4] has the desired form.

[P’ L*a'r] = L* [Dge,sc7 87'] = XL*|:

O

For each k,x € N,

o let Dﬁf[’j denote the \I'g;aosc—bimodule generated by the de,sc-WDOs of the form Lj - - Ly,
where k of the Ls’s are in ¢ , and the remainder are in 91, and

e let 9% denote the gho

de,sc

-bimodule generated by the k-fold products of members of 91,.
Products of the form By --- By for B, € {Ay,..., Ax} generate M¥. Similarly, products of the form
By By for By € {Ag, ..., AN, V.} with at most k of the B, being V. generate zmgf; Let

NF =Nk Nk (171)

Conventionally, Mt° = \Ilg’gsc.

From the formula for [J in hyperbolic coordinates:

Proposition 3.10.

O+m? = (7 3)[VeVe + (d — 1)Vi] + 0° Ry (172)
for some Ry € M2, [l
Proof. Let x € C(X) be identically 1 near timelike infinity, and decompose

O+ m? = x(O+m?) + (1 - )0+ m?). (173)

The second satisfies (1 — x)(0 + m?) € ¢*90%. On the other hand, x(O + m?) = x*(Og, .. + m?),
and the right-hand side is computed as
X Oge + M) T2X[VEV 4 (d = DV + Dy £ im(d - 2)]. (174)

Using the computations in the previous subsection, (t*772)x(t*Aga £im(d —2)) € 0*N? as well. We
conclude that eq. (172) holds with Ry = 07 2((1 — x)(O+ m?) + (*772)x(:* Aga £im(d — 2))). O

Proposition 3.11. Fizc,0 € {—,+}. If A€ M¥E and B € M*J, then

(’ (’Cr ’

[A, B] c 1k+j>09ﬁ?j;%’ma}({k+j_l7o} + 1H+%>Om§2x{li+u—l,0},k+1 + \I’ggse' (175)
|

Proof. We proceed inductively:

e If all of k, Kk, j, »r are 0, then the result just states the fact that lIlg’e(?SC is closed under the
taking of commutators.
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e Suppose that x, k are both 0 and s+ j = 1 (and the case where s, j are both 0 and K+ k =1
is similar). In this case, the result states that [A, B] € \Ilg’eosc for all A € \I'g’eosc and B € 95
This just holds because

R (176)

de,sc*

[‘1]1,1 \IIO’O

de,sc’ ~ de,sc
e Suppose that Kk +k = 1 and s+ j = 1. There are three essentially different cases to consider.
— If Kk, 2 = 1, then the result states that [A, B] € M for all A, B € 9., which is part of
Proposition 3.6.
— Likewise, if k,j = 1, then the result states that [A, B] € N, for all A, B € N, which is
also part of Proposition 3.6.
— If k,j = 1 (with the case s, k = 1 being similar), then the result states that

[A, B] € M5 + My =m0 (177)
for all A € M, and B € MNM,. This is a weaker statement than the result in the x, s =1
case.

e We now handle the case when k+k > 2 or x4+ j > 2, proceeding inductively on K+ +k+j.

We discuss the case k + k > 2, and the (overlapping) case » + j > 2 is similar.
Assuming that x + &k > 2, if A € MSF we can write

S0
A= 1,€>0AOA, + ].k>()A1A” (178)
for Ay € MMRatn=LOMF 41 cooms Ay € e th=10} and A” € M,,. Then,
[A, B] = 1u20(Ao[A’, B] + [Ao, B]A) + 1p=0(A1[A”, B] + [A;, B]A”). (179)

These satisfy

Lis0Ao[A, B] € 1 soumax{n=1.0bk (1 goqltoemax{i=LO0} 4 gy

C 1k+j>09ﬁ?;u,max{k+jfl,0} + 1K+%>Ommax{ﬁ+%71,0},k+j7

Lol Ao, BIA' € Lio(Lis oML 0 max(bes 10} 4 1, gypmaxticn=2.01 3o
C 1k+j>0gﬁn+%,max{k+jfl,0} + 1E+%>Om?gx{n+%71,0},k+j,

1150 A1[A”, B] € 1y oEmaxth=L0} (e 4 1, gpmax (10T

mg—;—z,max{k—i—j—l,o} + 1K+%>Omglgx{n+%—1,0},k+j

(180)

C lgyj>0
" k—+7—2,0 —1,0 k+5—1,0
1k>0[A1,B]A c 1k>0(1k+j>1m?j;%’ma)({ +7i-2, }+ 1H+%>Om?71§x{n+% ,0} max{k+j—1, })s)’ta
C 1k+j>09ﬁ?;%’max{k+j_l’o} + 1n+%>omgﬁx{ﬁ+%_l’o}’kﬂ-

So, we can conclude that eq. (175) holds.
t

Let
IS MY = spanc{AB : A € W5, B € MELY, (181)
and analogously
MEAPTS = spanc{BA: A€ U  Be 93??”5 . (182)

,0 ~de,sc de,sc?
Proposition 3.12.
m,s r.k m,s max{k—1,0},k k,max{k—1,0}
o IfAc V¥ and B € M5 then [A,B] € U7 (1,50Me,0 + 10D s +

de,sc S0 de,sc
0,0
\Ilde,sc)‘
m,s K),k — K,k m,s
b \Ilde,scmc,a - mC,U\IIde,SC'
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Proof. We prove the result via simultaneous induction on x,k € N. The case xk + k < 1 is an
immediate consequence of the algebraic properties of the de,sc-calculus.

Suppose now that k, k € N satisfy x + k > 2, and suppose that we have proven the result for all
pairs kg, kg such that xg + kg < k + k.

e For B € M we can write, like eq. (178),

S,0
B = 1H>0BoB/ + 1k>OBlB” (183)
for By € M t=1OME " prcops | By e L0 and B” € M, For A € US|
[A, B] = 1,>0([A, Bo]B' + Bo|A, B']) + 13~0([A4, B1]B" + By|A, B')). (184)

The terms on the right-hand side satisfy
1/-@>O[A7BO]B, c 1K>0\11m,s (1K>1m1§r’12x{n—2,0},k + 1k>ogﬁglgx{ﬁ—1,0},max{k—1,0})mz

de,sc
C 1uso W s Mmax v LObF g g Wl onmaxth=1.0},
1/@>0B0[A7 B/] c 1n>0m2§){{’{_1’0}7k\y$}’;e _ 1K>O\I/gz,’sscmlgl7lgx{m—l,0},k’
" m,s max{x—1,0},max{k—1,0} k,max{k—2,0} (185)
1k>0[A, Bl]B c 1k>0\1,de,sc(1"€>0mg,o' i S ]_k>19:n§:0 s )ma
C 1uso W s MIax v LObF 4 g g Wi ommaxth=1.0},
1r>0Bo[A, B'] € 1k>0mggx{ﬂ_l’0}’k‘1’$’,ssc = 1k>0‘1’:1ré’,sécmlc?gx{ﬁ_l’0}’k,
where we used the inductive hypothesis. So,
[A,B] e \I/g:;c(ln>09ﬁg1§x{n—l,0},k + 1k>0m?’,;nax{k—l,0} + \Ij?ile(),sc)' (186)
e IfAc ¥ and B € Sﬁgf, then, using eq. (186),
AB = BA+[A,B] € MEFOLS 4 Wit (ommaxts=10bk 4 gprmaxtk=10}) — guekys - (187)

BA = AB — [A,B] € U}V o=k 4 glvs (oqmaxts=LObk 4 gqemax{h=10hy — gs opek - (188)

de,sc de,sc de,sc~"'¢,0

which together show that

\Ijgg,sscmt?:t]fc = mz’!fc\ljgg,ssc‘ (189)
O
Consequently:
Corollary 3.18. If Ac W%, B¢ Mk, and C € M, then

[AB,C] = A[B,C] +[A,C]|B € U35 (LM fromaxthti=tor 4 g gopmadse1.05h+s
+ w20 ). (190)

de,sc
[
For each m € R, s € R%, and &,k € N, let
Sk SR,k
ng,:c’;{q,a - H;Z,ZC'?(,U(@) (191)

denote the Sobolev space consisting of elements of HQZ::C which remain in this space under the

application of any element of smgj; .
Correspondingly, for m, s, € R and s,k € N, let

ngsvgwk = Hg;f‘?“’k(@ x BY) (192)

be the set of elements u € H:5S(R x B?) such that Au is also in this space when A is a product of

e,sc
k elements of My and k elements of Ng.
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Proposition 3.14. Fiz a sign e € {—,+}. If x € CX(X) has support in clx{et > 0} and u € &',
then, for any s,s,0 € R,

xu € Hig G orstedink ) (193)
if and only if eTMT L xu € Hg}s’g&“’k(R x B%).
In particular, if u € Hy. gi j:eoo OO’S);OO’OO((O)), then e¥'™T 1, xu € HIL50% (R x BY). [ ]

Proof. The k = k = 0 case of this follows from Proposition 3.5 and the observation that multiplication
by eT"™7 defines an isomorphism of e,sc-Sobolev spaces. This latter fact follows from the m, s, ¢ =0
case and the observation that if L is an e,sc-differential operator,

[L,eT'™T] € Diff (R x BY) (194)

is an e,sc-differential operator of uniformly lower order.

To deduce the case where k > 0 or k > 0, it suffices to note that the elements of 91, push forward
to elements of 91y via ¢, and elements of M_ ., M ., when conjugated by exp(Fimr), push forward
to elements of M. For example, if

xu € HypGitemstoilo ), (195)
then, considering a generic element
d
L=ard; +Y a;j(1-y*)0,, (196)
j=1

of My, where a,a; € C®(R x B%),

0 0
(ap + L)e¥““TL XU = Ly {(L ap + (t%a) ( 87') + ;(L*a])b ((1 y2)87yj))e¥lmL TXU}
J; ) (197)
= ey, Kb ap + (LFa)Vy +J§:1(L aj)L*((l - yQ)a—y]))xu}
so that
(ap 4+ L)eT™ 1 xu € e:FimTL*Hg; gz j:; 05+68) eFIMTHIES C HILSS (198)

for any ag € C®(R x BY), so we conclude that eT™ s, yu € HI5 1R x B?). Conversely, if
e L xu € HIGEO(R x BY), (199)

then, for any ag,a,aq,...,aq € C*°(X),
d d

0
[ao +aVy + Zaj }Xu = {CLQL +a*o (7’8— F ’LTm) + Z CL]L o(l— y2)8yj]b*xu}
7j=1 j=1
. o d )
— e:i:zmb T[aoL* +arto (TE) + ZajL* ° (1 _ y2)6yj}6:|31m7—[/*xu},

j=1

(200)
so that
d
a0+ Ve + 3" a4, | u € eHmTCR (Rt HYS © HIE o059, (201)
j=1

So, we conclude that yu € H" de. gi S;; ,545,8);1,0 (0). The case for general k, k is analogous. O
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3.3. Asymptotics from Module Regularity. We apply standard notation to refer to spaces of
extendable distributions on R x B¢ with partial polyhomogeneous expansions. So,
AR xBY) ={ue L®: Lu e (1 —y?)*L=R x BY) V L € Diff,(R x BY),¢ € R} (202)
A=2(R x BY) = (r)~* A"(R x BY), (203)

with similar notations employed when u has partial polyhomogeneous expansions at the boundary
faces of the Poincaré cylinder. In general, if £ C C x N is an index set, we write

AE2):0(R x BY (204)

to denote the Fréchet space of distributions which have partial polyhomogeneous expansions with
index set £ at (OR) x B¢ (with a conormal remainder of order «), the terms of which are Schwartz
at R x 0B?. We can also work with LCTVSs of functions lying locally in one of these spaces, in
specified open sets. For example, it is often convenient to exclude {7 = 0}, so we write

AE2(R\{0}) x BY) (205)

loc

to denote the set of functions u : (R\{0}) x B? — C such that xf € AE>°(R x BY) for any
X € C&(R\{0}) x BY).

Lemma 3.15. If f € OX(X) and u € AODD°(R x BY) for some a > 0, then (t.f)u €
A(0:0),0).00(R 5 B, |

Proof. We write u = (1) ™1 + ¥, ey pea (T) " un for ufn, € ACO2(R x BY) and r € A%°(R x BY).
Via Leibniz and eq. (136) and eq. (137), if L € Diffy,(R x B%), then, for any ¢ € R,

(1 —y?) L(ru.f) € L®°(R x BY), (206)
s0 ri. f € A%®(R x B?). Similarly, for any L € Diffg(R x B),
(1 — ) L(risuy,) € L°(R x BY), (207)

50 tntyf € A0:°(R x BY). From these observations, we conclude that (i, f)u € A(0:0):2).0(R x
B9). O

Let P, denote a differential operator on R\{0} x B¢ of the form
Poge =02 +dr 10, + 77 2(L.T)R + m? (208)

for R € M3 and T € C°(X), which the Klein-Gordon-Schrédinger operators studied in the rest of
the paper have, up to pre-multiplication of the error term by an element of C°(X). The function ¢, Y
appearing here can be fairly badly behaved from the hyperbolic perspective, but (:,Y)p € S(R x B?)
for all ¢ € S(R x B?) supported away from 7 = 0. This (and the analogous statement for the partial
Taylor series of T at the timelike caps) is all is really needed when all of the functions appearing are
Schwartz at null infinity.

Proposition 3.16. Suppose that u = e=™ 7=/ 2y, for
up € AL R [0} x BY) (209)
for a € R with o > —1, and suppose that Pu = f for f of the form f = =™ +=42f, where
fo € AL R\ {0} x BY). (210)

Then ug € ALL0HD=(R\ (0} x BY). n

loc
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Proof. Let Pe,sc = 7d/2eFIMT petimT—d/2 Jenote the result of conjugating P by the multiplication

—4/2 Since M2 is closed under conjugations of this form,

Poge = 02+ 2imd; + 7 2(L. 1R (211)

operator exp(£imT)T

for some differential operator R € M2. Since P.scu = f, we have Pug = fo. Thus,

+ 2imd Uy = fl, (212)

where f; = fo — 0%up — 7 2(1.¥) Rug. Under the hypotheses above, f; € Akﬂg 0)a+2), *(R\{0} x B),
like fy. Integrating eq. (212),

up(7,y) = uo(l,y) £ / fi(r,y)d (213)
for 7 > 1. The term wug(l,y) is Schwartz at y = 1. Using that « > —1, we deduce ug €
Ajge ™R\ {0} x BY). 0

Proposition 3.17. Let ¢ > 0. Suppose that ug € A10i+e ©(R\{0} x BY) satisfies
Pe7sc(eizm77'_d/2uo) =f (214)
for some f € Ay (R\{0} x BY). Then,
up € A% (R\{0} x BY). (215)
|

Proof. Since f is Schwartz, fo = eT™ %2 f is in Aii;(f’ﬂ ) (R\{0} x BY) as well. This result therefore
follows, via an inductive argument on «, from the previous, in which we take & = {(n,0) : n € N}.
Note that this index set satisfies £, = &£, so the effect of each step of the induction is just to reduce
the order of the conormal error «, starting with & = —1 + €. O

By the Sobolev embedding theorem:

Proposition 3.18. For any m € N and s,¢ € R,

HIso0000 (R x BY) € ATHEFD/200(R x BY) C HIs—>°0%%(R x BY), (216)
where HZ5$%% = (Ve Meer HERS™ and HZ5 %00 = [y ox Megen Nuges HEE 207,
[ |

Proof. 1Tt suffices to consider the s = 0 case.

o Let u € HILO0(R x B?). Since
LeDiff, RxBY) C | J (1—y?) Mg, (217)

cER LN
Lu € HB0(R x BY) C (1 — ¢?)°L2 (R x B?) for each L € Diff,(R x B?) and ¢ € R.
Since

LZ (R x BY) = (1)7@HI2(1 — )@V LHR x BY), (218)

we deduce that u lies in the L%—based conormal space
Z@HD/20(R x BY) = {u € LE(R x BY) : Lu € (7)~@D/2(1 — )5 L2 (R x BY)
for all L € Diff,(R x BY) and ¢ € R}. (219)

The Sobolev embedding theorem implies that Z(4+1)/20(R x B¢) C A@HD/20(R x BY).
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e Conversely, suppose that u € A@+1)/2°(R x B?). Then, because L=(R x B?) C (1)¢(1 —
y?) "¢ LZ(R x BY) for any € > 0,

Lu e (7)@=D2(1 — 2 L3(R x BY) = (r)¢(1 — 3?)~ @ D/212 (R x BY) (220)

e,sc

for any ¢ € R and L € (1 —y?) Diffy, (R x B%), for any ¢y € R. This holds, in particular, for
L =1. Since 9; € (1 —y*)7! Diff,(R x BY) and (7)7'(1 — y?)9,, € Diffp,(R x BY),

Diffe s (R x BY) € | J (1 — y*)° Diffp(R x BY). (221)
GER
Combining these observations, LoLu € (7)¢(1—y®)* L2 ..(RxB?) for any Lo € Diffe (R x BY)
and L € Diff,(R x B?). That is,

Lu € H™ (R x BY), (222)

e,sc

for any m € N. Since My C Diff,(R x BY), we can apply this for all L € (yeny MG to
conclude that u € Hg‘s’c_ €5%0,%0  Taking € — 07 and ¢ — oo, we conclude the result.

O
Now let P = A +m? + Ry for some R € Diff> 2(0).

de,sc

As in the introduction, let y € C°°(0Q) denote a function supported in clg{t? > r?}° = clg{t? >
r2}\ clg{t? = r?} and identically equal to 1 in some neighborhood of Pf U F¥.

Proposition 3.19. Let m > 0 and s > —3/2. Suppose that u € S'(RY?) satisfies Pu = f for some
f € S(RY). Then:

o [fu € ngjéi;jz’_oo’oo’oo);oo’oo(@), then u has the form u = w + xe™™(r)~42y for some
w € S(RM) and v € Qﬁi’)fgﬁ%fgﬁcoo(@). |

o Ifu € H(;Z’g?fioo’oo’s)’oo’oo(@), then u has the form u = w + xe™™(r)~42y for some
w € S(RY) and v € 08%50%%:0°%:C>(0).

Proof. First of all, observe that P can be written as the pullback P = ¢*F, s for an e,sc-operator
P, . on the Poincaré cylinder, with P, s satisfying the conditions above. We consider the case when

u € Hyy 50 o), (223)
and the otheres are similar. Let g = xf + [P, x]u, so that P(xu) = g. Since [P, x| is supported away
from timelike infinity, where the de,sc-wavefront set of u is, g € S(RY). Pushing forward via the
diffeomorphism ¢ : X° — R\ {0} x B,

Pesc(tsxu) = (txP)(tsxu) = t(P(xt)) = tig. (224)
By the hypothesis and Proposition 3.14, v, yu = e=M7=%/2y for
ug € Hws= /2000000 x BY). (225)

Likewise, 1,9 € C®(R x B%), i.e. g is Schwartz on the Poincaré cylinder.
By Proposition 3.18, ug € A*1/2%°(R x B%). Since s > —3/2, we can appeal to Proposition 3.17
to deduce that

up € AR x BY). (226)
Letting v = * (7)%277%/2yy, we have yu = et"™(1)=%24y 50 setting w = (1 — x)u € S(R"%), we
have u = w + xe ™™ (7)~/2y, O

The map ¢ : X — R x B discussed in §3 identifies {—o00} x ]Rg, with the past timelike cap on M.
We use this to state:
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Proposition 3.20. Suppose that vy are Schwartz functions on either the the past or the future
timelike cap of M, not necessarily the same cap. Then, there exist some

Ut € 0np05t 0npeC™(0) (227)
such that

e uy has support disjoint from all of the faces of QO except the cap on which v is given and
the adjacent component of nf,
e uy, when restricted to that cap, is v+, and
o P(xop o e ™" L) € SRM),
for each choice of sign. |

Proof. We consider the case where the timelike cap is the future one, with the past case being
analogous, and we consider only the plus case of the theorem, the minus case being analogous. We
work on R x B¢, considering v, € S (Bf,). It suffices to construct

wi € (1—y*)>®C>™(R x BY) (228)
supported in [1, 00], x B such that W+ | (oo} xme = U+ and Poge(77 2™y ) € S(R x BY). Indeed,
given this, set

Uty = Q;fcm(gpr*T)_d/zL*er € C*(0) (229)
(which is supported away from Pf UnPf U Sf). Then, since P = t* P, g,
P(xepr orr e ™ us) = [P0 T e M0 ) 4 X0 Pege(T %™ ) € SR, (230)

The construction of w, is a straightforward term-by-term construction using the structure of
P, s described in eq. (208). Consider a formal series

o0
wis(T,y) =Y wikly)r " € SBH[1/7]]. (231)
k=0
Formally applying P ¢ to T*d/Qe”mijL’g yields T*d/Qe“mTpe,SCwJFZ, where 156780 = 0% +2imd, +

772(tsT)R for some R € M3, as in eq. (211). In order to make sense of Rwﬁg, we consider the
Taylor expansion

00 d
(1 T)R ~ Z 7k (ckﬁz + Z cr (1 — y2)878yj
k=0

j=1
d d
+ 30 (1= ") 20,540y, + diDr + 3 dis (1= 92)0y, + ), (232)
j,fil 7j=1

where ¢y, k. j, Crjo, di, dij,ex € C>(B%), with a polynomial rate of growth at the boundary.
Applying PO,SC to wy x, the result is the formal series in 1/7, the kth term of which is a linear
combination of the w4 g, ..., w4 p—1 with coefficients in C'*° (B?) having polynomial growth at the
boundary, and with the coefficient of wy ;1 being —2im(k — 1)wy 1. Thus, we can recursively
define a sequence

{wy ki € S(BY) (233)
such that w4 g = vy and such that Pe,scw—i-,E = 0, formally. Via the Borel summation lemma, there
exists a wy € (1—y%)>®°C>(R x B%) whose Taylor series at 7 = oo is given by eq. (231). Multiplying
by a cutoff, we can assume that w, is supported in [1, 00]; x B The formal manipulations above
make sense at the level of computing the Taylor series of [ = Pe7SC(T_d/ 2etiMT, 1), which is a
priori in 7-%2et M7 (1 — 42)*°C>°(R x B?). The formal manipulations show that the Taylor series
of f at 7 = oo vanishes, which suffices to conclude that f is actually Schwartz. O
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4. CLASSICAL DYNAMICS ON THE DE,SC- PHASE SPACE

We now study the (appropriately scaled) Hamiltonian flow of the d’Alembertian — i.e. the null
geodesic flow — of an admissible metric on the de,sc-phase space, near null infinity. Attention is
restricted to the characteristic set of the Klein—Gordon operator, which depends on m. As seen
above, the symbol

p=—-124+224+ 2+ m?e C®(T*RY) (234)
of the Minkowski d’Alembertian is a classical symbol on the de,sc-cotangent bundle of order zero
at each face except df, where it is second order (that is, growing quadratically). Let p[g] denote a
representative of the principal symbol of U,. If g is admissible, then

plgl = p + opronprostonrtoFP1[g] (235)
for some p; € Sde SC(@). Let
plg] = aplg) € CX(1*T"0), (236)
Then, the characteristic set X,[g] is given by
Sm = plg] 7 (0) N AT 0). (237)

Over the boundary of O, ¥,[g] does not depend on g. In each fiber over the boundary ¥, [g] consists
of a two-sheeted hyperboloid (note that this notion does not depend on the choice of coordinates in
the base). By the admissibility criteria, which imply time orientability, ¥my[g] has two connected
components,
Ym 9] = Bmlg] N clue s o™ = 0} (238)
Recapping the proof of Proposition 2.3, and adding back in the n dependence:
e in Qure+ 7, where we can use the coordinate system (ont, o1¢,6,&,(, 1) — Q;fQQrEflngnf +
ont 07 Cdors + oy orin do,
p =& —2C+n +m? (239)
and
e in Queset r, using the coordinates (ouf, 0sf,0,&,¢,n) — onfosr&dont + o4f 05 Cdose +
g;fzggfln dé, p is given by —&2 + 2¢6¢ 4+ n? + m2.
Thus, over nf € {nPf,nFf}, and letting o € {—1,+1} be defined by o = +1 if nf = nFf and 0 = —1
if nf = nPf, the set ¥m +[g] is given by

S 9] O Qugrr i N7 () = el o1C = (267N + 12 + m?), FoE >0} (240)
with respect to the first coordinate system and

Zm,i[ ] N anSf +.R N de, SC (nf) = CldC,SCT;f@{C = (25)_1(62 - 772 - m2)a :FO'&- > O} (241)

with respect to the second. These hyperboloids are depicted in Figure 4 in the d = 2 case.
In the Cartesian coordinate system (¢,x,7,&) — 7dt + Z?:l & dx; € T*RM the Hamiltonian
vector field is

H, = 27 —2 Z Eim 8x (242)

using our sign convention. With respect to the coordlnate system (onf, o1t, 0, &, ¢, n) — g;fQ .Qﬁlﬁdgnf—&—
g;fl QrfoCdQTf + Q;fQQﬁln d#, the rescaled Hamiltonian flow H,, defined by eq. (37), is given by

0 0
2 oMy = (C=E)angy —+Eorrg —+(2+€ aoag O+ (=) 5+ = Vs, (243)

where Vga—1 is the generator of dilations on T*S?1. (L.e. Vga—1 = Z .y 7718 with respect to any
local coordinate system 61, ...,60;_1 on the sphere at infinity.) On the other hand with respect to
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the coordinate system (ont, 0sf, 0, €,(,n) — Q;f2Q§f1§dan + g;fl gngCdst + Q;fQngln d#, the rescaled
Hamiltonian flow H, is given by

0
¢

0 0 0
2*1Q5f1Hp=(§—C)@nfagnf—€QSf8QSf+(2n2—§2+54)5§+(n2—(5—()2) +(£—2¢)Vga—1. (244)

Defining H,g) = 0at (0Pt 0npt0st 0nre0Fs) " Hylg),

H,jg) = Hp mod gponprostonrtort Vo (**T 0). (245)

The radial set R, URT C 45°T7:0 defined by eq. (42) is given over nFf N Ff by {¢ = ( =
+m,n = 0}, and likewise RZ URT C 4e5¢T%.Q is given over nPf N Pf by {¢ = ¢ = +m,n = 0}.
Likewise, for ¢ € {—,+}, the radial sets V== are the subsets of Xy, ¢ defined by

/\/;i n de,SCTZ@ _ {Ems n je,fcgé@ N Clde,scT;@{f =0} (o€ Qurrx1), (246)
B, NS0 N Clac s o{€ = 07 (@ € Qugsix,R),
these two definitions agreeing on their overlap. The radial sets Cgi, ICCi C Xmy are
CE = (Bme NS O Ndesr~ (nf N TE) N Clieser o1 = 0})\WE, (247)
KE = (Sme NS O N 9r~ (nf N Sf) N Claeser o 11 = O} W, (248)
for Tf = Ff and nf = nFf if ¢ = + and Tf = Pf and nf = nPf if ¢ = —. We can now define the final

radial sets Agﬁ to be the components of the remaining vanishing set of H,, which can be seen to lie
at fiber infinity.

Consider fiber infinity over nFf N Ff, using the coordinate system in the half-space {{ < 0} over
Quere, 4,7 given by

1 § LM
p R s ¢ M) c (249)

Rewriting j in these coordinates, p = p~203;(s? — 25 + 7* + p?m?), which is s? — 2s + /% + p?’m? =
(s —1)2+ 7% — 1+ p?m? up to a smooth, nonvanishing factor in a neighborhood of the part of the
characteristic set under consideration. We therefore have, restricting attention to the ¢ = + case,

St = {(s— 12 + 7% = 1 - p*m?} (250)
locally, in these coordinates. Rewriting eq. (243) in terms of these coordinates, we get
0 0 0 0
27 poH, = —(1 — —— —sort=—— + |7? — 1% p= — (2—s)|7? —1)| =
poat Hp = —(1 = S)ou — = serig —+ [ + (s = DP]pg. = 2= 9)[ii + 55— D] 5

+ (P42 =5 —1)Vau. (251)

(In local coordinates for the sphere at spatial infinity, Vga—1 = Z?;% 71j04,-) This only vanishes over
the boundary of Q. We are examining the situation over null infinity, where g, = 0. If on¢ = O,

then:
o if ppr # 0, then H,, only vanishes on ¥, 4 at ¥ N{s =0} =X + N{s =0 = p, 7}, which
is just the set N,
e over the corner nFf NFf, if p # 0 then H,, can only vanish on ¥, 1 if # = 0 and s = 1, which
corresponds to R,
e at p =0, H, vanishes on ¥, ; only if s =2 or s = 0 (the latter as already noted), in which
case 7] = 0. The former possibility corresponds to Cf.

The situation on X, _, and over past null infinity, is similar. In the case d = 2, H,, restricted to
Ym4 N9~ 1(nTf N Ff) is depicted in Figure 5.
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H, on ¥y N9~ (nFf N FY) H, on 4 N9~ (nFf N Sf)

FIGURE 5. The vector field H,, plotted (in the case d = 2) on the hyperboloid ¥m +
over nFf NFf (left) and nFf NSt (right), versus the coordinates 7 and s or 7 and —\.
Increasing p corresponds to decreasing radii from the plot origin, and the boundary
of the disk lies at fiber infinity. In the left plot, we can see the portions over nFf N Ff
of the radial sets Njf, Ri,Ci, located at 77 = 0 and s = 0, 1, 2, respectively. In the
right plot, we can see the portions of nFf N Sf of the radial sets N, AT, ICL located
at 7 =0,4+1,0 and —A = —1, 1, 3, respectively.

The coordinate system eq. (249) does not suffice to study the situation over Qust ¢ g, as each of
the sheets ¥ + crosses {¢ = 0}, as depicted in Figure 4. Instead, consider the coordinate system in
the half-space {¢ — & > 0} over Qs 4+ r given by

p= A= oL

(=& (=& (=&

In terms of these coordinates, p = p?03(—471(1 — A\)(3 + A) + 72 + p?m?), which is —471(1 — A)(3 +
A) + 72+ p*m? =471 (A +1)%2 + 72 — 1 + p?m? up to a smooth, nonvanishing factor. Therefore,

Sma = {47TA+ 1)+ 72 =1-p’m?} (253)

locally. Rewriting eq. (244) in terms of these coordinates,

(252)

o 1 B )
p8—p+§()\+3)[27] +A—1}5

+ (7% = 1)Vga-1.  (254)

o 1 o 1
2 pogtHy = —onim— + = (1 = Nogra— + = 272 + A+ 1
peaHyp =~z —+ 5 )QSfagsf+2[ 7+ 2+ 1]

Then:

o if oy # 0, then H,, is nonvanishing, so we have no radial set over the interior of Sf.

e Over the corner nFf N Sf, if p # 0 then H, is also nonvanishing (because 72, A+1>0on
Ym,+, with equality only at fiber infinity, so the coefficient of the pd, term in eq. (254) is
nonvanishing), so the radial set must be at fiber infinity.

e At fiber infinity, H, vanishes only if A\ € {1,—1,-3}. If A = 1,-3, then /) = 0, and, if
A = —1, then [|A]|> = 1. These possibilities correspond to Njf, ICI, and .Ai, respectively,
where H,, does, in fact, vanish.

The situation on X, _, and over past null infinity, is similar. The d = 2 case is depicted in Figure 5.
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FIGURE 6. The vector field H,
plotted (in the case d = 2) at
the part of fiber infinity in Xm, 4

over nFf. Only the /7 > 0 half Hp on Ep ¢ N 4§ 0 N e~ (nFY)
is shown. The horizontal axis ' -
is parametrized by arctan(t — r), /}7'/’;"—:’\?\

so the left end {arctan(t —r) = = \\®§

—m/2} is over nFf N Sf and the
right end {arctan(t —r) = +x/2}
is over nFf N Ff, and the verti-

/—{&\\
cal axis is parametrized by an ap- \T\‘k\\\ \
propriate coordinate interpolat-

ing between the coordinates s and

—A used in Figure 5. The radial \'x X X x

N along the bottom, £ in the X ! .\\X&\ ‘X\Ml“'l

top left, Ci in the top right, and -0.5 0.0 0.5 I.
AT in the center left. 2narctan(t — r)

sets are colored as in Figure 5:

(=

Remark. One feature of the dynamics that can be seen from Figure 5 and Figure 6 is the flow from
/\/'j: N deser=1(Sf N nFf) to Ierr through finite de,sc-frequencies, across nFf along fiber infinity to
CT, and then around to N;" N 45¢x=1(Ff N nFf) along fiber infinity (in the 7 direction).

Consequently, as forewarned in the introduction, in order to control our solution at /\/'jf N
descr—1(Ff N nFf), we need to already have control at N N 9¢s¢r=1(Sf N nFf).

We now proceed with a few elementary computations in preparation for the propagation and
radial point estimates in the next section. The most basic of these, which captures the fact that the
Hamiltonian flow moves us along nf (except at N), is:

Proposition 4.1. On X+ N95r L (nf*)\NZE, o = ¢t — r satisfies £H ja > 0. [

plg

Proof. We cover X, 1 N 9e5¢r=1(nf%) by de’scﬂ'_l(anI‘f,g’T) U de’scﬂ'_l(anSfS’R). In the former, we
can write a = (o1 — 1)1, so, by eq. (243), we have

Hpo = ~20uié ¢ o (255)

ore —T)?
over nf°, and +p4¢§ < 0 on Xm 1+ N de’scﬂ_l(anff7<7T)\./\/;i. On the other hand, over Qs ¢ r, We
write a = —(pst — R) ™!, so by eq. (244) we have

Ost
Hya = —2804t——
8 o (ost — R)?
over nf°, so the same holds. So, Hya > 0 on X+ N9~ (nf*)\NE, o = ¢t — r. The same
therefore holds for H O

(256)

plgl

We now discuss the radial sets. To simplify the discussions at the radial sets over the corners of
O, we can assume that gqr is given by the coordinates labeled p in eq. (249) and eq. (252) near the
corners of Q. It is straightforward to modify the discussion to handle arbitrary choices of bdf at df,
and indeed we need to do this anyways to discuss the radial sets A/. The arguments are all similar,
but this way we do not need to repeat it.

Proposition 4.2. Fiz signs ¢,0 € {—,+}. Letting ® € C°(°T Q) satisfy X = 03¢ + p> + (A +1)?
near At., the symbol
Fy = Fi[g] = HyX — 450X € C* (4T 0) (257)
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vanishes cubically at AS within Xm(g], in the sense that
Fy € N3/2L% 4 4R + plg] L™ (258)
locally. |

Proof. We only consider the case of AI, the other three being analogous. Before doing so, it is
useful to reduce to the case where g is the Minkowski metric. Working in some local coordinate
chart 61,...,04_1 on ngl, we can write

Hppg —H 0 0 0 0 0 0
plg] P
= Vaton + Vs +V,p —i—Vf—i- Vo, 77+ Vi o 259
OPf OnPf 0Sf OnFf OFf O Donr B g T PPy T A Z ( %00, T on; ) (259)
for some Vi, Viogr, Vo, Vi, Vi, , Vi, € Coo(de’SCT 0). Applying this to X, the result is
H,,—H
POl N = Vel 4 2V,p% + 2VA(A + 1), (260)
OPf OnPf 0Sf OnFf OFf

The ratios /R, p?/R, and gnrose(A+1)/R all lie in L (locally). Thus, we can absorb (Hpfg — Hp)R
into the nRL>® term in eq. (258). Consequently, it suffices to consider only the case where g is the
Minkowski metric.

By eq. (254),

27 HR = (1 - Nk + 22 + A+ 1) + (A +3)272 + A = 1)(A + 1) (261)
near .AI. We write the right-hand side as 28 + Fj o for
Fro=—(1+ Ao + (20> + A= 1)(p* + (A +1)%) +4(7* = )(A + 1), (262)

which vanishes cubically at .Ai. In order to see this, we write F o = Fy 1 + pFi 2 for

Fii=—(14+X0+27" (1= NA+ D0 + (A +1)%) = 20°m*(p° + (A +1)?)
—(A+1)2 —4p’m2(A+1) (263)

and F1o=2p? +2(A+1)2+4(A+1) € € $%°  Term-by-term, we see that Frp e W3/20>, O

de,sc*

Proposition 4.3. Fir signs 5,0 € {—,+}. Setting a(m,f) = gto’;, the symbol a = alg](m,{) €
C>® (45T Q) defined by Hpga = aa satisfies
(1) soa >0 on NS if m > £, and
(2) soa <0 on NS if m < £.
|

Proof. We check the case of N}, with the other three being analogous. Before doing so, it is useful
to reduce to the simplest case:

e We have afg] = a]0] —I—(fl(Hp[g} —H,)a. Because Hprg —Hp € QPanPfQSanFfQFbe(de’SCT*@),

(Hpjg) — Hp)a = ai[g]a (264)

for some a[g] € C°°(4*°T" Q) vanishing over the boundary of Q. So, a[g] = a[0] + a1[g],
and this satisfies the conditions in the proposition if and only if a[0] does. It therefore
suffices to prove the result in case when g is the Minkowski metric.

o If o4t is another choice of bdf of df, then

m
Hp[g] QQ},Ogﬁf = (a + (diifo) Hp[g] (%) )Qg%,()tgf;fa (265)
assuming that « satisfies the conclusion of the proposition with the original choice, gqt, of
bdf of df. As H,[, vanishes on the radial sets, the second term in the parentheses vanishes
at the radial set in question, so the proposition applies regarding the modified bdf with a
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slightly modified a. We can now calculate a over Q¢+ 7 and over Qyese 4 g, using over
each whichever choice of pqr makes the computation simplest. (And these do not need to be
the same choicel!)
With these simplifications in mind, we compute:
o Over Quere 4 7, we use the coordinates eq. (249), and we can take gg4¢ = p locally. In this
case,
Hpa = 2(m(7? + (s — 1)%) — £(1 — s))a. (266)
Thus, a[0] = 2m(7H? + (s — 1)?) — 2{(1 — s) locally. At NF, s =0and /) = 0, so a = 2(m — £).
o Over Qusr + R, we use the coordinates eq. (252), and we can take pqr = p locally. In this

case,
Hpya = (m(27% + A+ 1) — 20)a, (267)

so a=m(27? + A+ 1) — 20 locally. At N7, A=1and / =0, so a = 2(m — £) there as well.
U

Lemma 4.4. Fiz signss,o € {—,+}.
e Given any compact subset K C Ng N de’s%*l(anpf@T), there exist symbols sg, 1,82 €
O (45T Q) such that s = so near K, using the coordinates eq. (249), and
so = s1P + s2(7” + m*03¢) (268)

globally, with cosa >0 on N.
e Given any compact subset K C N3N de’scﬂ'_l(anSf’a-,R), there exist symbols Mg, A1, Ay €
C®(45T*Q) such that A = Ao near K, using the coordinates eq. (252), and

Ao =1+ Aip + Aa(7 + m?gfp) (269)
globally, with scAa > 0 on N.
|

Proof. The proofs of the two parts are similar, so we only write up the first, and we only consider
N, the other three cases being similar. In the coordinates eq. (249), we have

s=1-(1+p—7"—m’p")"/? (270)

near K, assuming without loss of generality that g4 = p locally. It is key that this holds with a
single choice of sign (near the other radial set lCi, we instead have s = 1+ (1 4 p — #2 — m2p?)1/2]
and the transition between the two formulas happens away from these two radial sets). We can
write

(1—y+2)"?=1-y""+2R(y,2) (271)
for R(y, z) smooth near {y = 0,z = 0}. Applying this with z = p and y = #? + m?p?,
s=1—(1—7%—m2p)"2 — GR(7? + m2p?, )
= R(0, =7 = m?*p?*)(7* + m?p?) — pR(7 + m®p”, p).
Note that the functions R(7% + m?p?,p) and R(0, =% — m?p?)(7? 4+ m?p?) are or can be extended

to smooth functions on some neighborhood of K on 9¢5T"Q. Thus, we can find sg, s1, so such that
eq. (268) holds, with

(272)

s1 = —R(7? + m?, ) (273)
and sy = R(0, —/? — m?p?) locally. Away from K, sq is not constrained, so all we need to do is
extend s, sy to smooth functions on the whole radially compactified de,sc-cotangent bundle to
satisfy eq. (268) globally, taking eq. (268) as a global definition of sy. Since R(0,0) = 1/2, we have
so > 0 near K, so we can arrange sy > 0 globally. O
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Note that, away from clg{r = 0}, we can define #? = 1?03, where n* = gS_dl,l(n,n) is defined
using the standard spherical metric gga—1. This semi-global definition depends on the choice of bdf
of df, so some care is needed.

Proposition 4.5. Fiz¢,0 € {—,+}. Letting 3 € C® (4T Q) be defined by 3 = 02, + 7> near
null infinity, the symbol
Fy = Hypg3 + 400 € C®(4*T"0) (274)

vanishes cubically at N5 in the sense that Fy € 33/2L® + 04 AL + plg]L> locally. [ ]

Proof. In fact, we prove the slightly stronger statement that each of gﬁf and 72 have the same
property:

Hp(g 025 + Aso 0k, Hyp i + dson® € D3/2L% + 0L + pL> (275)
locally. This version of the proposition has the advantage that it manifestly does not depend on the

choice of pqf, which affects 3 through 7. Indeed, if pqf is some other boundary-defining function of
df, then

., Ois £,0 72 Qdf 0 _ Qdf 0 72 Qdf 0
+ 4¢o H . (276)
p[g}< 0% ) % Qd p[gl( 0% )
Since Hppy vanishes at the radial set N3, which has an + 72 4 par as a quadratic defining function

within some neighborhood of itself within the characteristic set,
A df 0
2Hp[g1( o2 ) € 320> + 0qr L™ + plg| L. (277)

Thus, this new term vanishes cubically at Ng, as desired.

In addition, by similar reasoning used in the proof of Proposition 4.2 (although in this case we
absorb the contributions into the gqs3L% error term), it suffices to consider the case when g is the
Minkowski metric.

We consider the case of ./\/'j_r, the other three being analogous.

o We first consider the situation over Q¢r¢ 1 7, using the coordinates eq. (249), taking o4r = p
locally. Then, Hp02; = —4(1 — s)0%; and H,7H? = 4(#? + s? — s — 1)/? locally. Thus, the claim
is that sgﬁf and 4(7? + s2 — 5)7H? vanish cubically at /\/’f N de’scﬁ_l(ﬂnﬂf7+7T), which is true.

e Over Qugse 4 r, We use the coordinates eq. (252), taking oqr = p. Then, H,0%, = —40?; and
Hpn? = 4(7% — 1)7* mod gy¢ locally. Thus, the claim is that F5 = 44 vanishes cubically at
./\/ir N de’scﬂ'il(anSfﬂr’R), and this is true.

O

Proposition 4.6. Fiz signs ¢, € {—,+}. Letting 1€ C®(4°T"0Q) satisfy 3= 0% + p*> + (A +3)?
near KS, in the coordinates eq. (252), there exist Fy, Ez € C®° (45T Q) such that

H [Q}J = —4¢0] — E3 + F3, (278)
E3 > 0 everywhere, and F3 vanishes cubically at IC5. in the sense that F3 € /2L 4 g IL® +plg]L>®
locally. |

Proof. By similar reasoning to that in the proof of Proposition 4.5, it suffices to consider the case
when ¢ is the Minkowski metric. We consider the case of ¢,o = +, that is of ICI, the other three
being analogous. Then,

Hp = 402 +2(27% + A+ 1)p* +2(27% + X — 1)(\ + 3)?
= —43+2(27% + X + 3)p% + 2(27% + A + 1)(A + 3)%

Choose a symbol E3 > 0 such that E3 = 4(A + 3)2 near KI. Thus, we set Fy = 2(24? + A + 3)(p? +
(A + 3)?), and this vanishes cubically at KZ. O

(279)
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Proposition 4.7. Fiz signs 5,0 € {—,+}. Letting 1€ C® (T Q) satisfy T = 02+ p* + (s —2)?
near CS in the coordinates eq. (249), there exist Fy, By € C®°(95°T Q) such that

Hp-[ = 4§O'-I—|-E4+F4, (280)
E4 > 0 everywhere, and Fy vanishes cubically at Cg, in the sense that Fy € 73/2L°°+9Tf_iL°°—|—ﬁ[g}L°°
locally. |

Proof. By similar reasoning to that in the proof of Proposition 4.5, it suffices to consider the case
when ¢ is the Minkowski metric. We consider the case of ¢,0 = +, that is of Ci, the other three
being analogous. Then,

HyT = 4(s — 1)ai +4(7° + (s — 1))p” + 4(s — 2)*(7° + 5(s — 1)). (281)

Choose a symbol E4 > 0 such that Eq = 4(s — 2)? near C{. Thus, we set Fy = —4(2 — s) 0% + 4(7* +
s(s —2))p* +4(s — 2)%(7* + (s — 2)(s + 1)), and this vanishes cubically at C. O

5. PROPAGATION THROUGH NULL INFINITY

In this section, let P € Diff%°

de,sc

(O) denote a de,sc-differential operator such that
P =0, +m?+ Diff: 2 (0) (282)

de,sc

for an admissible metric g. Thus, the symbol plg] : ¥% o & da; = g~ (&, €) + m? of O, + m? is a
representative of aiﬁs (P).

We state in §5.1 the microlocal version of the proposition that a lack of decay of solutions to
Pu = f, for nice f, as measured by de-wavefront set on the boundary Penrose diagram, propagates
along null infinity, assuming control on N'. We then prove a series of radial point type estimates,
two at each of the radial sets A, N, C, K lying over null infinity: A in §5.2, AV in §5.3, K in §5.4, and
finally C in §5.5. Each of these is a saddle point of the de,sc-Hamiltonian flow. The radial set R,
which lies instead over the timelike caps, is postponed until the next section. The two main results
of this section, gotten by concatenating the various estimates, are:

Theorem 2. Suppose that m € R and s = (sps, SuPpt, Sst, Surf, S¥t) € R® satisfy

e m > syt 1,

e 2sgr > max{—2m + 2sp¢ + 1, m + syr — 1},

® 257 <M+ Spf — 1
when (Suf, sT¢) = (SnFt, Spe) and when (sue, sTf) = (Snpf, Spf). Suppose that u € 8’ is a solution to
Pu = f such that, for some T € R,

WEZSst(u) NS Lely{t =T} = @ (283)
and such that WE'? YSTL(f) C R. Then, WF:{;:SSC(U) C R as well. [

de,sc

Remark. Using the ordinary sc-calculus, it is can be shown that, given the setup of the theorem,

WEFS (u) € RUdescr=1(nf). Of course, the refinement is only over null infinity.

Theorem 3. Suppose that m € R and s = (spt, supt, Sst, SuFt, Spt) € R° satisfy

o m < spr+ 1,

e 25g5¢ < min{—2m + 2sp¢ + 1, m + syr — 1},

® 257 >m + Spp — 1
when (Suf, sT¢) = (Snre, sve) and when (sue, sT¢) = (Supt, Spe). Suppose that u € S’ is a solution to
Pu = f such that, for some neighborhood U C 95T Q of R,

WFS (u) U C R, (284)
and likewise suppose that WFZZ;:;’S—H(f) CR. Then, WFQ;SSC(U) C R as well. |
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The e,b-analogues of the results in this section can be found in [HV23, §4]. As the arguments
below are very similar to those there (and de,sc-analogues of the standard sc-results described in
[Vas18] anyways), we will only sketch the key points. To handle the situation away from null infinity,
we can simply cite the propagation results established using the sc-calculus, and so this will be
described in even less detail.

Note that, by the definition of admissibility, [1, differs from the Minkowski d’Alembertian [J by
an element of Diff»~!(Q) with real principal symbol. A consequence is that

P — P* € Diff472(0), (285)

where P* is the formal adjoint with respect to the L?(R!*?) inner product. This restriction on
P — P* simplifies the radial point estimates, which, as in in [Vas18], would otherwise depend on the
values of

QdePf QnPfQSf QanQFf Ude sc(P P*) e Sc[le s}c(@) (286)

along the various radial sets. Let p; € Sd 0) denote a representative of ia(li;;fj (P — P*), which
we can choose to be real-valued.

esc(

5.1. Propagation Between the Radial Sets. Using the nonzero component of H, along the
punctured fibers 457 ~1(nf)\R, we get the following:

Proposition 5.1. Suppose that u € S’ satisfies WE 3 (u) N (N U deser=l(clg{|t| —r =v})) =
for some v € R. Suppose further that, for some vi,vs € R satisfying v1 < v < va,

WEFe " (Pu) N9~ (clg{vy < [t] — 7 < v2}) SN, (287)
Then WFde sc( ) N de7sc7T_1(C1@{t1 S |t| -r S 2}2}) =4d. |

Proof sketch. As seen by rewriting it in terms of ogf in Qnest 5 r and in terms of or¢ in Quere o7, the
function [¢| — r is monotone under H,(, on each component of (¥m 1+ N deser=1(clg{vy < |t| — 7 <
v2}))\N (see Proposition 4.1). The proposition therefore follows via the usual proof of Duistermaat—
Hormander type estimates, using elliptic regularity off of the characteristic set. The point is that
any integral curve of H,, in the relevant region of the characteristic set has to have one end at one

of the sets A or 457 =1(clg{|t| — r = v}), where we have control. O
Proposition 5.2. Let m € R and s € R%, and suppose that v € S’ satisfies VVFde ()N A=wo.
Then, if WE . .o* " (Pu) N (deser= (nf)\desen~ (nf N Tf)) C { = 0},

WESe(w) N (deser=t(nf)\dsx = (nf NTF)) C {7 = 0}. (288)
Moreover, if WFz3 (u)N(AUN) NI 7~ (nfNSF) = & and WFy, | Si st (pu)ndeser—LnfnSf) C K,
then WEgS (u) N de, Scr=l(nf N SF) C K. [ ]

Proof sketch. By eq. (254), ps¢ is monotone with respect to H,j, along the invariant set {[7)| =

plg
1} N ¥ 2+ (defined using this coordinate system). So the assumption WF3 (u) NA = & allows us

to conclude, using a Duistermaat—Hoérmander estimate, that
WFg(w) N ]l =1} = &, (289)

using an elliptic estimate off Em,:l:-

By eq. (254), the function #? is monotone under H, on X+ N (4@~ (nf)\%*7 =1 (nf N
TE))\{|7] = 0,1} (see Figure 5). We can therefore propagate the control on WF}" SC( u) N {|n| =1}
to conclude eq. (288).

To get the second part of the proposition, we use another propagation estimate, this time based
on the monotonicity of A under H,, on {/) = 0} N deser=1(nf N Sf)\ NV, which we also read off
eq. (254) (again see see Figure 5). O
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Propagating in the reverse direction:

m,s
de,sc

Proposition 5.3. Let m € R and s € R®, and suppose that u € S’ satisfies WF
Then, if WE. st (py) ndescr—lnf N Sf) C {p = 0,\ € [-1,+1]}

de,sc

(u)NK=2.

WG (w) N4 a~ (nf N SF) C {p=0,A € [~1,+1]}. (290)
If, in addition, WE"*_(u) NN Ndescr—(nf N Sf) = @ and WF?" 25T (Pu) ndeser—1(nf N SE) C A,

de,sc de,sc

then WELS (u) N deser—1(nf N Sf) C A. Ll

de,sc

Over the other corner:

Proposition 5.4. Let m € R and s € R%, and suppose that u € S' satisfies WFQZZC(U) NnC=a.
Then, if
W5+ (Pu) 9057 (uf 1 TF) € {7 = 0,5 < 1}, (201)

then WEqS (u) N9esen=(nf N'TF) C {7 = 0,5 < 1} as well. If, in addition, WFz5 (u) NN N
descr=l(nf N Tf) = & and

WFQ:;TS}:,S‘F:L(PU) N de,scﬂ_—l(nf N Tf) C R, (292)
then WF (u) N 9e%7~1(nf N Tf) C R. m

Proof sketch. The argument is slightly different than the previous in that each part involves two
propagation steps. For the first step, we propagate control the rest of ¥ 1 N de’SCTr_l(an NFf)N
de.scS*@ using s as monotone function, which, according to eq. (251), is monotone under Hpjg) on

(Zm.4 N9 (mFf N Ff) N 945S*Q)\ (C UN). (293)

Having done this, we conclude an absence of wavefront set at fiber infinity except possibly at N.
Next, this control can be propagated to the rest of Ly,  N4Sx = (nFf NFf)\{H = 0,s < 1} using p
as a monotone function, which is monotone in the interior of the fibers according to eq. (251). (See
Figure 5.) For the second part of the proposition, the argument is the same, except after the first
step we conclude an absence of wavefront set at all of fiber infinity, including at A/, and then the
second step propagates control to everywhere except R. ]

Propagating in the reverse direction:

Proposition 5.5. Let m € R and s € R®, and suppose that u € S’ satisfies WFS"GSSC(U) NR=0g.
Then, if

WEF o~ (Pu) n9e*n ™ (nf N Tf) N 4°*°T*0 = @ (294)

(that is, the de,sc-wavefront over nf N'Tf set is at fiber infinity), then WFgg’,ssc(u) N descr=I(nf N
Tf) N 4e5°T*Q = @ as well. If, in addition, WFZZiC(u) NN Nndeser=l(nf N Tf) = & and

W " (Pu) n9e*n L (nf N Tf) C C, (295)

then WEg5 (u) N descr=1(nf N Tf) C C as well. [

5.2. Propagation Through A. As seen above, AT (with the signs the same) is a source in the
fiberwise directions and with respect to the direction along the null face, but it is a sink in the 9, ,
direction. The same holds for A$ (with the signs opposite), with “source” and “sink” switched.
Thus, we can prove two estimates:

(1) propagation from a band {€; < gn < €2} hitting spacelike infinity into A, and
(2) propagation from an appropriate annular set defined using the other coordinates around .4
into A.
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Proposition 5.6. Fiz signs ¢,0 € {—,+}. Suppose that m € R and s = (spt, Snpt, Ssf, SnFf, SFf) €
R® satisfy m — syt + ssp > 1/2, where syt € {supt, Surt}, depending on o in the usual way. For any
€1 > 0, there exists some €y € (0,€1) such that, if u € S’ satisfies

o WE ISt pyynAs = o,

de,sc
o WEIS.(u) N {p* + ([0l = 1)? + (A +1)% + 0§ < €1,€2 < our < €1} = D for some € € (0, €9),
it is the case that WFZZSSC(U) NAS = o. n

Remark. Here, {p> + (|7l — 1) + (A + 1)? + 0% < €1,62 < onf < €1} denotes a subset of

de’SCﬂ*I(ansfyg, Rr)- Similar notational conventions will be used below. Note that the condition

WE S (1) N {2+ (10 = 1)+ (A +1)2 + 04 < €1,€2 < 0nf < €1} = @ can be rewritten in terms of
WEFZ%8t(u), as the second set is disjoint from null infinity.

Proof. We handle the case ¢, 0 = +, the other three being analogous. Consider the symbol

ao = 0" O3kr 0} (296)
for my, sg, o € R given by mg =1 —2m, sg = —1 — 2s,7¢, and £g = —1 — 2sg¢, where, as above, we
arrange for convenience that near Ai, 0df = P, OnFf = Onf- Then, by eq. (254),

Hyao = (mo(27% + X + 1) — 259 + £o(1 — \))ao. (297)

Thus, we can write Hyja0 = —aag for a symbol a given by o = —mo(272 + A+ 1) + 250 — £o(1 — N)
over null infinity. Exactly at Ai, A=—land #? =1, so

a|Ai =2(—mo + so — bo) = 2(—1 + 2m — 2supt + 2ss5¢) > 0, (298)
with the last inequality coming from our assumption that m + sur + sgr > 1/2.

Let x € C2° be such that —sgn(t)x'(t)x(t) = x3(t) for some xo € C°(R) and such that y = 1
identically in some neighborhood of the origin (the construction by modifying e Yt is standard —
see e.g. [Vas18]). For F € RT, let xr(t) = x(Ft), and correspondingly let

xor (t) = FYA3(Ft), (299)
so that —sgn(t)x} (t)xr (t) = xo,r (t)%. Modify ag by using the x, (t) to localize near A7: define
a € C® (4T Q) by

a = xr (Blg))*xr (eur)*xr (N)?ag (300)

near AT, where X is as in Proposition 4.2. (For convenience, taking / sufficiently large, we arrange
that a is identically zero outside of the region for which the definition eq. (300) is taken.) This does
indeed localize near AT, in the sense that given any open neighborhood U D A, we can choose
F > 0 sufficiently large so that suppa C U.

Letting F} be as in Proposition 4.2,

Hpga = —aa + 2(1 + 0ng)xr (lg])*Xo.r (0nt) X (R)?entao — 2xr (B)*Xr (ent) *X0,r (R)? (4R + Fy)ag
+2x} (BlaD)xr Blal)xr (ent)*xr (X)2@plglao, (301)

where § = gngHp[g] 03 € Coo(de’SCT*@), so that Hpg1plg] = Gplg], and
9= —05t (Hpg) — Hp)onr € C (15T 0). (302)

Let w = 0g; 0ps0npt 08t 0nrt0Fs, S0 that Hy = w™ Hypy.

For all F > 0 sufficiently large, for ¢ sufficiently small we can define symbols b, e, f,h € Sgé?sc
such that

Hppga + wlpra = (—5a52a2 — b2+ 2onr — f2 4 h)ao,

303
Hyga+pra = (—6a52a2 —b? + % our — 2+ h)wag (303)
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everywhere, with b = x/ (B[g])xs (eut)xr (R)(a — dag a —w™'p1)'/?,

e = \/2(1 + onrg)xr (Blg])xo0.r (ont)Xxr (R),
£ =V2xr (Blg])xr (0ut)xo.r (R)(4X + F1)Y/2,

and h = 2x} (lg))xr (Blg))xr (onf)*xr (R)2Gpg] near ATL. It is because w™'p; vanishes at AL (and
in fact, over all of the faces of O, because we assumed that p; was decaying quadratically there) that
we can take [ sufficiently large so that the —w™!p; term under the square root in the definition of

b is guaranteed to not spoil the sign.
Quantizing, we get A = (1/2)(Op(a)+Op(a)*) € \Ilgeﬁg’(_oo’_oo’_eo’_so’_oo), this being self-adjoint
(here, we are just using the L?(R%?) inner product), and

B = Op(wl/Qaé/Qb) c \I;m’(_‘)o’—OOaSSf:San,—oo)

(304)

de,sc
E = Op(w'?ag gy%e) € Wiyl 2000, (305)
F == Op(w1/2a(1)/2f) - \Ilg;’,(sgoo77007ssf’srlFf7*OO)’

H = Op(waph) € \Ilzgn;(_oo’_oo’%s“%“”’_OO), such that

C

—i[P,A|4+i(P - P*)A= —0AN’A—-B*B+E*E - F*F+H+R (306)
for some R € \I/;ezg’(_oo’_oo’_%ﬁo’_2_50’_00). Above,
A = (1/2)(Op(w'?ag /%) + Op(w!/2ag /?)*) € wy AR s el (507

The quantization procedure can be arranged so as to preserve essential supports, so that
WFéle,sc(B)7 WFZje,sc(E)a WF:ie,sc (F)’ WFéie,sc(H) - WF:ie,sc(A) - Supp(a) (308)

which, via the definition eq. (306)) of R, also forces WF{, o.(R) € WFq, (.(A). We have WFy, . .(F) C
supp(xs (Plg])xo0,r (ont)xr (R)). For each ez > 0, by taking / sufficiently large,

WEe oo (E) € {0 + (17l = 1)* + (A + 1)* + 0§ < e1,€2 < out < 1} (309)

as long as € is sufficiently small relative to f .
Computing (—i[P, Alu,u)r2 = i(PAu,u)r2 — i((P*Au,u)2)*, assuming temporarily that u is
Schwartz, we get

2i3(Au, Pu) 2 = —0||AAull72 — || Bullf2 + | Bull7z — [[Full7e + (Hu, u) 12 + (Ru,u)z. (310)
Thus,

|Bullfz + 8| AAu|72 < [[Bull7e + [(Hu,u) 2] + [(Ru,u) 2] + 2[{Au, Pu) | (311)
From this, it can be deduced that, for each N € N, for some B € \Il?i:eosc elliptic at .Ai and E € \Ilgéosc

satisfying
WFiie,sc (E) C WF/de,sc(E)7 (312)

we get, the estimate

1Bl

Hm,(N,N,sSf,san,N) = HEUH2 m,(=N,—N,sgg,—N,—N) + ||GPU”2 m—1,(—N,—N,sgg+1,s,p¢+1,—N)

de,sc de,sc de,sc

+ ”Gu”Zm—1/27(—N,—Nyssf—1/2,San—1/27—N) + HuHilfN,fN’ (313)

de,sc de,sc

0,0
for some G € \Ilde,sc

arbitrarily small by making F arbitrarily large), chosen so that

WFéle,sc(l - G) N WFéle,sc(A) = Q. (314)

having essential support in a small neighborhood of Ai (that can be taken
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Indeed, we can choose such B, E as specified such that

Bl vsossnper < 1Bl + ol (315)
|Eul|r2 < ”EUHHm,(fN,fN,sSf,fN,—N) + ||UHH—N,—N. (316)
de,sc de,sc

The microlocal elliptic parametrix construction in the de,sc-calculus is used to control the (Hu,u) 2
term in eq. (311), resulting in the estimate

’<HU, u>L2’ = HGPUHEW*Q,(*NﬁN,Svasan,*N) + ||'U¢||§{—N,—N

de,sc de,sc

< ||GPul|? ity , oy N
| HH;’;,SE’( NNttt 8) Ul oo

(317)

which can be done because the essential support of H is located away from the characteristic set of
P. The (Ru,u)2 term is just estimated with Cauchy—Schwarz:
[(Ru, u) 2| 2 ||GU"Zm—l/z,(—N,—N,ssf—1/2,san—1/2,—N) + ||U||§{;N,7N- (318)
de,sc e,sc

0,0
de,sc?

Finally, we can choose G € ¥ dependent on IV, such that

||A71éPuHL2 = ||GPU||ng_l,(_N,—N,ssf+1,san+1,—N), (319)
e,sc

where A_; is a parametrix for A, and then we bound the (Au, Pu);2 term in eq. (311) as follows:
[(Au, Pu) 2| < [(Au, GPu) 2| + [(Au, (1 — G)Pu) 2|, (320)
and

|(Au, (1= G)Pu) 2| X [[ull? -~ (321)
de,sc
[(Au, GPu) 2] = Jull -y~ + | AAu| 2]|A—1 GPul| 2
de,sc

IAAu| 2| A_1GPu| 12, < 27 e|[AAul2 + 27 e | A1 GPul|2, (322)

< 27 e[| AAul[72 + 271571HGPUHfqén—l,(—N7—N,SSf+1,San+17—N)
for any € > 0, where the bound is independent of €. If ¢ is sufficiently small, then we can absorb
the 271e||AAu| 2 term into the §||AAul|z2 term in eq. (311), yielding eq. (313), as claimed. The
constant implicit in eq. (313) depends on all of the operators involved, and on § and N, but does not
depend on u. Thus, assuming that w is Schwartz, we have quantitatively controlled w microlocally
near Ai in terms of the quantities on the right-hand side of the estimate.

The standard regularization argument [Vas18][HV23] allows us to make sense of the estimate for
general u € §', with the conclusion being that if the right-hand side of eq. (313) is finite, then the
left-hand side is too, with the stated inequality holding. One key point is that we can regularize in
both the differential sense and the decay sense:

e first regularize only in sy (which we can do by an arbitrarily large number of orders), and
assume that

Gu € HyEooossnmNoeo), (323)
e Apply the same basic argument, but regularize in m and sg¢ instead to control
HGuHHmv(UvO,szﬁ*No,O) . (324)

de,sc

For each value of Ny, we can only regularize by finitely many orders: in order to not spoil
the signs involved in the construction of b, we must assume that

_N17(0707_N17_N0=0)

Gu € Hde’SC (325)



46 ETHAN SUSSMAN

for Ny satistying —2N; + Ny > 1/2, which is the threshold condition for the regularized
orders.

Combining the two steps, we end up with the estimate

HBU”%2 = HEUH%2 + HGPUHZm—1,<—N,—N,ssf+1,san+1,—N> + ”GUHZm—l/zm—N,—N,ssf—l/z,san—l/z,—N)
de,sc de,sc
27N17(7N’7N’7N177N0’7N)7 (326)

de,sc

+ [lull

for any N, Ng € R and N; satisfying —2N; + Ny > 1/2, this holding in the strong sense that, if
u € §' is such that the right-hand side is finite, then the left-hand side is as well. By taking Ny
sufficiently large, we can choose Nj such that max{Ny, N1} > N. Hence, eq. (313) holds for all
ueds.
Alternatively, we can regularize in both senses simultaneously with a careful choice of regularizer:
for each e, K > 0, consider the locally-defined symbol
e -K
perc=(1+——7p) (327)

s1 £
P 04 Osp

for to-be-decided mq,s1,¢1 > 0. We can then define a symbol a. x = goéKa. The Lie bracket
Hp[g)ae, i is the same as eq. (301), with an extra factor of (pg’K on the right-hand side, except we
have to add the term 2¢. xaH,j e k, which is equal to

4Ke 2 3l mi .o
WM%,KG(QG N+ 527 FA+1) - 81) (328)

at nFf. Note that, at Ai, the bracketed term is given by ¢ + m; — s1. Choose s1 = 2 and
ml,fl = 1/2. Then,

#z i Hplg) Pe | 4 < 0. (329)
Then, for all F > 0 sufficiently large, for § sufficiently small,
. _ 2
be = @2 g XF (p[g])XF(an)XF(N)\/Oé —day tas —wlpy — n“p[g]%,x (330)

is a well-defined symbol near Ai. Defining e, = @?7 K€ fe = cpg’ [, and so on,
Hyjg)te +w ™ 'prae = (—dag*aZ — b2 + e2ons — f2 + he)ao (331)

Quantizing, with the extra weights thrown in as in eq. (305), we get operators Ag, Be, F¢, H., R.,
with similar essential support properties to their non-regularized counterparts, such that

—i[P, A +i(P — P*)A. = —6A.A*A. — B!B. + E*E. — FF. + H. + R.. (332)

Each of these is a uniform family of de,sc-operators with the same orders as their non-regularized
counterparts. But, for each individual € > 0, they are regularizing operators. For each N € R
and tempered distribution v € H, (;ﬁé_N, we can choose K sufficiently large such that the algebraic
manipulations above are all justified, and via the usual strong convergence argument the estimate
eq. (313) follows, now contingent only on the weak hypothesis that

uwe H; NN, (333)

de,sc

Since N was arbitrary, we can conclude that eq. (313) holds in the strong sense, for any u € §’.
We now finish the conclusion of the proposition from the strong estimate eq. (313). Suppose that

u € 8§’ satisfies the hypotheses:
o WFL "t (Pu)n A =2,

o WERe(w) N {p” + ([0l = 1)? + (A +1)% + 0§ < e1,€2 < ons < 1}

de,sc
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Then, the first two terms on the right-hand side of eq. (313) are finite, for any N, as long as F is
sufficiently large (and correspondingly WFg, .(G) is taken sufficiently small). If N is sufficiently

large then, u € H Cl_e{\sfé_N, so the final term is finite as well. If
WF?_I/Z’(_N’_N’SSf_l/Q’s“Ff_1/2’_N)(u) N Ai - (334)
e,sc )

then (for f > 0, G with small essential support) such that the third term on the right-hand side
of is finite. Having checked that each term on the right-hand side is finite, we conclude that the
left-hand side is finite as well. Since B is elliptic at the radial set, we conclude that

WF(u) N AL = @. (335)
The condition
WFZ;TS(IZ/47(7N77N758f71/478an71/277N) (u) N A+ =g (336)

implies eq. (334), but has the advantage that the orders in eq. (336) satisfy the threshold condition
if and only if the originals do (as we are assuming as a hypothesis of the proposition). The orders
in eq. (336) are (for N sufficiently large) a quarter-order smaller than those in eq. (335), so the
proposition follows via an inductive argument (taking the case when all of the orders are < —N as
the base case). O

Similarly:

Proposition 5.7. Fiz signs ¢,0 € {—,+}. Suppose that m € R and s = (sp, Snpt, Ssf, SnFf, SFf) €
RS satisfying m — syt + sgr < 1/2, where syt € {snpt, Snrt}, depending on o. For any e; > 0, there
exists some €y € (0, €1) such that, if u € S satisfies ea € (0,¢€1), then, if u € S satisfies

o WE ISt py)ynAs = o,

de,sc
o WFQ:;SSC(U) N{ea <P+ (1Al —1)2+ (A +1)2+ 0% < €1, 00t < €1} = @ for some e1 > 0 and
€y € (0, 61),
it is the case that WF % (u) N A5 = @. mC

The argument is the same as that in the previous proposition, with a few sign switches, which
result in switching the signs of the b, B-terms terms. (The signs of the terms proportional to § then
have to be switched as well.) Thus, instead of the ||Eul|;2 term in eq. (313), we need to keep the
|Ful| 2 term, resulting, in the AT case, in an estimate (holding in the strong sense, for all u € S')
of the form

HBu”ilm,(N,N,sSf,san,N) j HFuHi[m,(fN,fN,sSf,san,fN) + HGPUHme1,(*N,*N,ssf+l,san+1,fN)

de,sc de,sc de,sc

+ HGu”ilmfl/?,(*NﬁN,sz*1/2vSan*1/2ﬁN) + ”uHiI*N»*J\U (337)

de,sc de,sc

for F € ¥%°  with

de,sc
WEe s (F) € WFGe oo (F). (338)
The argument is analogous, with a few minor modifications. For instance, instead of taking s; = 2
and mq,¢; = 1/2 in the regularizer eq. (327), we can take mq,s1,¢1 = 1, so that eq. (328) has
the opposite sign, which matches the switched signs of the b, B-terms. From eq. (337) (with the
parameters f , G chosen appropriately, as above), the statement of the proposition follows.

5.3. Propagation Through N. We now prove two different radial point estimates at . By a
ray, we mean a subset of NS of the form

Np = N§ O elgeugo{|t] — 7 € T} (339)

for some closed interval I C [—o0,400] such that at least one of +oo in I. So, for instance,
Nicoy =N N descr—1(sf) is a ray. If —oco € I, we will call N7 spacelike-adjacent, and if 400 € I,
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we will call Ny timelike-adjacent. As we will see below, we can only propagate in one direction on
each type of ray for each pair of admissible Sobolev orders (m,s) € R x R3. The one exception is
N5 = N|_oo,100) itself, which is both spacelike-adjacent and timelike-adjacent. We say that N7 is
strictly spacelike-adjacent or strictly timelike-adjacent if N7 # N.

The timelike-adjacent case is:

Proposition 5.8. Fiz signs s,0 € {—,+}, and let N7 denote a strictly timelike-adjacent ray of Ng,
which we can write using the coordinates eq. (249) (over Qwrre o1, for some large T > 0) as

NI:{QTfSEvap:()uS:O?::O} (340)

for some o1 > 0, where 3 is as in Proposition 4.5. Let m € R and s € R> satisfy m < Syps + 1,
where s € {snpt, Snre}, depending on the sign o. Suppose that u € S’ satisfies

o WEI" ISt (pu)n Ny = @ and

de,sc
® WFTdZ:SSC(u) N{, s’ <enort<ori+en,ea<p<el=0
for some €1 > 0 and sufficiently small €3 € (0,€1). Then, WF5 (u) "\NT = @. [ |
Proof. We handle the case ¢,0 = +, the others being analogous. Let ay = op;° QiOngﬁﬂ’f, where
mo=1—2m, so = —1—2sups, lo = —1 — 2s1¢. Then, by Proposition 4.3, we have
Hp[g]ag = &ao (341)

for a symbol & such that @ = a — sy at Ny, where a = a(myg, so) is as defined in that proposition.
At N, s =0 and so (a + sfy) > 0 (by Proposition 4.3 and the observation that mg > sy <=
m < sppf + 1).

Let Y € R, F,F' >0, and o1 = Yous + o1¢. Define a € Coo(de’SCT*@) by

a = xr (Blg])*xr (pas)*xr (3)*xr (max{0, ors — o1¢}) a0 (342)

near N7, and we can take a to be supported nearby. Then, near N7,

Hpga = da — 2aaexr (Blg])*xo.r (0ar)*xr(3)*xr (max{0, grr — o1¢})* arao
+ 2x7 (Blg])*xr (0ar)*Xo,r+(3)*xs (max{0, o¢ — ore})* (43 — Fa)ag
+4(sore + (1 — 8)Yont + onroree)xr (Blg))*xr (2ae)*xr(3)*x0,r (max{0, grs — o1t }) a0
+2x5 (Blgl)xr (Blal)xr (eas)*xr(3)*xr (max{0, grs — ore})*GPlglao, (343)

where agr = a(1,0), ays = a(0,1), and ¢ € Coo(de’SCT*(O)) comes from applying g;fl QEfl(Hp[g] —H,)
to or¢. (Here, we are assuming without loss of generality that oqr agrees with p near N7.)

By Proposition 4.3, ags > 0 near ./\/i By choosing F sufficiently large, by Lemma 4.4, we can
write s = 1 + s2(H? + m2p?) nearby, where s1,so are as in the lemma. We want to work with p[g],
not p, so we will write this as

s = Slﬁ[g] + onfOTfC2 + 82(772 + m2p2) (344)

for cg € C°(4T Q) defined by ca = s1(p — plg]) oy opi- The key feature of eq. (344) is that
each term on the right-hand side is amenable to the positive commutator argument. The term
proportional to p[g], when quantized and applied to u, will yield a term involving the forcing. The
term involving cs is suppressed by a factor of on¢, which we will be able to dominate by a term
of semidefinite sign by choosing Y large. Finally, the terms s97?, sam?p? have a semidefinite sign,
because sy does.

For all T > 0 sufficiently large and F, F’ > 0 sufficiently large, for § sufficiently small (depending
on F,F'), we can define symbols

b,e, f,g,h,z € S

de,sc

(345)
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such that
d
Hppga + w pra = (6a52a2 + 1% — oar€® 4+ f2 + pue2® + o1t ng + hﬁ[g])ao (346)
i=1
everywhere, with the following definitions:

b= xr (Blg))xr (0ar) xr+ (D) xr (max{0, or¢ — ore}) (@ — dag *a + wpr)"/?,

e= \/501(11?2)0 (Blg))xo,r (0ar)xr(3)xr (max{0, or¢ — o1 }), (347)
£ = V2xr (Blg)xr ()Xo, (3)x(max{0, g1 — ore}) (43 — F2)'/2,
and, fori=1,...,d—1,

gi = 2v/s52x(Plg]) xr (0ar)xr(3)xo0,r (max{0, oT¢ — oTt})7i (348)
ga = 2+/s2x(Blg))xr (eat)xr(3)xo,r (max{0, or¢ — oT¢ })Mp, (349)

(recall that sy > 0 on A7), and, finally,

z= 2\/@2“02 + (L = 8)Y + orsc - xr (Blg])xr (0ar)xr/(3)xo,r (max{0, or¢ — o7r}) (350)
(recall that 1 — s =1 on N) and

h = 2x; (Bla)xr (Blg))xr (0ar)*xr+(3)*xs (max{0, or¢ — o1e})?q
+ 4syorexr (lg])*xr (0ar)*xr(2)*xo,r (max{0, or¢ — or})?  (351)

near N
If F,F' are sufficiently large, then WF{, () C {3,s* < e1, 01f < o1t + €1,€2 < p < €1}

Quantizing, we get A = (1/2)(Op(a) + Op(a)*) € ¥ —mo,(~ 007—007—00,—807—150),

de,sc

B:Op( 1/2 1/2) m —00,—00,—00,SnFf,SFf)

de sc )

—00,—00,—00,5,Ff,5Ff )

E= Op( 2 1/2 1/ ) de sc )
F = Op(w!/?ay/*f) € Wiy >0 emreor), (352)
Gi _ Op( 1/2 1/2 1/ ) d —00,—00,—00,8nFf,—00)
7 — Op( 1/2 1/2 1/2 ) d —00,—00,— 00,8y Ff—1,—00)

H = Op(wagh) € U2 (00,700, m00. 2ur . 2571)  pd R € Wm0 (7007007002750, m2700) oy that

de,sc de,sc
d ~
—i[P,A]+i(P* - P)=6AN’A+ B*B—E*E+ F*F+ > G;G;+Z*Z+HP+R  (353)
=1
for
_ (1/2)(Op(w1/2a61/2) + Op(wl/zagl/Q)) c \Ilgle:cl( 1/2,-1/2,—1/2,—1—supg,—1— STf) (354)

with the operators A, B, E, F,G;, Z, H all having essential supports contained within supp a.

The argument proceeds as usual from here, where the key observation is that the F*F term,
G:G;, Z*Z terms have the same sign as the B*B term (and therefore can ultimately be discarded
from the estimate) except we estimate the contribution (u, HPu) in the following way: for u € S,

[(u, HPw)| < Oull3ym15m1 + |0 PUlFm—ss1 + [ Pull .- (355)

de,sc de,sc de,sc
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for some O € \Ilgeosc with essential support contained near N7 1 and for N € N. Thus, rather than

controlling this term with elliptic regularity as before, we use the assumption

WF o (Pu) NN =2, (356)
which implies that
||OPuHHm—1,s+1 < 0 (357)
de,sc

as long as F is sufficiently large. The end result, after carrying out the regularization argument and
the typical inductive argument, is the estimate, holding in the strong sense for all u € &',

HBﬁ/uH2 m,(N,N,N,s, p¢,Spf) j HENUH2 m,(—=N,—N,—N,s pf,Spf) + ||Q-P/LL||2 m—1,(=N,—N,—N,syps+1,spe+1)

de,sc de,sc de,sc

v, (359)

elliptic along N7, E € 0%°

de,sc

WFese(E) © WFge o (), (359)

and some () dependent on the other operators whose essential support can be made to be an
arbitrarily small neighborhood of N7 by making f, F’ larger. The estimate eq. (358) finishes the
proof. O

for some B € WY 0

de,sc

satisfying

Proposition 5.9. Fiz signs ¢,0 € {—,+}, and let N} denote a strictly spacelike-adjacent ray of
N5, which we can write using the coordinates eq. (252) (over Qnsst o, r, for some large R > 0) as

N1 = {ost < ost,p=0,A=1,1=0} (360)

for some pgr > 0, where 3 is as in Proposition /.5. Let m € R and s € R® satisfy m > sype + 1,
where s € {sypt, Surt}, depending on the sign o. Suppose that u € S’ satisfies

o WFm_1’5+1(Pu) NN =2 and

de,sc

e WFii.(u)N{ea < <e,o5 <osp+en,pP +(A-1)°<e} =0
for some €1 > 0 and sufficiently small 3 € (0,€1). Then, VVFG]e (W)NN=2. [ |

The proof is analogous argument to that above, with the usual sign switches.
For the special case of the full ray, the conclusions of both propositions hold:

Proposition 5.10. Fiz signss,o € {—,+}. Suppose that u € S satisfies WFQL;}Z’SH(PU) NS =g
and at least one of
e m < sypr + 1 and VVFde > (u) is disjoint from a neighborhood of N of the form {3, s* <
€1, 0Tt < 0Tt +€1,62 < p < €1},
e m > sypr + 1 and WFde * () is disjoint from a neighborhood NS of the form {es < 3 <
1,05t < 0st+e, p° + (A —1)? <e},
hold. Then, WFZ3 (u) NN = @. |l

The proof is analogous those above, except we no longer need the cutoff along null infinity, and
we must make sure that the symbols are well-defined in both coordinate patches.

5.4. Propagation Through K.

Proposition 5.11. Fix signs s,0 € {—,+}. Suppose that m € R and s = (sp¢, Snpt, Ssf, SnFf, SFf) €
R® satisfying m —+ snt — 2ss¢ > 1, where sy € {sup, Sure}, depending on o. Then, if u € S satisfies

o WEI ISt (py)ynKs = o,

de,sc

o WET (W) N{p*+ 72+ (A +3)%+ 0% < €1,60 < g5t < €1} = @ for some €1 > 0 and

de,sc

€ € (O €1) suﬁ?ciently small,
it is the case that WF,2 (u) N K5 = @. [

de sc
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Proof. We handle the case ¢, = +, the other three being analogous. Let ag = Qdf QanQSf, where
mo=1—2m, so = —1 — 2s,p¢, fo = —1 — 2sg¢. BExactly at KT, A = —3 and #? = 0, so eq. (254)
yields

Hpg1a0 = aag (361)

for some o € C(45°T"0) equal to 2(—mg — so + 20o) = 4(m + sppr — 2ss¢ — 1) at KI. Note that
o > 0 near IC]t.
Define a € C® (45T Q) by

a = xr (plg))*xr (es)*xr (3)%ao (362)
near ICL where J is as in Proposition 4.6, with a supported near ICI. We compute
Hppa = aa — 2(1 — X+ onse)xr (Blg])*xo.r (0s£)*xr (3)*0sta0
+ 2xr (Blg))*xr (ese)*xo.r (3)°(43 + Es — Fy)ao + 2x} (Blg))xr (Bla))xr (ese)*xr (3)*d@blglao  (363)

for some ¢ € C>°(4® SCT*(O)). For all £ > 0 sufficiently large, for § sufficiently small, we can define

symbols b,e, f,h € 3. such that
Hyga + wpra = (dag?a® + b? — eost + f2 + h)ao, (364)
Hyga+ pra = (6ag*a® + 0% — e?og + 2 + h)wag (365)
everywhere, with b = x; (lg])xr (est)xr (3)(a — daga +w™"p)"/2,
e =1/2(1 = A+ onrc)xr (Blg])xo,r (os£) X/ (3) (366)
(as A =3 at /Ci, the function under the square root is positive near the radial set),
f=V2xr (BlgD)xr (ese)xor (3)(41 + Es — F3)'/?, (367)
and h = 2x} (lg))xr (Blg)xr (os)*xr (3)%Glg) mear K.
Quantizing, we get A = (1/2)(Op(a) + Op(a)*) € Wy "o (7> forms0, 7o)
B— Op(w1/2a1/2b) c q,éle’;glo)/27(70077007‘95&51117&700)’
E = Op(w 1/2,, / oste) € \I,Eilejszno)/2,(foo,foo,foo,snpf,700)7 (368)

F - op<w1/2aé/ 2 ) & @ll-mo)/2(oes oo sstsnrr o)

de,sc )

h = Op(waph) € g2 (00,00, 2851, 2surt, —00) ,and R e ¥ ~m0,(~00,7250,720,709,7%9) o ] that

de,sc de,sc
—i[P,A] +i(P — P*)A=6§AN*A+ B*B - E*E+ F*F + H + R, (369)

where A is as in Proposition 5.6. If f is sufficiently large, then
WEFjeeo(E) C{p* + 0%+ (A +3)* + 03 < e1,€2 < 0g1 < €1} (370)

The proof now proceeds as usual, where the key observation is that the F*F term has the same
sign as the B*B term and therefore can be ultimately discarded from the estimates. Thus, for some

G,B,E € ¥%° (371)

de,sc

with B elliptic at Kf and WF}, sc(E E) C WF{e sc(E), we have, for all u € &, the estimate

HBu”f{m,(N,N,ssf,san,N) = HEu||iI'm,(7N,7N,7N,san,7N) + ||GPUHilm—l,(—N,—N,sSerl,sanJrl,—N)

de,sc de,sc de,sc

+ul? v, (372)
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holding in the strong sense, where the essential support of G can be made to be in an arbitrarily
small neighborhood of lCir by making f larger. This estimate completes the proof. O

Similarly:

Proposition 5.12. Fiz signs ,0 € {—,+}. Suppose that m € R and s = (spg, Snpt, SSt, SnFf, SFf) €
R® satisfying m + snt — 2ss¢ < 1, where syg € {sup, Sure}, depending on o. Then, if u € S satisfies

o WEI ISt (py)yn K = o,

de,sc
o WF% (u) N{e < PP+ 4+ A+ 3%+ 0% < er,0s < e1} = D for some e1 > 0 and
€2 € (0,€1) sufficiently small,
it is the case that WF3 (u) N KS = @. |l

The proof follows the proof of Proposition 5.11, except the sign of the B*B term (along with the
sign of the JAA2A term) in eq. (369) has to be switched, with results in having to keep the F*F
term in estimates rather than the E*F term.

5.5. Propagation Through C.

Proposition 5.13. Fiz signs ¢,0 € {—,+}. Suppose that m € R and s = (sp¢, Snpf, Ssf, Snf, STE) €
R® satisfying m + sypr — 25 < 1, where st¢ € {spt, spe}, depending on o. Then, if u € S’ satisfies

o WET ISt pyynes = o,

de,sc
° WFZ;SSC(U) N{ea < P+ 7%+ (s —2)2 + 0% < €101t < €1} = @ for some €, > 0 and
€2 € (0, €1) sufficiently small,

it is the case that WFy* (u) NCs = @. [ |
Proof. We handle the case ¢,0 = +, the other three being analogous. Let ag = 0} Qfl%fgff’f, where
mo=1-—2m, so = —1—2s,5¢, bp = —1 — 2312. Without loss of generality, we assume that oqr = p

locally. Then, H,j4a0 = aag for a € C>®(4e5°T*Q) given by
% — (7 + (s — 1)%)mo + (s — 1)s0 — st (373)

over null infinity. Exactly at Ci, s=2and ) =0,s0a=mg+s0—20l = —2(m~+sppr —2spr—1) > 0
there.

Define a € C®°(4°T Q) by a = x; (Blg])?x/ (0st)*xs (7)2ap near Cl, where T is in Proposi-
tion 4.7, with a supported near Ci. We calculate

Hpga = aa + 4(s + onte) xr (Blg])*x0.r (o1)*xr () orra0

—2xr (Blg))*xs (ore)*x0. () (AT+ Es + Fa)ao + 2x; (Blg))xr (ﬁ[g])Xr(@sﬁﬂr(“')%ﬁ[%gg@

for some ¢ € C® (45T Q).
For all F > 0 sufficiently large, for ¢ sufficiently small, we can define symbols b, e, f,h € Sgé?sc
such that

Hpg1ap + wlpra = (bag?a® + b* + e2or¢ — f2 + h)ao, (375)
Hyga+pra = (6ag?a® + % + e2ort — f2 4 h)way (376)

everywhere, with b = x, (8[g])xr (ors)xr () (e — dag 'a +w ™ py) /2,

e = 2/5 + ontoxs (Bla)) xo,s (ore)xr (T) o, (377)
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F=v2xr (BlaDxr (ore)xo,r (AT + Es + Fu)'2, and b = 2x} (Blg))xr (Bla))xr (es)*xr (7)%apl]
near Ci. If F is sufficiently large, then
WF oo (F) C {e2 < p> + 0%+ (s — 2)* + 0f < €1, 011 < €1} (378)
Quantizing, we get A = (1/2)(Op(a) + Op(a)*) € \I/denég’( OO’_OO’_OO’_SO’_KO),

007_007_007511Ff78Ff)

1/2

B = Op( 1/2 / ) de SC 3

E = Op(w 1/2,1 QTfe) de C oo,—oo,—oovsany—OO)’
m w7_oo’_w7sSan’st) (379)

F = Op( ) de ,SC ’

h— Op(waoh) (Qi’;nsg 00,—00,—00,28hFf, QSFf),
and R € \I/d:;g’( 00,700,700, 28t ~1,25r1—1) (1 oh) that

—i[P,A] +i(P -~ P*)A=6AN’A+ B*B+ E*E~F*F+ H+R (380)

for A = (1/2)(Op(w /2, 1/2) + Op(wl/Qaal/Q)*) c \I,(lie*;z,(*1/27*1/27*1/2:*1*8an,*175Ff).
The proof now proceeds as usual, where the key observation is that the E*E term has the same
sign as the B*B term and therefore can be ultimately discarded from the estimates. Thus, for some

G,B,Fewy, (381)
with B elliptic at CI and WFéle,sc(F) C WFqe (F), we have, for all u € &', the estimate

HBu”?{m,(l\’ﬁNvasanvSFQ = HFu"Zmy(*NfNﬁstan»SFQ + HGPUHilm*17(*NﬁNﬁNvSanHvSSerl)

de,sc de,sc de,sc

+lullf -~y (382)

de,sc

holding in the strong sense, where the essential support of G can be made to be in an arbitrarily
small neighborhood of CI by making f larger. This estimate completes the proof. ([l
Similarly:
Proposition 5.14. Fiz signs s,0 € {—,+}. Suppose that m € R and s = (sp¢, Snpt, Sst, SnFf, SFf) €
RS satisfying m + sup — 257 < 1, where st € {spt, spt}, depending on o. Then, if u € S’ satisfies
o WF "t (Pu)ncs =
. WFZL;C( u) N {p? + H? +( —2)2 + 0% < €e1,62 < o1t < €1} = @ for some 1 > 0 and
€2 € (0,€1) sufficiently small,
it is the case that WFL2 (u) NCs = . |l

de,sc

6. THE RADIAL SET R

Let P be as in the previous section. We encode the radial point estimate at R in the qualitative
statements:

Theorem 4 (Propagation out of R). Suppose that m € R and s € (spt, Sups, Sst, SuFf, Srf) € R®
and spt,0, srr0 € R satisfy

spr > spro > —1/2  and spr > spro > —1/2. (383)

Let so = (8p£.0, SuPF.0, SSF.0, SuFt,0, SFf0) € R®. Fiz signs ¢,0 € {—,+} and k,x € N. Then, ifue &'
s a solution to Pu = f such that

WE V(AU N RS = & (384)

de,sc
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and WENSTHAR) MRS = @ for all A € fngf for some N > 0, then WF° (Au) NRS = @ for

de,sc de,sc

all A € Qﬁgﬁ as well. [

Theorem 5 (Propagation into R). Suppose that m € R and s € (sps, Supt, Sst, Surf, Srt) € R® and

spf,0,8Fr,0 € R satisfy max{sps, spr} < —1/2. Fir signs ¢,0 € {—,+} and k,x € N. Let u € S’

denote a solution to Pu = f. Then, if there exists a neighborhood U C 95T Q of R such that
WEVS(Au) N U C RS, (385)

de,sc

and if further WELSTH AL NRS = @ for all A € M5E, then WETS (Au) N U = & for all

e,sc S,07 de,sc

Ae 97(?7’5 as well. [

We only consider the case of Ri explicitly. The case of R_ is essentially identical, and the cases
of RT, R} have overall signs switched in the computations but are otherwise identical.

We will prove the result in three parts: in §6.1, we handle the £ = 0,x = 0 case (which is the
de,sc-analogue of the standard radial point result described in [Vas18; Vas20]), in §6.2 we handle
k > 0 via induction (this being done via a somewhat involved secondary positive commutator
argument), and in §6.3 we handle x > 0 via another, more straightforward induction. The argument
is a modification of that in [HMV04, §6][HMV08, Appendix A][GR+20, §3].

6.1. Base case. Let k,k = 0. We now use pg to denote a quadratic defining function of Ri in
Ym4 N9 —L(Ff), such that
R = po ({0}) N S N4 7 1 (FE). (386)
Over Quere 40, we can take this to be of the form py = H? + (s — 1)? with respect to the coordinate
system eq. (252).
We first observe that the symbol F € Sgéosc defined by
Hppo = —4po + F (387)
vanishes cubically at Ri In order to show this, it suffices to check the claim in local coordinate
patches. Away from null infinity, this is familiar [Vas18] from the radial point estimate for Klein—

Gordon in the sc-calculus, so we only need to check the situation near null infinity. Near null infinity
(recall that we are taking ogqf = p as usual over nFf N Tf), eq. (251) yields

Hppo = —4(2 — 5)(7* + s(s — 1)) (s — 1) + 4(7* + s* — s — 1)i”, (388)

from which it can be seen that F' vanishes cubically at Ri Thus,

Hyjgp0 = —4po + F + Fope (389)
for some ' € C® (45T Q).
Let ag = gfl%fgf;‘)f, where sg = —1 — 28w, L9 = —1 — 2sp. Then, we can write
Hpjgja0 = aag (390)
for o € C°(45°T*Q) given by
a=—2(so(1 —s)+Los) = 2(1 + 2s,4p¢) (1 — 5) + 2(1 + 2sp¢)s (391)

at 9es¢r—1(nFf N Ff), assuming without loss of generality that opf = oT¢ in local coordinates near
nFf N Ff. Exactly at Ri, this is 2(1 4 2spf), which has a definite sign as long as sp¢ # —1/2. The
sign found here is the same as over the whole of Ff in the standard sc-analysis.
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Now consider, as usual, a symbol a = x/ (8[g])®x;(ort)?Xxr (po)?ao near Ri and supported away
from df, Sf,nPf, Pf. Then
Hppg1a = aa + 2xr (Blg])*xr (0rt)*Xo,r (p0)*a0(4po — F — Fopy)
+2x7 (lg)) X0, (er1)* X1 (po)?aoorr (2 — oFc)
+2x7 (la)xr (Bla))xr (eve)*xr (po)*@plglao  (392)
for some ¢ € C*®(4°T"Q), coming from applying QE%(HP[Q] —H,) € W(4°T"0) to o

e First suppose that spr > —1/2, so that a > 0 near Ri For all F sufficiently large, for all
F’ sufficiently large relative to F, for all § > 0 sufficiently small, we can define symbols

b,e,g,h e Sgeosc such that
Hppg0 = (5a6 a® +0° + € + oped” + h)ao (393)
Hpjga = (3ay°a® + b° + € + optg” + h)wag (394)

everywhere, with b = x; (p[g])x;+ (ert)xr (po) (e — Sag 'a)'/?,
e = V2x; (Blg))xr(ore) X0 (p0)(4po — F — Foue)'/? (395)

(for each fixed value of f, the function xo s (po) is supported away from py = 0, so, as long
as F' is chosen sufficiently large, the function 4pg — F' — F o, under the square root will be
bounded away from zero on the support of the prefactor),

g = /4 = 20rrexr (Blg]) o, (ore)xr (o), (396)

and h = 2x} (plg])xr (Blg))xr (ere)xr (po)@plg) near RY.
Quantizing, we get A = (1/2)(Op(a) + Op(a ) ) e Wye SC( OO,—oo,—oo,—so,—fO)7

B— Op( 1/2 1/2 ) c \I/d —00,—00,—090,SnFf,SFf)
Jo Op 2 —00,—00,—00,SnFf, st)7
~ 1/(2 1/2 1/2 i de SC Ff,—00) (397)
G:Op( ‘QFf g) desc TEOTeS T e ’
H— Op(waoh) de SC —00,—00,—00, 2san,2st)’
and R € \I/doo( 00,-00,=00, 28kt~ 125w —1) o that
—i[P,A] +i(P — P*)A=0AN’A+ B*B+FE'E+G*'G+H+R (398)
for
= (1/2)(Op(w"/?ay %) + Op(w'/?ag /)7y € wi el ZH/A7 AT s msr) (399

(Unlike in the estimates in the previous section, the i(P — P*)A has the same order as R, so
we do not need to take it into account in the principal symbolic construction.) So, given
sufficiently nice u,

2i3(Au, Pu) 2 = —0||AAul|32 + || Bul|22 + | Eul3s + |Gul|32 + (Hu,u)p2 + (Ru,u)p2.  (400)

The rest of the argument proceeds as in the other propagation estimates, except the
regularization argument is more delicate, but in a standard way. Indeed, it is only possible
to regularize by a finite amount. Consider, for each e, K, K’ > 0, the regularizer

e -K
ek =1+ —5%) (401)
: ( QFanKFf)
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Assuming, in addition to gps = ey in the local coordinate system near the corner, o,pr = onf,

2Ke
V7 Soa,K,K’(S + Kl(l — 8)) (402)

Hyfg) etk = —
plalfe K, £+ orrolSy

over 00, in some neighborhood of nFf N Ff. Notice that, at R, over Qnrre 4,0, We have
s+ K'(1 — s) = 1. Combining this calculation with the one done over clg{r = 0} as part of
the standard sc-analysis, we can conclude that

2
H / <4K. 403
pecrer MK I = e

Define
Qe = @E,K,K’av (404)
and likewise for the other symbols above with the exception of b, and define

N _ 2
be = (PE,K,K’XF(p[g])XF’(QFf)XF(pO)\/a — bagtac + me[g] Pe KK’ (405)
87 b 4

assuming that the symbol under the square root is positive on the support of the prefactor,
so that this is a well-defined symbol. Exactly at RT, we have o = 4sp¢ + 2, so, as long as
1
K < spr + 5, (406)
then eq. (403) guarantees that the symbol b, is well-defined for all € > 0, as long as F is
sufficiently large and 9§ is sufficiently small relative to K. As long as these conditions are
met, instead of eq. (393), we have

Hypga: = (8ag a2 + 02 + €2 + optgZ + he)ao. (407)

Thus, quantizing, we get operators, all of which are uniform families of de,sc-WDOs of the
same orders as their non-regularized counterparts, such that

—i[P, A +i(P — P*)A. = 6A.N>A. + B*'B. + E’E. + G*G. + H. + R.. (408)
Given u with WF;BJ\;’CSO (u) N Ri = &, we can take K, K’ large enough such that, as long as

F is sufficiently large, then we can deduce from eq. (408) that
2i3(Aeu, Pu) 2 = 0||[AAcu|| 7o + || BeullFe + | BeullFe + | Geul72
+ (Hou,u)p2 + (Reu,u)p2, (409)

from which the estimate

1B-ul7 + 6| AAculT2 < [(Hew, u) 2| + [(Reu, u) 2| + 2|(Acu, Pu) 2| (410)
follows. Indeed, for F sufficiently large:
(1) We have

N,(N,N,N,KK'+snr¢,0—snFe, K +5Ff,0—5F¢)

AAcu, Bou, Bou, Gou € Hyl o cr? (411)

as long as K > spr — spro and KK’ is sufficiently large. Since spro € (—1/2, spy),
spr — SFr,0 < SFr + 1/2, the interval (spf — sy, Spe + 1/2) is nonempty, which means
there exists K large enough to satisfy both eq. (406) and eq. (411).

(2) Houc HNv(N7N7N72KKI+5an,O*23an72K+3Ff,O*2SFf)
3 de,sc

HN7(N,N,N7KK'+San,0—2San1K+SFf,0 —2sF¢)
de,sc

, and, for NV sufficiently large,

C (Hyonl®)' (412)

de,sc

as long as K > sy — spr,o and K K’ is sufficiently large, which means that the (Hou, u) 2
term is well-defined in the sense of Hérmander, and likewise for (R.u,u)y2.
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(3) WF; V2% (py) N RY = @, and, for N sufficiently large,

de,sc

N+2 N,N,N,—1+KK'+s —2snrf,— 1+ K+spr g—2s
AueH ( nFf,0 —28nFf Ft,0 Ff) (WF N— 250)*, (413)

de,sc de,sc
assuming the conditions above are satisfied. This implies that (A.u, Pu) 2 is well-defined
in the sense of Hérmander.
Having eq. (410), we get, after taking ¢ — 07, an estimate of the form

HBUHQ N,(N,N,N,sypg:spf) = HGP“HZ*N,(*NﬁNy*Nva‘Ferl»SvaLl)

de,sc de,sc

+ ||GUHH—N( N, =N~ N.sypr—1/2.5mp-1/2) T ”UHH NN, (414)

de,sc de,sc

where B € \I»'de < is elliptic on R+ and G € \Ilde < Whose essential support can be taken to
be arbitrarily close to R+ by makmg F larger. In order to make this an estimate in the
strong sense, we can sunply add a term to the right-hand side:

||BU||2 N,(N,N,N,s,p¢Spe) = HGPUH2 —N,(=N,—N,—N,sppe+1,sg¢+1)

de,sc de,sc
2
+ HGU||HC;J\£C50 + HGUHHEJZC( NN N1 2172 T Ul e (415)

The usual inductive argument then allows the removal of the penultimate term, and so we
end up with the strong estimate
2 2
HBU”HN (N.N.N,sqpg,opp) HGPUHH—M NN Nospprtsge ) T 1G]] -Nso T [ (416)
de,sc de,sc de sc de,sc
which completes the proof.
e On the other hand, if spf < —1/2, then o < 0 near R]Lr, then quantization yields operators

as above, modulo some sign switches in their definitions, such that

—i[P,A] +i(P — P*)A=0AAN’A - B*B+ E*E+G*G + H + R. (417)

From this, the strong estimate of the form

HBU”2 N,(N,N,N,s,p¢Spt) = HGPUHiI—N,(—N,—N,—N,san+1,ssf+1) + HEu”Z—N,(—N,—N,—N,san,st)

de,sc de,sc de,sc

A2 2
+ HGuHHfNV(*NﬁNvaSanﬁN> + HUHH—N,—N (418)
de,sc de,sc
follows. The necessary regularization argument is simpler than the previous, as an arbitrarily
large amount of regularization can be done.

6.2. First induction. In order to carry out the construction of the commutant for & > 0, we recall
the following algebraic computation, which is essentlally [HMV04, eq. 6.16][GR+20, eq. 3.23]. Let
Ag, ..., ANy € My denote a spanning set over \Ild sc? with Ap = 1. For each multi-index o« € NV
with |k:| = o and tuple s € R?, let

Ags = 0 PAT - AYY, (419)

where

0> = OpY CuPr 05t OnkY OFY - (420)

Also, let Q € U0 For the purposes of this computation, P € v

de,sc can be arbitrary. Let

de ,SC

Ds =io '[P, 0 %]¢° € Diff}° (421)

de,sc*

Then:
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Lemma 6.1. There evist Eqs 170 = Eos_1/2(Q) € Q*SH/Z‘ﬁ{fl, with WFémSC(Ems_l/Q) C
WF e (Q) such that

N
[P AL 110Q " QAnsi1)2) = 2AZ75+1/2Q*Q1/2%[D5+1/2 +> ajCj,j] Ql/QQAa,erl/Z

j=1
+2 ) Az,s+1/2Q*Ql/Q?R[Ca,B]Ql/QQAﬁ,sH/Q
|B1=Fk,B#a

+ Az,sﬂ/zQ*Ems—l/? + E;,sfl/QQAOC,S-H/? + Az,s+1/2i[Pa Q*Q]Aa,s-‘rl/Q (422)

holds for some Cq g € \Il(li’gsc satisfying io” '[P, Ay] = >181<k Ca,8Ap and

,0

O-ge,sc(oaﬂ”?zi =0 (423)
for all multindices a, B € NN with |a| = || = k. [

Here, for j,k € {1,...,N}, C;} is as in Proposition 3.9. When «, § are multi-indices that are
zero except in the jth and kth slots respectively, where they are one, then we can take Cy g = Cj .

1,0
de,sc

i0 [P, Ay] = Z Cu.pAg, (424)
181<la

Proof. We show that given any collection of Cy g € ¥ satisfying

(EQ Y CWF

there exists a collection of Ec(x(,)z—l/2 € o~ st1/291h—1 with WF as—1/2

:ie,sc Zie,sc(Q) such that

I[P AL 1 9@ QAgs1pa) =2 ) AZ,SH/QQ*QI/Q%[5a,ﬁDs+1/2 + Ca,ﬂ} 0?QAg o112
|B|<k

+ AL 1o QB+ BV QA sy + Al i1 oilP Q°QAgsi1ye (425)

holds for each o € NV. We then show that we can choose Cy g such that, if |3| = |a,

Y Gy (a=B),
Cap=0sCiu  (Ja—Bl=2), (426)
0 (otherwise),
where in the second case j, v are the indices in which o, 3 differ, with o; = 8; +1 and 8, = o, + 1.
Defining
0 _ _
Ea,s—1/2 = Eé;,l/g + 2Q1/2 Z %[Ca,ﬂ]gl/QQAB,S-l-l/Q S S+1/2ml—€|- 17 (427)
1Bl<k
eq. (422) holds, and by Proposition 3.9, the C,, s defined by eq. (426) satisfy eq. (423).
e Suppose that we are given C,, g satisfying eq. (424). The left-hand side of eq. (425) is given
by
Z[Pa AZ,5+1/2Q*QAO¢,$+1/2] - AZ,5+1/2Q*Z.[P7 QAa,s+1/2] + [P7 Aa,s+1/2Q*]QA' (428)

Consider [P, Ay s11/2] = i0~5"V2[P, Ay] +i[P, 075 1/?]A,. Using eq. (424), this becomes
i[P, Agsi1o) = > 0 TH2C, 5As + Doy1joAas 1/
|BI=le

= Z C’a,ﬂAﬁ,s—l/QWL Z [Q_S+1/27Ca,5]Aﬁ+Ds+1/2Aa,s—1/2-
1B1=la 1B1=la

(429)
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Therefore, i[P, QAq s11/2] = Qi[P, A s41/2] +i[P, Q] Aq s41/2 can be written, after rearrange-
ment of the terms in Qi[P, Ay sy1/2], as

il P, QAa,s+1/2] = QDs+1/2QAa,s+1/2 +o Z Ca,BQAB,s+1/2 + [Ds+1/2Q7 Q]Aa,s+1/2

1B]=lc|
+ Z a ,BQa A6,5+1/2 + Z ( Q: Ca,ﬁ] + Q[Q_S+1/27 Ca,ﬁ]gs_1/2)Aﬁ,s—l/2
1Bl=le 1B1=lal

+ [Qa Ds+1/2]Aa,sfl/2 + l[Pu Q]Aa,s+1/2’ (430)
and similarly for [P, A? S+1/2] —[P, Ay s41/2]"- So, the operator
’L[Pv Az,s+1/2Q*QAa,s+1/2] - Az,s+1/2Q*i[Pv QAa,S—H/Q] + [Pv Aa,s—i—l/?Q*]QA (431)

is given by

[P, AL s112Q" QAnsti1/2] = Ap o112Q7 (QDs+1/2 + Dg00+ Z (0Cap + 02,69))QA5,5+1/2
|B]=]a

+Ao¢s+1/2Q* ocs 1/2+Ea5 1/2QAas+1/2+Aas+1/21[PQ Q] a,s+1/2 (432)

for
Ec(iz,l/g = [Ds-l—l/QQa Q]Aa,s+1/2 + Z [Oaﬁ@ Q]Aﬁ,s+1/2
18]=|al
+ > (Q Copl +Qlo s+1/2,Ca75]Qs_1/2)AB,s—1/2 +[Q, Dsy1/2]Aas—1/2-  (433)

18l=|al

Here, we have recombined

Al 1 pQU(P. QM A s 10 + A1 o1 P. Q1 QAwey1 /2 = Al g1 oi[PQ°QAgs 1o (434)

Term by term, we see that Ec(yz 12 € \I'deoscs 1/2‘th 1. For example, [Ds11/2Q, 0] €

—00,—2

de,sc 80

[Ds+1/2Q, Q]Aa,s+1/2 = [Ds+1/2Qa Q]Q_s_l/QAa (435)

is the product of an element of \IfdeojC 3/2+s and an element of ‘ﬁi Since \lz;eojglm’i C ‘ﬁlfl,
we get

[ 5+1/2Q Q] a,s—1/2 € \deeozcs Uz;ﬁﬁ_l‘ (436)

The other terms in eq. (433) are analyzed similarly.
Equation (432) looks very similar to the desired eq. (425), except we want to commute a
factor of p!/2 through each of the Dgy1/0’s and Cy g's. If we set

Effifl/g = Eéi 1/2 + 91/2([ s+1/2 ]+ Z 1/2 Ca,p )QAa s+1/2- (437)

18|=lal

This lies in \Ildoo s 1/2‘ﬁk ! and eq. (432) becomes eq. (425). Observe that

WFile,sc(Eg?z_l/Q) g WF:ie,sc(Q)’ (438)

so we have accomplished our first task.
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e We compute

N -1 Qj N
io [P Ad] =07t Y- [(eﬂ A7) (S Arip, A7) ATT) (é 1 45)]
j=1 =1 n=1 =j+1
=SS A e oty (I 4)] o0
j=1 =1 n=1 =j+1

S (o (TT457) (47 et ) ( 1T 4]

j=132=1v=0 /=1 l=j+1

Consider the summand, o~ ([[)_] AP (AT 005 A AT ) (TS 41 A7Y). In the case v = j,
commuting the term oC}, = oCj ; to the left yields

j—1
o (T 47) (450005 ) (T A47) ~ Cosda e 0T (a0
(=1 l=j+1
A similar computation applies when v ¢ {j,0}, with the result
i1 N
o (TT40) (A7 00 A Al ) ((T] AgY) — Cjuds € W0, (441)
=1 1=j+1

where § differs from « by decrementing the jth entry and incrementing the vth. For the
remaining case, v = 0, we simply use that

Jj—1 N
o (T A3 ) (47 0Cs0a7 ™) (( T1 45) € wil i (442)
=1 1=j+1
So,
io P, Ay] = Z Cq,pAz mod ‘If(lieosc‘ﬁk ! (443)
BENN|3|=k

where C, g are defined for |a| = |B| = k by eq. (426).

Since the A,’s for |o| < k span ‘ﬁﬁ ! over \I/ge s the \I/é’gsc‘ﬁ{fl error term in eq. (443)
can be written as

2. Capdp (444)
BENN |B|<k

for some {Cu p}5<k C \Ifde s 90, the {Cy g} a),8<k defined here satisfy eq. (424) on the
nose, and they satisfy eq. (42()) when |a| = |B| = k. This completes the second part of the
proof.

0

We now return to the main line of argument, Wlth P as in the introduction. Let k € NT still
taking kK = 0. As in the lemma above, let Dg € Diff:° be defined by i0 [P, 07°] = Dso~°. Then,

de,sc
Ugeosc(DS)’Ri >0 (SFf > O) (445)
0,0
Ude sc( 5)|’Ri <0 (SFf < O)

We consider

{Ca.s}alis1=k = {0a,8(Dsy1/2 + Dy1/9) + Casg + C3 s} al |51=k (446)
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as a matrix-valued de,sc-UDO C’ whose matrix elements are indexed by multiindices «, 8 € NV
with || = k and || = k. The matrix-valued principal symbol of C’ is the matrix

1,0 1,0 1,0
Ude sc( ,) = {5a752§Rade,sc(D5+1/2) + 2§Ra—de,sc(Caﬁ)ha\vw‘:k' (447)

Choosmg representatives of ade sc(Ds+1 /2) and Ucllé?sc(ca,ﬂ)’ for each «, 3, we get a representative ¢/
of ade SC(C”) which assigns to each point of 9©5T*Q an ordinary matrix. As long as sp¢ #—1/2,
this matrix is — owing to eq. (423) and eq. (445) — either positive definite or negative definite near
RT 1, S0

= |/|\/? (448)
is, near R , a well-defined symmetric matrix Whose entries are elements of Sd 0 defined near the

€e,sC

radlal set. Let {ba,5}|al, 8=+ denote the entries of b. Squaring eq. (448), we see that, for each «, 3,
cazﬁ = :t Z ba77b77:87 (449)
Iyl=k
where the sign is positive if spr > —1/2 and negative otherwise.

Quantizing (and remembering that the discussion above is only valid near the radial set), there
exist

Bog = Bga € U5, (450)
R € \Ifde o L and E e \Ifge‘)’:éfoo such that
Q0" 2Cl 50" Q= Q0|+ " B Byp+ Raplo?Q+ B, (451)
Iv|=k
with
0,0
Ude sc(Baﬁ) = baﬂ (452)

near R, at least as @ has essential support in a sufficiently small neighborhood of the radial set (so
that the discussion above is valid within it). Moreover, smce b is invertible (as it is strictly definite

and not just semidefinite) near Ri, there exist To 5 € ¥y s % such that
Q*Ql/2( Z Taa’YB’Yﬁ - 60675) Q € \I]de sc (453)
Iv[=k
Q*QI/Q( Z Ba ’YT’Y/B - 604 5)91/ Q € \dee sc (454)
Iv[=k

for each «, 5, where 0, o denotes the Kronecker ¢ (once again, as long as the essential support of @
is sufficiently close to RI) (That we can arrange for the errors above to be residual rather than
merely one uniform order better is an instance of the iterative parametrix construction.)

Now consider u € 8" as in the setup of the proposition. Assuming we can justify the algebraic
manipulations:

Z <U, Z[Pv Az,s+1/2Q*QAa,s+l/2]u>
la|=k

= 2 (w Al 1@ (£ Y BiyBys+ Ras)0?QAse pu)
laf,|8|=F Iv|=k
+(02Q A 1 ot Boustt) + (Fa st 012QAq gunyott) + (1, A% g1 i [P, Q" Q) Aq 11 /2)]. - (455)
The main term is

+ Z <B’y,o¢Q1/2QAa,s+1/2ua B’y,ﬁgl/ZQAa,s+1/2u + Z H Z B, on QAa s+1/2u‘
e, 8], |v|=F =k |a|=k

(456)
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Abbreviate this as HBQl/zQAaﬁH/QuH%Q. Thus, eq. (455) yields

HBQl/QQAa,s+1/2u|’%2 <> |:‘<U?AZ,S+1/QZ.[P? Q* QA s+1/2w)| + 2|(Ea,su, Ql/QQAa,s+1/2u>|
la|=k

+20QA0ss1/2Pt, QAn 1)l |+ D0 102QA0 g1 /01 Rapo'?QAgcp1 ). (457)
lal,|8|=k

If the right-hand side of eq. (456) is finite, i.e. if

> By a0?QAn sy pu € L2, (458)
|a|=k

then, applying T, we conclude that
Ql/zQAa7s+1/2u _ Ql/QQQ—s—l/QAau c HOO,O (459)

de,sc*

As long as Q is elliptic at RY, we conclude that WFZ:SC(Aau) N Ri = . Quantitatively, this

N,s
,S

means that the H,_ ~ norm of A,u near RI is controlled by the inequality

”QlAauHH;e]Zf = HBQl/2QAa,s+1/2UHL2 + HUHH&I\;;N (460)

for some Q1 € \I/g’eosc that is elliptic at Ri, this holding for each N and s € R®, and for every u € S'.

Each of the terms on the right-hand side of eq. (457) can be controlled using the hypotheses of
the propositions and the inductive hypothesis:

—o00,—1

e First of all assuming that 1 — @ has essential support away from R, [P,Q*Q] € ¥ do.so
has essential support which is disjoint from Ri as well. As long as @ has essential support
sufficiently close to Ri, the hypotheses of either proposition considered imply that

WF32 (Aau) N WFile,sc([Pv Q*QD =9 (461)

de,sc

where either s. Thus, the |(u, A”, SH/Qi[P, Q*Q]Aq s41/2u) term in eq. (457) is finite and can
be quantitatively controlled by the H (Ie{\slés

e Now, letting Q € ¥, be such that WF/y, ..(1 — Q) N WF e (Q) = 2,

de,sc de,sc

[(Basu, 02 QAns112w)| < (1 — Q) Easu, 0 QAp o1 /9u)| + {QEa st 02QAn 11 /0u)|. (462)

The first term on the right-hand side is straightforward to estimate, as

norms of A,u in an annular region around Ri

Eazs(]‘ - Q)*Ql/2QAa,s+1/2 € \ch;eo,zéioo' (463)
On the other hand, by Cauchy-Schwarz and AM-GM,
2(QEasu, 0'? QA s41/2u)| < € M| QEasul72 + €l 0" 2QA%L ¢ jpull 7 (464)

for any € > 0. The term ||QEqsul|2, can be controlled by the inductive hypothesis, since
—00,—Senk—1
E%S € \dee,sc er ' N
The other term, which is controlled in terms of the H Sf norms of A,u near ’Ri , but
this is suppressed a factor of € and therefore can be absorbed into the left-hand side of the
ultimate estimate.

e Because R, € \Ifgef;’:_l, we have Ra75Q1/2QAa,S+1/2 € \Il;efzé_sm{fl. Thus, the

[(0"2QAn s11/2us Ra 50" *QAp s 41 o) (465)

terms in eq. (457) can be estimated like the previous class of terms.
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e Finally, consider the [(QAqsi1/2Pu, QA si1/2u)| term in eq. (457). We can write
Qe 'P =07 PQ + o7 PF (466)

for some F € W%t Then,

de,sc

|<QAa,S+1/2Pu7 QAa,s+1/2u>| < |<QAa,s+1/2Pua Q_I/QQAQ,SUH
+ (07 2QA0 511 /2Pu, FAq su)|.  (467)

By Cauchy-Schwarz and AM-GM, the second term on the right-hand side is bounded above
as follows:

(07 2QAnsPu, FA, o1 9u)| = (072 QAn sr1/2Pull32 + || FQAq sul 2. (468)

The first term on the right-hand side of eq. (468) can be controlled using the hypotheses of
the propositions to be proven. On the other hand,

FQAqs € U 00 (469)

de,sc

so the second term on the right-hand side of eq. (468) is controlled using the inductive
hypothesis. The first term on the right-hand side of eq. (467) can be bounded above by

2| < {QApsr1/2Pu, 07 2QAnsu)| < €707 P QAp o112 Pull32 + €| QAa sull 22 (470)

As above, the €|QAqsul|?, will be able to be absorbed into the left-hand side of the ultimate
estimates. The remaining term is controllable, for each ¢ > 0, in terms of the H d_e]Z(’fH
norms of A, Pu near the radial set, which are finite by the hypotheses of the propositions to

be proven.

The upshot is that, assuming the algebraic manipulations above are justified, then the H (;{gf

norms of the A,u near Ri in terms of quantities already under control by the inductive hypothesis
or assumptions of the propositions. Regularizing, in a manner completely analogous to that in
[HMVO4][HMVO8][GR+20], suffices to show that this estimate holds in the strong sense that if the
terms on the right-hand side are all finite, then the left-hand side is finite as well. This then yields
the next step in the first induction.

6.3. Second induction. We now induct on x. We first prove:
Lemma 6.2 (Cf. [GR+20], eq. 3.31). Let m € R, s € R® be arbitrary, and let k € N* and k € N.
Suppose that v € S’ satisfies

e WE (Au)NRE =2 and

de,sc
o« WSl (APu) NRT = 2
for all A € Dﬁiﬁ Then,
WF (Au) NRY = @ (471)
for all A€ AL m

Proof. We will prove that, under the hypotheses of the lemma, eq. (471) holds for all A € Dﬁiﬂ]
for j € {0,...,k — 1}. The proof proceeds inductively on j, with j = 0 as the base case.

For each j, that it suffices to check eq. (471) for a set of YDOs spanning smf;*jﬂ as a left
\I/?i’eosc—module. Since 97(i++17 is generated as a left \Ilg’eosc—module by products of the form Vi Ag
for Ag € M7, together with elements of Dﬁi’fjl, in order to show that eq. (471) holds for all
Ae zmi*j? it suffices to prove that

WEE (ViAu)NRE =2 (472)

de,sc
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for Ag € S)ﬁiﬂr (Indeed, since j < k—1,if A € S)ﬁijfl then A € E)JTikJr, so eq. (471) holds for such
A by hypothesis.) In particular, in order to prove the result for , j = 0, we only need to prove that

WEF (Viu) NRE = 2, (473)

de,sc

that is, we only need to consider Ay = 1.
Applying Proposition 3.10, we write P = 772V_V, + 772(d — 1)V_ + R for some R € N
Consequently, for any Ag € W4e g,

T2V V, Agu = AgPu — 7 %(d — 1)V_Agu — 0> RAgu
+ [T 2V_V,, Aou + [772(d — D)V, Aolu + [0°R, Aglu.  (474)

17(_17_17_007_17_1)

Since 772V_ € Diff is elliptic at R7, it suffices to prove that the sets

de,sc
WF;;;:;(PU), WFggjj (772(d — 1)V_u), WFQ;;} (0*Ru) (475)
WFZ’S,?J ([F2V_Va, Aglu), WFZZQ ([r2(d — 1)V, Aglu), WFZSIJ ([0*R, AoJu) (476)

are all disjoint from Ri That this is true for AgPu is a hypothesis. That this is true for
772(d — 1)V_Agu follows from the other hypothesis, which says that WES . (Aou) N RI =2, and
from

72(d—1)V_ e Diff > ! (477)

de,sc *
Because N? C \I/(li’elsc‘ﬁ, we have
’ 2 1,—1
o°R € \Ifdeﬁc‘ﬁ, (478)

so the same logic applies to o> RAgu. It only remains to check the terms in the second line of
eq. (474). If Kk = 0 and j = 0, then, since we are only considering Ay = 1, all of the terms in the
second line of eq. (474) are just zero, so we are done. Otherwise:

e Suppose that Ay € zmig From ¢°R € gl—t

de,sc

Ny, we get
[0°R, Ag) € Wi o (LesoY 7 4 oy, ) (479)

de,sc

via eq. (190), so the first hypothesis above implies that the final term in eq. (474) has
VVFZ’erl disjoint from Ri

e,sc
e Analogous reasoning also applies to the penultimate term in eq. (474).
e On the other hand,

[r2VE VL, Ao) = 772V Vi, Ao] + 772V, Ao)Vi; (480)
PRV Aol € WA, 1), (1)
T2V, AoV € W o (Lo MY, + 100 ol ) (482)
via eq. (190) and the second clause of Proposition 3.12. The first hypothesis above implies
that
WEFS L (Bu)nRT =2 (483)
for all B € \I/(lie_stfmiﬂr Likewise, since we already know the x = 0 and j = 0 case of the
result,
WEFs L (Bu) N R =2 (484)

holds for B € \Ifl’flimigr. If j = 0, then we can immediately conclude

de,sc

WESH (72 [V, Alu) N RE = 2,

de,sc

WES (7 72V_ AlV,ou) NRE = @.

de,sc

(485)
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This completes the proof in the j = 0 case. If j > 1, then the inductive hypothesis says that

WFS L (Bu) N R =@ (486)
for all B € \Ilégsii)ﬁii’jfl, so we can still conclude eq. (485).
O
Consequently:
Proposition 6.3. If
WFS (Au) NRE = & (487)
for all A € M and WF;’QS;Cl(APu) NRT =@ forall A € imi”’j_, then eq. (487) holds for all
Aemyh. B0

Theorem 4 and Theorem 5 follow.

7. PROOFS OF MAIN THEOREMS

We now spell out the precise hypotheses under which the main theorems are proven. We do not
aim to be maximally general here; we call a Lorentzian metric g on RY% admissible if the following
conditions are satisfied:

e g satisfies g—gm € 0p;02pp02 025 03:C™(0; 95°Sym T*0), where gy is the exact Minkowski
metric,

e (R4, g) is globally hyperbolic and ¢ serves as a time function, so that dt timelike,

o Y7 ={(t,x) € R\ : ¢ =T} is a Cauchy hypersurface for each T € R,

e any null geodesic, when projected down to M°, tends to null infinity in both directions.

The first condition specifies the precise sense in which g is asymptotically flat. If g € gy + (1 + 2 +
r?)~1C°(M;°Sym T*M), then the first condition is satisfied. Indeed, a frame for ¢Sym T*M is
given by the sections dz; ® da; for i € {0,...,d}, and the computations in §2 show that

dz; ©dx; € g;;fgggfcoo (0; 45 Sym T*Q). (488)
Since (1+ % +1%) 7" € 0f0np €8s Cars0FsC* (D), this implies that
9 — g € 0P 0apr 08 03pr 07 C™ (03 4% Sym T*0), (489)

so g is asymptotically flat in the sense above. It is not difficult to construct g € gy + (1 + 2 +
r2) 71O (M;3¢Sym T*M) besides gy itself satisfying the other conditions above, so the discussion
below applies to more than just exact Minkowski spacetime.

Given the setup above, the d’Alembertian [, satisfies [, — [J € Diff
operator of the form

2,2

1oee(Q). Consider now an

P=0,+Q+m? (490)
for Q € Diff% 2 (0). Such an operator has all of the properties required in each of the previous

de,sc
sections, so we can cite the various results.

7.1. Initial value problem. We now prove Theorem 1. Let x be as in that theorem. First, for
solutions to the IVP that are assumed to be tempered:

Proposition 7.1. Suppose that u € S'(RY?) is a solution to the IVP
Pu=f
=g = u(®, (491)
Ol y—g = u)
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for some f € S(RY), (O u() € S(RY). Then, u has the form

d/2 d/2 —im\t2—r2 d/2 d/2 4+im\E2—r2
u = ug + xoH oM mVE TRy 4\ ol2 g2 et imVE=Ey, (492)
for some ug € S(RM) and some uy € 05%:0820%%,C(0) = Nyen 05 proke 0k C°(0). [ ]

Proof. In order to get started, we need to know that u (which can be deduced to be smooth via
the Duistermaat—Hoérmander theorem or propagation of singularities in physical space) is Schwartz
in a neighborhood of cly{t = 0} in M. One way to see this is to consider the advanced and
retarded components u™ (t,x) = (1 — O(t))u(t,x) and ut(t,x) = O(t)u(t,x), where © denotes a
Heaviside function. We have u* € S’(R%9), as can be seen from the energy estimate corollary
u € LS (Ry; L2(R?)). These satisfy

loc
Pu(t,x) = £(8'(t) fu(x) +8(1) f2(x)) (493)

for some f1, fo € S(R?) depending on u(?) and u™") and on P. The sc-wavefront sets WF. (6" () f1(x)),
WF.(6(t) f2(x)) are disjoint from the sc-characteristic set of P. Indeed, it can be checked (either
directly, or via an argument presented after the end of this proof) that

WE (8 (t) f1(x)), WEso (8(2) fa(x)) € *N*clyg {t = 0} N *°S*M, (494)

and the right-hand side is disjoint from the sc-characteristic set of P which intersects SN*cly{t =
0}N% only away from fiber infinity. Since u* vanish identically in one of the two temporal hemispheres
chy{Ft > 0}\cly{t = 0}, u™ has no sc-wavefront set over the corresponding hemisphere. We can
therefore apply sc-propagation results [Vas18] (noting that the wavefront sets WFg. (¢ (¢) f1(x)),
WF.(0(t) f2(x)) do not interrupt the propagation) to conclude that the portion of WFg(u®) inside
the sc-characteristic set is a subset of the radial sets of the sc-Hamiltonian flow. The same therefore
applies to u = u~ + u™. But, by elliptic regularity in the sc-calculus (using that f is Schwartz),
WFg(u) is a subset of the sc-characteristic set of P. So, WFg(u) is a subset of the radial set of the

sc-Hamiltonian flow. This certainly implies that u is Schwartz in a neighborhood of cly{t = 0} in
M.
This implies that

WFge sc(u) CRU descr—1(mPf UnFf). (495)
By Theorem 2, we can strengthen this to
WFge sc(u) C R. (496)

Indeed, given any m € R and s € R®, we can find some mg > m and sy > s such that the pair
(mg,sp) satisfies the hypotheses of that theorem. The theorem then tells us that

WETOS (4)) C R. (497)

de,sc

Equation (496) then follows from WFqe sc(u) = clU,y, s WF:E’S’ZO (u), since R is closed.
Now, we can find Q4 € U0 such that

de,sc
o 1= Q— + Q-‘ra
b WFéie,sc(Q:l:) N Em,:F =4d.

Let xo € C>°(M) be identically equal to 0 in some neighborhood of the past cap and identically
equal to 1 in some neighborhood of the future cap. Then, we can define

Q* = (1 - x0)Qx4, QF = x0Q+. (498)

For signs ¢, 0 € {—,+}, let us, = Q% u. Observe that Pu$, = Q¢ f+ [P, Q5]u. Since WFaevsC([P, Qs])N
R = @, we have

WFéle,sc([Pa er]) N WFde,sc(U) =, (499)
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which implies that [P,Q¢]u is Schwartz. So, fs = QS f + [P, Q% ]u is Schwartz. Moreover, by
construction,

WFaese(us) C RS. (500)

For s with spf, spr < —1/2, we can apply Theorem 5 (for each possible pair of signs) to the ug, the
hypothesis of which is trivially satisfied as a consequence of eq. (496), eq. (500). The conclusion is
that

S 00, (8p£,00,00,00,00);00,00
u: € Hde7sc;§7_ ,

(501)

7(007007007007st);00700

S o
u S Hde,sc;g,—

Taking spt, spg € (—3/2,—1/2), we can cite Proposition 3.19 to conclude that v = u” +u~ +ug +ui
has the form specified in the theorem O

If f € S(RY), then f, viewed initially as a function on ¥y = {(¢,x) € R : ¢t = 0}, can be
extended to a Schwartz function F on RV, This implies that, for any m, s € R,

WEL(0(8) £(x)) € WEL™('(t)) (502)

for any sg € R, because &'(t) f(x) = Myd'(t) and Mp € Diff%°°(M). Similarly, WFT*(§(t) f(x)) C
WEF%0(5(t)). Consequently, in order to verify eq. (494), it suffices to prove that

WEZ50(§' (), WFIR*0(§(t)) C *°N*cly{t = 0} N**S*M (503)

for some sg = sg(m) € R. Moreover, since d; € Diff;,°(M), we know that WEF™%0(§'(t)) C
WETFL50(§(1)), so it suffices to prove the above for just d(¢). In order to do this, we use that
WE™S (w) = Fit o WEE™(Fuw) for every w € S'(RY?), where F is the spacetime Fourier transform
and F, ! is the involution of sCT*M switching frequency and position (choosing sign conventions
appropriately). Thus,

WEL%0(6(t)) = Fe WE™(6(x)). (504)

Recalling that the portion of WF2™(§(x)) over the interior is just WF*0(d(x)), if so is suf-
ficiently negative then WF " (d(x)) is contained entirely over the boundary, which says that
F WE™(6(x)) is contained entirely at fiber infinity. Thus, WFZ*0(§(¢)) C *°S*M. In order to see
that WFL*0(6(¢)) € N*cly{t = 0}, note that t6 = 0 and A§ = 0, where A = —(92, +--- + 92 )
is the spatial Laplacian. The former implies that WF,2*(§(¢)) is contained over cly{t = 0}, and
the latter implies that

WF4(6(t)) € CharZl(A). (505)

As Char22(A) n*r~tely{t = 0} = N*cly{t = 0}, this completes the verification.

In order to see that a solution to the IVP eq. (5) with Schwartz initial data (and indeed, much
worse initial data) is automatically tempered, a basic energy estimate suffices; this is proved in §7.3.
Thus, the temperedness hypothesis of the previous proposition can be removed, yielding finally
Theorem 1.

7.2. Scattering problems. Say that the forward problem for P is well-posed if, for any f € S(R%9),
there exists a unique v € C*®(RY%) N S’(R"?) such that

e Pu=f,and

e xou € S(RY?) whenever xo € C°°(M) is identically 0 near the future timelike cap.
There exist criteria in the literature that suffice for this. One can prove this for the P considered
above using the energy estimate in §7.3 in conjunction with a duality argument, but we do not

present the details here, so the next proposition is stated with well-posedness of the forward problem
as an assumption.
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Proposition 7.2. Let v+ denote Schwartz functions on the past timelike cap of Ml. Then, assuming
that the forward problem for P is well-posed, there exists a unique function u € C°(RYY) such that
Pu=0 and

d/2 d/2 —imy/ d/2 d 2 V2 —r2
u = ug +XQP/f QF/f e imV/t2 u +XQ / / +1m te—r Uy (506)
for some Schwartz ug € S(RY) and uyx € 0°%;005%:C™ (@) such that, restricted to the past
timelike cap, u4+ agree with vi. |

Proof. By Proposition 3.20, there exists functions u_ pre, U4 pre € 05p087 005057 € C°(0) such
that u+ pre, when restricted to the past timelike cap, agree with v+, and such that the function upe
defined by

Upre = X0 0pe e ™I U e+ x ol op e ™ T U e (507)
satisfies Pupre € S (Rl’d). Let f = Pupe. By the existence clause of the well-posedness of the
forward problem, there exists a function w € S'(RY?) such that Pw = —f and yow is Schwartz
whenever yq is identically 0 near the future timelike cap. In particular, w solves the IVP

Pw=—F,
wli—g = w©®, (508)

3tw|t=0 = w(l)a

for some w(® w™) e S(R?). By Proposition 7.1, w has the form

w = wo + xop op e ™ w4 xop o e VP Ty (509)
for some Schwartz wy € S(RY?) and wy € C*°(Q). Moreover, w+ can be chosen to be supported
near nFf UFf (or even just near Ff). Set u = upe + w. This solves Pu = 0 and has the form
eq. (507) for u4 = u4 pre + w4 and ug = wy. By the support condition on w4, the restrictions of
u+ to the past timelike caps are the same as the restrictions of u+ pre.

Conversely, suppose that we are given u of the form eq. (506) with ug € S(RY?), us €
0256037 005 C°(O) restricting to v4 at the past timelike caps. Define w? = u — upre. This satisfies
Pw; = —f. Choosing xg € C*>°(M) to be both identically 0 near the future timelike cap and
identically 1 near the past timelike cap, we have

P(xow:) = —xof + [P, xolw? € S(RM). (510)

( 1/2_700700700700)

Any function of the form eq. (506) lies in Hg.', (0). Since the leading order terms in
the asymptotic expansions of u, upre at the past timelike cap agree,

Xows € HowlTH /3000000 (@) (511)

SC

for any ¢ < 1. By Theorem 4, we can actually conclude that WF 4e sc(xow?) N R— = @. Thus, by
Theorem 3, xow? € S(RY?). This implies that y1w, € S(R™) whenever x; is identically 0 near the
future timelike cap. So, w? solves the same forward problem that w does. By the uniqueness clause
of the well-posedness of the forward problem, w?. = w. This shows that u is unique. O

7.3. Temperedness. Here, we give a self-contained proof that the solutions w to the initial value
problem are tempered. The argument below is, unsurprisingly, of a standard sort via an energy
estimate. The point is just that the specific assumptions under which the main theorem is stated
suffice for the argument to go through. The operators considered in the body of the paper, as well
as their formal L2(R"9)-based adjoints, have the form

02 d o 0 d o 0 9
L=(1 }j S l—ap)s—r—+ > b 2 12
( + aOO 8t2 + aoj o7 ot 8 jk:1( ajk) 8.%'3 oxp, + = b] axj +V+m (5 )
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for some aj, = ag; € C®(RVEGR), b; € C®(RM), and V € C°(RY), all of which are decaying
symbols on Q. In particular, on each Cauchy hypersurface Y7 = {(¢,x) € R\ : ¢ = T'}, which stays
away from null infinity, da;k(t,%), 0z,a,x(t,x) € (x)72L>®(R2), b;(t,x),V(t,x) € (x)"LL®(RY),
and likewise for higher derivatives. These suffice to prove the most basic estimates. Proving
estimates that are uniform as t — +o0o will require taking into account temporal decay.

Consider the H'-energy

sl = [, (5] Z\ax]\ﬂul)dd (513

Because 1 + agp > 0, owing to the assumption that Vit is timelike, and because the matrix
{1- ajk};'l,k:1 is strictly positive definite, owing to the assumption that the hypersurface X1 is
spacelike for each T', E[u](t) can be bounded above by some multiple of

Oou |2 d ou* du
Eo[u](t) = /Rd ((1 + aoo)’E‘ + Z ajk)%a m2|u\2) dd.T. (514)
7,k=1

Indeed, the assumptions imply that inf; y)cp1.a(1 + ao) > 0, as well as a similar uniform lower
bound on the matrix {1 —a]k} k=1 Thus, E[u](t) < CEplu](t) for some C' > 0. Conversely,
Eplu](t) < CoE[u](t) for some other Co > 0.

If u € O%®(Ry; C(RL)), then

dEofu] _ /Rd 2%{8U ((1 + aoo)@ - i (1—ajx) T + m%)} d'z

dt ot 8t2 k=1 8x]6xk
dago | Ou |2 4 dajy, dax, du* du
—| +2 R 2 d%z. (515
+ o Ga el + ];la 5 Zh’;j ;1 ot ;o) T (19)
The integral on the first line is
2 %[au* - }ddx— 2 [ (Zao +zd: +Vu)} dde (516)
Rd L Ot otox; % o,
Using Cauchy—Schwarz and AM-GM, the first term here is bounded as follows:
ou c 9
2\/}1@% Lu]| < 2 Bl () + O N L, )l 2 (517)
Likewise,
d
2| [ %[5 5 )H (Zofé‘p byt30] + sup [Vt Eollr). (519
Finally, since 23‘%[8tu*8t8x.u] = O, |0yu|?, we can write
o & O*u 1 Oayg
2 = 2 d% 1
o *lor Z“Wata }dx / ‘ Zax]d (519)

integrating by parts. This satisfies 2| [pa [O¢u|? divage d%x| < 20 supycpa | div age(t,x)| Eolu](t).
Turning to the second line of eq. (515),

’/ dao Ou’ d%z < C sup 400
R4 ot x€Rd ot

[Eolul(¢), (520)
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and
8a]k Oaj, Ou™ Ou 4 3C
< — i .

o2 3 Gt ] - 3 GG ] < s s, 520

Let
d
c(t) = C(( —1—2 sup |b;(t,x)| 4+ sup |V (t,x)| + 2 sup |div age(t,x)|
j=0x€ER? x€R4 x€R?
3
+ 5 Sup supHVaJkH) (522)
x€R4 j
The above shows that AE
U < e0) ol + (1)) Lutt, )l (525)

Because each of the b;,V,divage, Va, is a decaying symbol on M, their supremums over Xp
depend continuously on T. Thus, ¢ € C°(R;R"). Grénwall’s inequality then says that Folu](t) <

exp( [y c(s) ds)(Eolu](0) + [5(s)2|| Lu(s, —)| 12 (rdy ds), which implies

E[u(t) < C’exp(/otc(s) ds) (CoEfu +/ ?|| Lu(s, ) |2 ey ds)- (524)

This was proven under the assumption that u(t, —) be compactly supported, but using e.g. finite
speed of propagation this assumption can be removed. Consequently, if v € C*(R?) solves Lu = 0,
then

Elu)(t) < CCyexp ( /0 " e(s) ds) E[u)(0). (525)

where part of the conclusion is that, if Gyuli—o € L*(R%) and ul—o € H'(RZ), then u(t,x) € H1(R%)
for each t € R.

Now we use that being a decaying symbol on O implies improved decay as t — co. Indeed, we
are assuming that b;, V are symbols of order —2 on O, so that b;, V € (1 + ¢ 4+ 22)"V/2L>°(RL4).
We are also assuming this of the a;x, and eq. (67), eq. (68) imply that 0ya; k, 0z,a; are then also
symbols of the same order, so

1

(1+ 82 +22)1/2

as well. This all implies that ¢ € (t)7'L>(R;). Thus, E[u](t) < C1(t)¢2E[u](0) for some Cy, Cy > 0.
So, u € ()L™ (Ry; H'(R?)) C S'(RM).

N ks Oy @k € *(R) (526)
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