
A STRENGTHENED ORLICZ–PETTIS THEOREM VIA ITÔ–NISIO

ETHAN SUSSMAN

Abstract. In this note we deduce a strengthening of the Orlicz–Pettis theorem from the Itô–Nisio
theorem. The argument shows that given any series in a Banach space which isn’t summable (or more
generally unconditionally summable), we can construct a (coarse-grained) subseries with the property
that – under some appropriate notion of “almost all” – almost all further subseries thereof fail to
be weakly summable. Moreover, a strengthening of the Itô–Nisio theorem by Hoffmann-Jørgensen
allows us to replace ‘weakly summable’ with ‘τ -weakly summable’ for appropriate topologies τ
weaker than the weak topology. A treatment of the Itô–Nisio theorem for admissible τ is given.
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1. Introduction

Let X denote a Banach space over K ∈ {R,C}. Call a subset τ ⊆ 2X an admissible topology on
X if

(1) it is an LCTVS1-topology on X identical to or weaker than the norm (a.k.a. strong) topology
under which the norm-closed unit ball B = {x ∈ X : ∥x∥ ≤ 1} is τ -closed, and

(2) if X is not separable, then τ is at least as strong as the weak topology.
Cf. [HJ74], from which the separable case of this definition arises. By the Hahn-Banach separation
theorem, if τ is an admissible topology then the τ -weak topology (a.k.a. σ(X , X ∗

τ )-topology) is
also admissible (see Lemma A.1).

Besides the norm topology itself, which is trivially admissible (and uninteresting below), the
most familiar example of an admissible topology on X is the weak topology. Many others arise
in functional analysis. For example, given a compact Riemannian manifold M , for most function
spaces F it is the case that the σ(F , C∞(M))-topology (a.k.a. the topology of distributional
convergence) is admissible. An even weaker typically admissible topology is that on F generated
by the functionals ⟨−, φn⟩ : D ′(M) → C for φ0, φ1, φ2, · · · the eigenfunctions of the Laplacian.
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Denote by X N the vector space of all X -valued sequences {xn}∞
n=0 ⊆ X . In the usual way, we

identify such sequences with X -valued formal series (and denote accordingly). We say that a formal
series

∑∞
n=0 xn ∈ X N is “τ -summable” if

∑N
n=0xn ∈ X converges as N → ∞ in Xτ .

Consider the following (slightly generalized) version of the Orlicz–Pettis theorem [Orl29]:

Theorem 1.1. Suppose that τ is an admissible topology on X . If
∑∞

n=0 xn ∈ X N fails to be
unconditionally summable in the norm topology, then

• there exist some ϵ0, ϵ1, ϵ2, · · · ∈ {−1, +1} such that the sequence Σ({ϵn}∞
n=0) = {ΣN }∞

N=0
defined by

ΣN =
N∑

n=0
ϵnxn (1)

does not τ -converge as N → ∞ to any element of X , and
• there exist some χ0, χ1, χ2, · · · ∈ {0, 1} such that the sequence S({χn}∞

n=0) = {SN }∞
N=0

defined by

SN =
N∑

n=0
χnxn, (2)

does not τ -converge as N → ∞ to any element of X .
In particular, this applies if

∑∞
n=0 xn is not summable in the norm topology. ■

Remark. From the formulas
ΣN ({ϵn}N

n=0) = SN ({2−1(1 + ϵn)}N
n=0) − SN ({2−1(1 − ϵn)}N

n=0) (3)
SN ({χn}N

n=0) = 2−1ΣN ({1}N
n=0) + 2−1ΣN ({2χn − 1}N

n=0), (4)

we deduce that Σ({ϵn}∞
n=0) is τ -convergent for all {ϵn}∞

n=0 ∈ {−1, +1}N if and only if S({χn}∞
n=0) is

τ -convergent for all {χn}∞
n=0 ∈ {0, 1}N. We will phrase the discussion below in terms of whichever

of Σ(−), S(−) is convenient, but this equivalence should be kept in mind.
See Proposition 2.5 for the probabilistic version of this remark. ■

Example. Let M be a compact Riemannian manifold and F ⊆ D ′(M) be a function space on M .
Let τ denote the topology generated by the functionals ⟨−, φn⟩L2(M), where φ0, φ1, φ2, · · · denote
the eigenfunctions of the Laplace-Beltrami operator. Suppose that τ is admissible. This holds, for
example, if F is an Lp-based Sobolev space for p ∈ [1, ∞).

Then, for any {xn}∞
n=0 ⊆ F , the formal series

∑∞
n=0 xn is unconditionally summable in F (in

norm) if and only if
∞∑

n=0
|⟨xn, φm⟩| < ∞ (5)

for all m ∈ N and, for all {χn}∞
n=0 ⊆ {0, 1}, there exists an element S({χn}∞

n=0) ∈ F whose mth
Fourier coefficient is given by

⟨S({χn}∞
n=0), φm⟩ =

∞∑
n=0

χn⟨xn, φm⟩. (6)

■

We focus on Banach spaces – as opposed to more general LCTVSs – for simplicity. Most of the
considerations below apply equally well to Fréchet spaces. There is a long history of variants of
the Orlicz–Pettis theorem for various sorts of TVSs [Die77]. A short proof of the Orlicz–Pettis
theorem for Banach spaces can be found in [BP58], and a textbook presentation can be found in
[Meg98]. The proof below has much in common with a probabilistic proof [Die84] based on the
Bochner integral (due to Kwapień).
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The proof below is nonconstructive, in the following sense: upon being given a formal series∑∞
n=0 xn ∈ X N which fails to be unconditionally summable, we do not construct any particular

sequence {ϵn}∞
n=0 ⊆ {−1, +1} such that Σ({ϵn}∞

n=0) ⊆ X fails to converge in Xτ , or any particular
{χn}∞

n=0 ⊆ {0, 1} such that S({χn}∞
n=0) ⊆ X fails to converge in Xτ . All proofs of the Orlicz–Pettis

theorem seem to be nonconstructive in this regard. We do, however, construct a function

E : {{xn}∞
n=0 ∈ X N not unconditionally summable} → 2{−1,+1}N , (7)

such that, when {xn}∞
n=0 is not unconditionally summable, Σ({ϵn}∞

n=0) and S({2−1(1 − ϵn)}∞
n=0)

both fail to be τ -summable for PCoarse-almost all sequences {ϵn}∞
n=0 ∈ E , where

PCoarse : Borel({−1, +1}N)|E({xn}∞
n=0) → [0, 1] (8)

is a probability measure on the subspace σ-algebra

Borel({−1, +1}N)|E({xn}∞
n=0) = {S ∩ E({xn}∞

n=0) : S ∈ Borel({−1, +1}N)}. (9)

So, while the proof is nonconstructive, it is only just. Put more colorfully, the proof follows the “hay
in a haystack” philosophy familiar from applications of the probabilistic method to combinatorics
[AS16]: using an appropriate sampling procedure, we choose a random subseries and show that –
with “high probability” (which in this case means probability one) – it has the desired property.

Precisely, letting PHaar denote the Haar measure on the Cantor group {−1, +1}N ∼= ZN
2 [Die84]

(which is a compact topological group under the product topology, by Tychonoff’s theorem):

Theorem 1.2 (Probabilist’s Orlicz–Pettis Theorem). Suppose that f : N → N is a function such
that |f−1({n})| < ∞ for all n ∈ N. If T ⊆ N is infinite and satisfies

lim sup
n→∞
n∈T

∥∥∥ ∑
n0∈f−1({n})

xn0

∥∥∥ > 0, (10)

then it is the case that, for PHaar-almost all {ϵn}∞
n=0 ∈ {−1, +1}N, the formal series

∞∑
n=0,f(n)∈T

ϵf(n)xn ∈ X N,
∞∑

n=0,f(n)∈T

1
2(1 − ϵf(n))xn ∈ X N (11)

both fail to be τ -summable. ■

The relation to Orlicz–Pettis is as follows. If
∑∞

n=0 xn ∈ X N is not unconditionally summable,
then we can find some pairwise disjoint, finite subsets N0, N1, N2, · · · ⊆ N such that

inf
N∈N

∥∥∥ ∑
n∈NN

xn

∥∥∥ > 0. (12)

We can then choose some f : N → N such that f(n) = f(m) if and only if either n = m or n, m ∈ NN

for some N ∈ N. Thus, if we set T = N, eq. (10) holds. Appealing to Theorem 1.2, we conclude
that, for PHaar-almost all {ϵn}∞

n=0, the formal series
∞∑

n=0
ϵf(n)xn ∈ X N,

∞∑
n=0

1
2(1 − ϵf(n))xn ∈ X N (13)

both fail to be τ -summable. Theorem 1.1, therefore, follows from Theorem 1.2. The connection
with eq. (7), eq. (8) is that we can choose f such that E is the set of {ϵn}∞

n=0 ∈ {−1, +1}N such that
ϵn = ϵm whenever f(n) = f(m), and PCoarse is PHaar conditioned on the event that {ϵn}∞

n=0 ∈ E .

Remark. The Haar measure on the Cantor group is the unique measure on Borel({−1, +1}N) =
σ({ϵn}∞

n=0) such that if we define ϵn : {−1, +1}N → {−1, +1} by ϵn : {ϵ′
m}∞

m=0 7→ ϵ′
n, the random

variables ϵ0, ϵ1, ϵ2, · · · are i.i.d. Rademacher random variables. ■



4 ETHAN SUSSMAN

Remark. It suffices to prove the theorems above when X is separable. Indeed, if X is not separable
and Y denotes the norm-closure of the span of x0, x1, x2, · · · ∈ X , then, for any {λn}∞

n=0 ⊆ K,

τ − lim
N→∞

N∑
n=0

λnxn (14)

exists in X if and only if it exists in Y . (This is a consequence of the requirement that τ be at least
as strong as the weak topology, so the limit in eq. (14) is also a weak limit. Norm-closed convex
subsets of X are weakly closed by Hahn-Banach, so this implies that Y is τ -closed.)

The subspace topology on Y ↪→ Xτ is admissible, and Y is separable, so we can deduce
Theorem 1.1 and Theorem 1.2 for X from the same theorems for Y . ■

Remark. If X is not separable and τ not at least as strong as the weak topology, then the conclusions
of these theorems may fail to hold, even if the norm-closed balls in X are τ -closed. As a simple
counterexample, let X = L∞[0, 1], and let τ be the σ(L∞, L1)-topology. This being a weak-∗
topology, the norm-closed balls are τ -closed (and even τ -compact). Let

ΣN (t) = tN , (15)
xn(t) = Σn(t) − Σn−1(t) for n ≥ 1, x0(t) = Σ0(t) = 1. It turns out that the series

∑∞
n=0 xn is

τ -subseries summable. Indeed, if {χn}∞
n=0 ⊆ {0, 1}, then define

S({χn}∞
n=0)(t) =

∞∑
n=0

χnxn(t) ∈ R (16)

for each t ∈ [0, 1]. By the monotone convergence theorem, this converges pointwise (so the definition
makes sense, and S({χn}∞

n=0) is a measurable function of t), and satisfies S({χn}∞
n=0)(t) ∈ [0, 1], so

S({χn}∞
n=0) ∈ L∞[0, 1]. If f ∈ L1[0, 1], then∣∣∣ � 1

0
f(t)

∞∑
n=N

χnxn(t) dt
∣∣∣ ≤

∣∣∣ � 1−1/
√

N

0
f(t)

∞∑
n=N

χnxn(t) dt
∣∣∣ +

∣∣∣ � 1

1−1/
√

N
f(t)

∞∑
n=N

χnxn(t) dt
∣∣∣. (17)

For N ≥ 1, the first term on the right-hand side is bounded above by

∥f∥L1 sup
t∈[0,1−1/

√
N ]

∞∑
n=N

|xn(t)| = ∥f∥L1 sup
t∈[0,1−1/

√
N ]

tN−1 = ∥f∥L1

(
1 − 1√

N

)N−1
, (18)

which converges to 0 as N → ∞. On the other hand, the second term on the right-hand side of
eq. (17) is bounded above by(

sup
t∈[0,1]

∞∑
n=0

|xn(t)|
)� 1

1−1/
√

N
|f(t)| dt = 2

� 1

1−1/
√

N
|f(t)| dt, (19)

which converges to 0 as N → ∞ by the measurability of f . So, we can conclude that the convergence
in eq. (16) is in τ .

But, ΣN does not converge uniformly on [0, 1] as N → ∞, so
∑∞

n=0 xn is not strongly summable
in X = L∞[0, 1]. Thus, the conclusion of Theorem 1.1 does not hold for this space X and this
topology τ . ■

Example. If X = C0[0, 1], the set of continuous functions [0, 1] → C with the topology of uniform
convergence, and τ is the σ(C0, L1)-topology, then the hypotheses of the theorems regarding X , τ
are satisfied, since X is separable and the norm-closed balls in X are τ -closed. Letting xn(t) be as in
the previous remark, the failure of

∑∞
n=0 xn to be strongly summable implies (by Theorem 1.2) that∑∞

n=0 χnxn cannot be τ -summable in X for PCoarse-almost all {χn}∞
n=0 ⊂ {0, 1}. But we can define

the pointwise limit S({χn}∞
n=0)(t) as in eq. (16), and we saw convergence in the σ(L∞, L1)-topology.

Consequently, if there were to exist some
S̃({χn}∞

n=0)(t) ∈ C0[0, 1] (20)
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Figure 1. A plot of SN (t) = 1 +
∑N

n=1 χn(tn − tn−1) vs. t (horizontal axis) for
large N and for {χn}∞

n=0 sampled according to PCoarse. For large N , SN (t) oscillates
rapidly as t → 1−, much like the topologist’s sine curve, in accordance with the
prediction that the full sum S(t) = limN→∞ SN (t) does not have a well-defined limit
as t → 1−.

agreeing with S({χn}∞
n=0)(t) almost everywhere, then

∑∞
n=0 χnxn would have to converge to

S̃({χn}∞
n=0) in τ = σ(C0, L1), since this is just the subspace topology of σ(L∞, L1). So, it must be

the case that, for PCoarse-almost all {χn}∞
n=0,

S̃({χn}∞
n=0)(t) /∈ C0[0, 1] (21)

if S̃({χn}∞
n=0) agrees with S({χn}∞

n=0) almost everywhere in [0, 1]t. But, the series
∑∞

n=0 χnxn con-
verges uniformly in [0, 1 − δ] for every δ ∈ (0, 1), so S({χn}∞

n=0) ∈ C0[0, 1). If limt→1− S({χn}∞
n=0)(t)

were to exist, then we could define

S̃({χn}∞
n=0)(t) =

{
S({χn}∞

n=0)(t) (t < 1)
lims→1− S({χn}∞

n=0)(s) (t = 1),
(22)

and this would lie in C0[0, 1] and agree with S({χn}∞
n=0) almost everywhere in [0, 1]t. So, it must be

the case that limt→1− S({χn}∞
n=0)(t) fails to exist for PCoarse-almost all {χn}∞

n=0. See Figure 1. ■

Remark. When X is separable, it suffices to consider the case when τ is the topology generated by
a countable norming set of functionals. Recall that a subset S ⊆ X ∗

τ is called norming if

∥x∥ = sup
Λ∈S

|Λx| (23)

for all x ∈ X . We can scale the members of a norming subset to get another norming subset whose
members Λ satisfy ∥Λ∥X ∗ = 1, and this generates the same topology. If τ is admissible, then (by
the Hahn-Banach theorem and separability) there exists a countable norming subset S ⊆ X ∗

τ (see
Lemma A.2). Whenever S ⊆ X ∗

τ is a countable norming subset, the σ(X , S)-topology is admissible
as well (see Lemma A.3), and identical with or weaker than τ . ■

It is not necessary to consider probability spaces other than

({−1, +1}N, Borel({−1, +1}N),PHaar), (24)

but it will be convenient to have a bit more freedom. Let (Ω, F ,P) denote a probability space on
which i.i.d. Bernoulli random variables

χ0, χ1, χ2, · · · : Ω → {0, 1} (25)
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are defined. For example,
(Ω, F ,P) = ({−1, +1}N, Borel({−1, +1}N),PHaar), (26)

in which case we set χn = (1/2)(1 − ϵn). Given this setup and given a formal series
∑∞

n=0 xn ∈ X N,
we can construct a random formal subseries S : Ω → X N by

S(ω) =
∞∑

n=0
χn(ω)xn. (27)

This is a measurable function from Ω to X N when X is separable (see Lemma 2.1)
Suppose that X is separable. Given any Borel subset P ⊆ X N the probability P(S−1(P)) ∈ [0, 1]

of the “event” S ∈ P is well-defined. Given some “property” P – which we identify with a not-
necessarily-Borel subset P ⊆ X N – that a formal series may or may not possess, to say that almost
all subseries of

∑∞
n=0 xn have property P means that there exists some F ∈ F with

P(F ) = 1 (28)
and ω ∈ F ⇒ S(ω) ∈ P. In this case, we say that S has the property P for P-almost all ω. (Note
that we do not require S−1(P) ∈ F , although this is automatic if P is Borel, and can be arranged by
passing to the completion of P.) Analogous locutions will be used for random formal series generally.
If P is Borel then S(ω) will have the property P for P-almost all ω ∈ Ω if and only if P(S−1(P)) = 1.

In order to prove the theorems above, we use the following variant of a theorem of Itô and Nisio
[IN68] refined by Hoffmann-Jørgensen [HJ74]:

Theorem 1.3. Suppose that τ is an admissible topology on X . Let
γ0, γ1, γ2, · · · : Ω → {−1, +1} (29)

be independent, symmetric random variables on (Ω, F ,P). If X is a Banach space and {xn}∞
n=0 ∈

X N, the following are equivalent:
(I) for P-almost all ω ∈ Ω,

∑∞
n=0 γn(ω)xn is summable in X ,

(II) for P-almost all ω ∈ Ω,
∑∞

n=0 γn(ω)xn is τ -summable, i.e. summable in Xτ .
Moreover, whether or not the conditions above hold depends only on {xn}∞

n=0 and the laws of each
of γ0, γ1, γ2, · · · . ■

This result is essentially contained in [HJ74], but, since our formulation is slightly different, we
present a proof in §3 below.

See [Hyt+16] for a modern account of the Itô–Nisio result in the case when τ is the weak topology.
Our proof follows theirs.

A special case of this theorem was stated in [Sus22], and the proof was sketched. This paper fills
in some details of that sketch.2

Remark. We will refer to Theorem 1.3 as “the Itô–Nisio theorem,” with the following three caveats:
• Unlike in the usual Itô–Nisio theorem, we do not discuss convergence in probability.
• The result is often stated with general Bochner-measurable symmetric and independent

random variables xn(ω) : Ω → X N in place of γn(ω)xn. (A X -valued random variable X
will be called symmetric if X and −X are equidistributed, i.e. have the same law.3) In fact,
Theorem 1.3 implies the more general version via a rerandomization argument.

• Itô and Nisio only consider the case when τ is the weak topology, the generalization to
admissible τ being the result of [HJ74].

■

2See [Sus22, Thm. 3.11]. The statement there involves convergence in probability, but the proof in §3 below applies.
3Note that, if K = C, this convention differs from some in the literature, in particular [Hyt+16, Definition 6.1.4].

(We use ‘symmetric’ when they would use ‘real-symmetric.’)
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Remark. A strengthening of the Itô–Nisio result in the case when X does not admit an isometric
embedding c0 ↪→ X is essentially contained – and explicitly conjectured – in [HJ74]. The proof is
due to Kwapień [Kwa74]. If (and only if) X does not admit an isometric embedding c0 ↪→ X , then
(I), (II) in Theorem 1.3 are equivalent to

(III) for almost all ω ∈ Ω, supN∈N∥
∑N

n=0 ϵn(ω)xn∥ < ∞.
(The event described above, that of “uniform boundedness,” is also measurable. See Lemma 2.2.)

Recall that – by the uniform boundedness principle – the weak convergence of a sequence
{XN }∞

N=0 ⊆ X implies that supN ∥XN ∥ < ∞, so (II) implies (III) when τ is the weak topology.
Condition (I) obviously implies (III), so by the Itô–Nisio theorem (once we’ve proven it), (II) implies
(III) for any admissible τ . The converse obviously does not hold if X admits an isometric embedding
c0 ↪→ X . ■

Remark. By Lemma 2.2, the events described in (I), (III) above are measurable, and so, Theorem 1.3
is a statement about their probabilities. If X is separable and τ is the topology generated
by a countable norming collection of functionals, the event in (II) is measurable as well. It is
a consequence of Theorem 1.3 that, if the probability space (Ω, F ,P) is complete, then (II) is
measurable regardless. ■

An outline for the rest of this note is as follows:
• In §2, we fill in some measure-theoretic details related to the main line of argument.
• We prove the Itô–Nisio theorem in §3 using a version of the standard argument based on

uniform tightness and Lévy’s maximal inequality.
• Using Theorem 1.3, we prove the probabilist’s Orlicz–Pettis theorem in §4

2. Measurability

Let X be an arbitrary separable Banach space over K ∈ {R,C}, and let τ be an admissible
topology on it. Below, ϵ0, ϵ1, ϵ2, · · · will be as in Theorem 1.3, i.i.d. Rademacher random variables
Ω → {−1, +1}. Similarly, χ0, χ1, χ2, · · · will be i.i.d. uniformly distributed Ω → {0, 1}.

Lemma 2.1. The function S : Ω → X N defined by eq. (27) is measurable with respect to the Borel
σ-algebra Borel(X N), so it is a well-defined random formal X -valued series. ■

Proof. The Borel σ-algebra of a countable product of separable metric spaces agrees with the
product P of the Borel σ-algebras of the individual factors [Kal02, Lemma 1.2]. So, Borel(X N) =
σ(evaln : n ∈ N) = P, where

evaln : X N → X (30)
is shorthand for the map

∑∞
n=0 xn 7→ xn. To deduce that S is Borel measurable, we just observe that

it is measurable with respect to the σ-algebra σ(evaln : n ∈ N), since evaln ◦ S(ω) = χn(ω)xn. □

Let PI, PII, PIII ⊆ X N denote the sets of (I) strongly summable formal series, (II) τ -summable
formal series, and (III) bounded formal series, respectively. In other words,

PI = {{xn}∞
n=0 ∈ X N : limN→∞

∑N
n=0 xn exists in X }, (31)

PII = {{xn}∞
n=0 ∈ X N : τ −limN→∞

∑N
n=0 xn exists in Xτ }, (32)

PIII = {{xn}∞
n=0 ∈ X N : supN∈N∥

∑N
n=0 xn∥ < ∞}. (33)

Likewise, given a countable norming subset S ⊆ X ∗
τ , let

PII′ = PII′(S) = {{xn}∞
n=0 ∈ X N : S−limN→∞

∑N
n=0 xn exists in Xσ(X ,S)} (34)

denote the set of S-weakly summable formal X -valued series.

Lemma 2.2. PI, PII′ , PIII ∈ Borel(X N). Consequently, given any random formal series Σ : Ω → X N,
Σ−1(Pi) ∈ F for each i ∈ {I, II′, III}. ■
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Proof. For each M, N ∈ N, the function NN,M : X N → R given by

NN,M ({xn}∞
n=0) =

∥∥∥ N∑
n=M

xn

∥∥∥ (35)

satisfies N−1
N,M (S) ∈ P for all S ∈ Borel(R). Therefore, PIII = ∪R∈N ∩N∈N N−1

N,0([0, R]) is in P , as is

PI =
⋂

R∈N+

⋃
M∈N

⋂
N≥M

N−1
N,M ([0, 1/R]). (36)

Let X0 ⊆ X denote a dense countable subset. Claim: a sequence {XN }∞
N=0 ⊆ X converges

S-weakly if and only if for each rational ε > 0 there exists X≈ = X≈(ε) ∈ X0 such that for each
Λ ∈ S there exists a N0 = N0(ε, Λ) ∈ N such that

|Λ(XN − X≈)| < ε (37)

for all N ≥ N0.
• Proof of ‘only if:’ if XN → X S-weakly, then, for each ε > 0, choose X≈ = X≈(ε) ∈ X0 such

that ∥X − X≈∥ < ε/2, and for each Λ ∈ S choose N0(ε, Λ) such that |Λ(XN − X)| < ε/2
for all N ≥ N0.

Since the elements of S have operator norm at most one, |Λ(X − X≈)| < ε/2.
Combining these two inequalities, eq. (37) holds for all N ≥ N0.

• Proof of ‘if:’ suppose we are given X≈(ε) with the desired property. First, observe that
{X≈(1/N)}∞

N=1 is Cauchy. Indeed, it follows from the definition of the X≈(ε) that |Λ(X≈(ε)−
X≈(ε′))| < ε + ε′ for all Λ ∈ S, which implies (since S is norming) that ∥X≈(ε) − X≈(ε′)∥ ≤
ε + ε′. So, by the completeness of X , there exists some X ∈ X such that

lim
N→∞

X≈(1/N) = X. (38)

We now need to show that, as N → ∞, XN → X S-weakly. Indeed, given any Λ ∈ S and
M ∈ N+,

|Λ(XN − X)| ≤ |Λ(XN − X≈(1/M))| + |Λ(X − X≈(1/M))|. (39)

Given any ε > 0, pick M such that 1/M < ε/2 and such that ∥X≈(1/M) − X∥ < ε/2.
Since the elements of S have operator norm at most one, |Λ(X − X≈(1/M))| < ε/2. By
the hypothesis of this direction, we can choose N0 = N0(ε, Λ) sufficiently large such that
|Λ(XN − X≈(1/M))| < 1/M < ε/2 for all N ≥ N0. Therefore, |Λ(XN − X)| < ε for all
N ≥ N0. It follows that XN → X S-weakly.

We therefore conclude that

PII′ =
⋂

ε>0,ε∈Q

⋃
X≈∈X0

⋂
Λ∈S

⋃
M∈N

⋂
N≥M

{{xn}∞
n=0 : |Λ(XN − X≈)| < ε} (40)

is in P as well, where XN = x0 + · · · + xN−1, which depends measurably on {xn}∞
n=0.

□

Remark. We do not address the question of when PII is Borel. Even when X ∗
τ is not second countable,

it can be the case that PII ∈ P. For example, if X = ℓ1(N), then sequential weak convergence is
equivalent to sequential strong convergence [Car05, Theorem 6.2], and hence PI = PII. ■

Let πN : X N → X N denote the left-shift map
∑∞

n=0 xn 7→
∑∞

n=0 xn+N . Let π∗
N P = {π−1

N (S) :
S ∈ P}.

Lemma 2.3. Let PI, PII′ , PIII be as above. Then

PI, PII′ , PIII ∈ T , (41)
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where T ⊆ Borel(X N) is the “tail σ-algebra” T = ∩N∈Nπ∗
N P. Consequently, given any K-valued

random variables λ0, λ1, λ2, · · · : Ω → K, the random formal series Σ : Ω → X N given by Σ(ω) =∑∞
n=0 λn(ω)xn is such that

Σ−1(Pi) ∈ ∩N∈Nσ({λn}∞
n=N ) (42)

for each i ∈ {I, II′, III}. ■

Proof. Clearly, π−1
N (Pi) = Pi for each i ∈ {I, II′, III}. By Lemma 2.2, we can therefore conclude that

Pi ∈ T . If Σ is as above, then Σ∗ ◦ π∗
N P ⊆ σ({λn}∞

n=N ). Since Σ−1(Pi) is in the left-hand side for
each N ∈ N, eq. (42) follows. □

Proposition 2.4. Let f : N → N satisfy |f−1({n})| < ∞ for all n ∈ N. Suppose that λ0, λ1, λ2, · · · :
Ω → K are independent random variables on the probability space (Ω, F ,P), and consider the random
formal series Σ : Ω → X N given by

Σ(ω) =
∞∑

n=0
λf(n)(ω)xn. (43)

Then P(Σ−1(P)) = P[Σ ∈ P] ∈ {0, 1} for any element P ∈ T , and in particular for the sets Pi for
each i ∈ {I, II′, III}. ■

Proof. Since λ0, λ1, λ2, · · · are now assumed to be independent, that P[Σ ∈ P] ∈ {0, 1} follows
immediately from the Kolmogorov zero-one law [Dur19, Theorem 2.5.3]. By Lemma 2.3, this applies
to PI, PII′ , PIII. □

Proposition 2.5. Let f : N → N satisfy |f−1({n})| < ∞ for all n ∈ N. Suppose that P ⊆ X N is
a K-subspace and that ζ0, ζ1, ζ2, · · · : Ω → K are a collection of symmetric, independent K-valued
random variables.

Then, letting Σ, S : Ω → X N denote the random formal series

Σ(ω) =
∞∑

n=0
ζf(n)(ω)xn and S(ω) =

∞∑
n=0

χf(n)(ω)xn, (44)

where χn = 2−1(1 − ζn), the following are equivalent: (∗) Σ ∈ P for P-almost all ω ∈ Ω and∑∞
n=0 xn ∈ P, (∗∗) S ∈ P for P-almost all ω ∈ Ω. Consequently, if P ∈ T , by Proposition 2.4 the

following are equivalent: (∗′) Σ ̸∈ P for P-almost all ω ∈ Ω or
∑∞

n=0 xn ̸∈ P and (∗∗′) S ̸∈ P for
P-almost all ω ∈ Ω. ■

This is essentially an immediate consequence of eq. (3), eq. (4), mutatis mutandis.

Proof. First suppose that (∗) holds. In particular,
∑∞

n=0 xn ∈ P. Then, since P is a subspace of X N,
∞∑

n=0
χf(n)(ω)xn = −1

2

∞∑
n=0

ζf(n)(ω)xn + 1
2

∞∑
n=0

xn (45)

is in P if
∑∞

n=0 ζn(ω)xn is. By assumption, this holds for P-almost all ω ∈ Ω, and so we conclude
that (∗∗) holds.

Conversely, suppose that (∗∗) holds, so that S(ω) ∈ P for all ω in some some subset F ∈ F with
P(F ) = 1. Clearly, the two formal series S, S′ : Ω → X N,

S(ω) =
∞∑

n=0
χf(n)(ω)xn and S′(ω) =

∞∑
n=0

(1 − χf(n)(ω))xn (46)

are equidistributed. We deduce that S′(ω) ∈ P for almost all ω ∈ Ω, i.e. that there exists some
F ′ ∈ F with P(F ′) = 1 such that S′(ω) ∈ P whenever ω ∈ F ′. This implies, since P is a subspace of
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X N, that the random formal series

S(ω) + S′(ω) =
∞∑

n=0
xn (47)

S(ω) − S′(ω) = −
∞∑

n=0
ζf(n)(ω)xn (48)

are both in P for all ω ∈ F ∩ F ′. Since P(F ∩ F ′) = 1, it is the case that F ∩ F ′ ̸= ∅, and so we
conclude that

∑∞
n=0 xn ∈ P. Likewise,

∑∞
n=0 ζf(n)(ω)xn ∈ P for almost all ω ∈ Ω. □

Proposition 2.5 applies in particular to the sets PI, PII′ , PIII. We will not discuss PIII further, but
the preceding results are useful for the treatment of the Jørgensen–Kwapień and Bessaga–Pełczyński
theorems along the lines of §4.

3. Proof of Itô–Nisio

Let X be a separable Banach space over K ∈ {R,C}. We now give a treatment, via the method
in [Hyt+16], of the particular variant of the Itô–Nisio theorem stated in Theorem 1.3.

The key result allowing the generalization from the weak topology to all admissible topologies is:
Proposition 3.1. If τ is an admissible topology on X , then Borel(X ) = Borel(Xτ ). ■

Proof. The inclusion Borel(X ) ⊇ Borel(Xτ ) is an immediate consequence of the assumption that τ
is weaker than or identical to the norm topology, so it suffices to prove that Borel(Xτ ) contains a
collection of sets that generate Borel(X ) as a σ-algebra. Consider the collection

B = {x + λB : x ∈ X , λ ∈ R≥0} ⊆ Borel(X ) (49)
of all norm-closed balls in X . Since X is separable, the collection of all open balls generates
Borel(X ), and each open ball x + λB◦, x ∈ X , λ > 0, is a countable union

x + λB◦ =
⋃

N∈N,1/N<λ

(x + (λ − 1/N)B) (50)

of closed balls, so the closed balls generate Borel(X ). Since τ is an LCTVS topology, once we
know that B is τ -closed, the same holds for all other norm-closed balls. Because τ is admissible, the
elements of B are τ -closed, so B ⊆ Borel(Xτ ). □

Suppose now that τ is admissible, and suppose that (Ω, F ,P) is a probability space on which
symmetric, independent random variables γ0, γ1, γ2, · · · : Ω → K are defined.
Proposition 3.2. Suppose that

∑∞
n=0 γn(ω)xn converges in Xτ for P-almost all ω ∈ Ω, so that we

may find some F ∈ F with P(F ) = 1 such that

Σ∞(ω) = τ − lim
N→∞

N∑
n=0

γn(ω)xn (51)

exists for all ω ∈ F . Set Σ∞(ω) = 0 for all ω ∈ Ω\F . Then, Σ∞ is a well-defined X -valued random
variable. ■

Proof. We want to prove that Σ∞ is measurable with respect to F and Borel(X ). By Proposition 3.1
and Lemma A.1, Borel(X ) = Borel(Xτ ) = Borel(σ(X , X ∗

τ )) = σ(X ∗
τ ), so it suffices to check that

Λ ◦ Σ∞ is a measurable K-valued function for each Λ ∈ X ∗
τ . Certainly,

Λ ◦ Σ̃N (ω) = 1ω∈F Λ ◦ ΣN (ω) =
{

ΣN (ω) (ω ∈ F )
0 (ω ∈ Ω\F )

(52)

is measurable. Consequently, Λ ◦ Σ∞ = limN→∞ Λ ◦ Σ̃N is the limit of measurable K-valued random
variables and, therefore, measurable. □
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Proposition 3.3. Consider the setup of Proposition 3.2. For each N ∈ N, the X -valued random
variables Σ∞ and Σ∞ − 2ΣN are equidistributed. ■

Proof. Denote the laws Σ∞, Σ∞ − 2ΣN by µ, λN : Borel(X ) → [0, 1], respectively. The measures
µ, λN are uniquely determined by their Fourier transforms Fµ, FλN : X ∗

τ → C,

Fµ(Λ) =
�

Ω
e−iΛΣ∞(ω) dP(ω) =

�
X

e−iΛx dµ(x), (53)

where FλN is defined analogously. For each Λ ∈ X ∗
τ , Λ(Σ∞ − ΣN ) and Λ(ΣN ) are clearly

independent, and Λ(ΣN ) is equidistributed with −Λ(ΣN ), so

Fµ(Λ) =
�

Ω
e−iΛΣ∞(ω) dP(ω) =

�
Ω

e−iΛ(Σ∞(ω)−ΣN (ω))e−iΛΣN (ω) dP(ω)

=
(�

Ω
e−iΛ(Σ∞(ω)−ΣN (ω)) dP(ω)

)( �
Ω

e−iΛΣN (ω) dP(ω)
)

=
(�

Ω
e−iΛ(Σ∞(ω)−ΣN (ω)) dP(ω)

)( �
Ω

e+iΛΣN (ω) dP(ω)
)

=
�

Ω
e−iΛ(Σ∞(ω)−ΣN (ω))e+iΛΣN (ω) dP(ω)

=
�

Ω
e−iΛ(Σ∞(ω)−2ΣN (ω)) dP(ω) = FλN (Λ).

(54)

Hence the Fourier transforms of µ, λN agree, and we conclude that Σ∞ and Σ∞ − 2ΣN are
equidistributed. □

The proof is identical to the standard one, except we need to know that the law of an X -
valued random variable is uniquely determined by the restriction of its Fourier transform (a.k.a.
“characteristic functional”) from X ∗ to X ∗

τ , for any admissible τ . The proof of this fact for τ the
strong or weak topologies, which is just the proof that a finite Borel measure on X is uniquely
determined by the Fourier transform of its law, is given in [Hyt+16, E.1.16, E.1.17]. The general
statement follows from analogous reasoning: the finite-dimensional version (i.e. finite Borel measures
on Rd are identifiable with particular tempered distributions, and are, therefore, uniquely determined
by their Fourier transforms), the Dynkin π-λ theorem (which implies that a finite measure is uniquely
determined by its restriction to any π-system which generates the σ-algebra on which the measure
is defined [Dur19, Theorem A.1.5]), and Proposition 3.1.

Another way to prove the proposition is to show that Σ∞ agrees, almost everywhere, with the
composition of the random formal series

∑∞
n=0 γn(−)xn : Ω → X N and Σ∞,Uni : X N → X ,

Σ∞,Uni
( ∞∑

n=0
xn

)
=

{
S−limN→∞

∑N
n=0 xn (

∑∞
n=0 xn ∈ PII′),

0 (otherwise),
(55)

where S ⊆ X ∗
τ is a countable norming collection of functionals and PII′ is as in §2. By the results

in §2, Σ∞,Uni : X N → X is Borel measurable. Thus, we can form the pushforward under it of
the law of the formal series

∑∞
n=0 γn(−)xn. The initial claim, then, is that the law of Σ∞ is this

pushforwards. Likewise, the pushforwards of the law of the random formal series

ω 7→ −
N∑

n=0
γn(ω)xn +

∞∑
n=N+1

γn(ω)xn ∈ X N (56)

is the law of Σ∞ − 2ΣN . Since the random formal series eq. (56) is equidistributed with the original,
we deduce that Σ∞ and Σ∞ − 2ΣN are equidistributed as well.

Recall that an X -valued random variable X : Ω → X is called tight if for every ε > 0 there
exists a norm-compact set K ⊆ X such that P[X /∈ K] ≤ ε. By an elementary argument, every
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X -valued random variable is tight [Hyt+16, Proposition 6.4.5]. A family X of X -valued random
variables is called uniformly tight if we can choose the same K = K(ε) for every X ∈ X , i.e. if for
each ε > 0 there exists some norm-compact K ⊆ X such that P[X /∈ K] ≤ ε holds for all X ∈ X .
If X is uniformly tight, then

X − X = {X1 − X2 : X1, X2 ∈ X } (57)

is uniformly tight as well, a fact which is used below. (The map ∆ : X × X → X given by
(x, y) 7→ x − y is continuous. If K ⊆ X is compact, then K × K is a compact subset of X × X .
Its image ∆(K × K) = K − K under ∆ is, therefore, also compact. By a union bound,

P[X1 − X2 /∈ ∆(K × K)] ≤ P[X1 /∈ K] + P[X2 /∈ K]. (58)

See [Hyt+16, Lemma 6.4.6].)
To complete the proof of the Itô–Nisio theorem, we use Lévy’s maximal inequality [Hyt+16,

Proposition 6.1.12]4:

Proposition 3.4 (Lévy’s maximal inequality). Let X be a separable Banach space over K. Let
x0, x1, x2, · · · be independent symmetric X -valued random variables. Then, setting ΣN =

∑N
n=0 xn,

P[(∃N0 ∈ {0, · · · , N})∥ΣN0∥ ≥ R] ≤ 2P[∥ΣN ∥ ≥ R] (59)

for all N ∈ N and real R > 0. ■□

Proposition 3.5. Suppose that
∑∞

n=0 γn(ω)xn converges in Xτ for P-almost all ω ∈ Ω, and let Σ∞
denote the X -valued random variable constructed in the statement of Proposition 3.2. Then

Σ∞(ω) = lim
N→∞

N∑
n=0

γn(ω)xn (60)

for P-almost all ω ∈ Ω. ■

The limit here is taken in the strong topology.

Proof. The proof is split into three parts. We first show that it suffices to show that ΣN → Σ∞ in
probability, where ΣN =

∑N
n=0 γn(ω)xn, i.e. that

lim
N→∞

P[∥Σ∞ − ΣN ∥ > ε] = 0 (61)

for all ε > 0. This part of the argument uses Lévy’s inequality. We then establish (via a standard
trick) the uniform tightness of {ΣN }∞

N=0. The third step involves showing that, if ΣN fails to
converge to Σ∞ in probability, then, with positive probability, ΣN fails to converge to Σ∞ in Xτ .
Under our assumption to the contrary, we can then conclude that ΣN → Σ∞ in probability, which
by the first part of the argument completes the proof of the proposition.

(1) Suppose that limN→∞ P[∥Σ∞−ΣN ∥ > ε] = 0 for all ε > 0. We want to prove that ΣN → Σ∞
P-almost surely. It suffices to prove that {ΣN }∞

N=0 is P-almost surely Cauchy, since then
by the completeness of X it converges strongly P-almost surely to some random limit
Σ′

∞ : Ω → X . Since the τ topology is weaker than (or identical to) the strong topology and
Hausdorff, Σ′

∞ = Σ∞ P-almost surely.
By the triangle inequality, for any M, M ′, N ∈ N, ∥ΣM −ΣM ′∥ ≤ ∥ΣM −ΣN ∥+∥ΣM ′ −ΣN ∥.

Therefore, by a union bound,

P
[ ⋃

M,M ′≥N

∥ΣM − ΣM ′∥ ≥ ε
]

≤ 2P
[ ⋃

M≥N

∥ΣM − ΣN ∥ ≥ ε/2
]
. (62)

4The statement there uses strict inequalities for the events, but the version for nonstrict inequalities follows by the
countable additivity of P.
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By the countable additivity of P and by Lévy’s maximal inequality,

2P
[ ⋃

M≥N

∥ΣM − ΣN ∥ ≥ ε/2
]

= lim
N ′→∞

2P
[ ⋃

N ′≥M≥N

∥ΣM − ΣN ∥ ≥ ε/2
]

(63)

≤ lim
N ′→∞

4P
[
∥ΣN ′ − ΣN ∥ ≥ ε/2

]
. (64)

Consequently,

P
[ ⋃

ε>0

∞⋂
N=0

⋃
M,M ′≥N

∥ΣM − ΣM ′∥ ≥ ε
]

= lim
ε→0+

lim
N→∞

P
[ ⋃

M,M ′≥N

∥ΣM − ΣM ′∥ ≥ ε
]

≤ 4 lim
ε→0+

lim
N→∞

lim
N ′→∞

P[∥ΣN ′ − ΣN ∥ ≥ ε/2].
(65)

By the triangle inequality and a union bound,

P[∥ΣN ′ − ΣN ∥ ≥ ε/2] ≤ P[∥Σ∞ − ΣN ∥ ≥ ε/4] + P[∥ΣN ′ − Σ∞∥ ≥ ε/4]. (66)

It follows from the assumption that ΣN → Σ∞ in probability that

lim
N→∞

lim
N ′→∞

P[∥ΣN ′ − ΣN ∥ ≥ ε/2] = 0. (67)

Consequently, the right-hand side and thus left-hand side of eq. (65) are zero. The event on
the left-hand side of eq. (65) is the event that the sequence {ΣN }∞

N=0 fails to be Cauchy, so
the preceding argument shows that {ΣN (ω)}∞

N=0 is Cauchy for P-almost all ω ∈ Ω.
(2) By Proposition 3.3, Σ∞ and Σ∞ − 2ΣN are equidistributed, for each N ∈ N. For any ε > 0,

by the (automatic) tightness of Σ∞ there is a norm-compact subset K ⊆ X such that
P[Σ∞ /∈ K] < ε. Let L = (1/2)(K − K), which is also compact. Then, by a union bound,

P[ΣN /∈ L] ≤ P[Σ∞ /∈ K] + P[Σ∞ − 2ΣN /∈ K] = 2P[Σ∞ /∈ K] < 2ε. (68)

We conclude that {ΣN }∞
N=0 is uniformly tight.

Also, since Σ∞ is tight, the family X = {ΣN }∞
N=0 ∪{Σ∞} is uniformly tight, which implies

that the family {Σ∞ − ΣN }∞
N=0 ⊆ X − X is uniformly tight. Consequently, there exists for

each ε > 0 a norm-compact subset K0 = K0(ε) ⊆ X such that

P[(Σ∞ − ΣN ) /∈ K0(ε)] ≤ ε (69)

for all N ∈ N.
(3) Suppose that ΣN does not converge to Σ∞ in probability, so that there exist some ε, δ > 0

and some subsequence {ΣNk
}∞

k=0 ⊆ {ΣN }∞
N=0 such that

P[∥Σ∞ − ΣNk
∥ > ε] ≥ δ (70)

for all k ∈ N. Consider the set K0 = K0(δ/2) defined in eq. (69), so that P[(Σ∞ − ΣN ) /∈
K0] ≤ δ/2 for all N ∈ N. Then, combining this inequality with the inequality eq. (70),
P[(Σ∞ − ΣNk

) ∈ K0\εB] ≥ δ/2 for all k ∈ N. It follows that the quantity

P[(Σ∞ − ΣNk
) ∈ K0\εB i.o.] = P[∩K∈N ∪k≥K (Σ∞ − ΣNk

) ∈ K0\εB] (71)
= lim

K→∞
P[∪k≥K(Σ∞ − ΣNk

) ∈ K0\εB] (72)

(where “i.o.” means for infinitely many k) is bounded below by δ/2 and is in particular
positive. So, for ω in some set of positive probability, there exists an ω-dependent subsequence
{N ′

κ(ω)}∞
κ=0 = {Nkκ(ω)}∞

κ=0 such that Σ∞(ω) − ΣN ′
κ
(ω) ∈ K0\εB for all κ ∈ N.

Since K0 is a compact subset of a metric space, it is sequentially compact, so by passing
to a further subsequence we can assume without loss of generality that Σ∞(ω) − ΣN ′

κ
(ω)

converges strongly to some ω-dependent ∆(ω) ∈ X , for ω in some subset of positive
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probability. But, for such ω, ∥∆(ω)∥ ≥ ε necessarily, so ∆(ω) ̸= 0. Since τ is weaker than or
identical to the strong topology,

(Σ∞(ω) − ΣN ′
κ
(ω)) → ∆(ω) ̸= 0 (73)

in Xτ for such ω. Since τ is Hausdorff, ΣN (ω) does not τ -converge to Σ∞(ω) as N → ∞.
We conclude that (60) holds for P-almost all ω ∈ Ω under the hypotheses of the proposition. □

It is clear that which of the cases in Theorem 1.3 hold depends only on {xn}∞
n=0 and the laws of

the random variables γ0, γ1, γ2, · · · .

4. Proof of Orlicz–Pettis

Let X be a separable Banach space over K ∈ {R,C}, and let τ be an admissible topology on it.

Proposition 4.1. Suppose that ζ0, ζ1, ζ2, · · · : Ω → K are a collection of symmetric, independent
K-valued random variables such that, for some infinite T ⊆ N,

P[∃ε > 0 s.t. |ζn| > ε for infinitely many n ∈ T ] = 1. (74)

Suppose further that {Xn}∞
n=0 ∈ X N is some sequence satisfying

inf
n∈T

∥Xn∥ > 0. (75)

Then, for any T0 ⊆ N such that T0 ⊇ T , it is the case that, for P-almost all ω ∈ Ω, the sequence
{ΣN (ω)}∞

N=0 given by

ΣN (ω) =
N∑

n=0,n∈T0

ζn(ω)Xn (76)

fails to τ -converge as N → ∞. Therefore, the random formal series Σ : Ω → X N defined by
Σ(ω) =

∑∞
n=0 1n∈T0ζn(ω)Xn satisfies Σ(ω) ̸∈ PII for P-almost all ω ∈ Ω. ■

Proof. By Proposition 2.4 and the inclusion PII′ ⊃ PII (where PII′ is as in §2), it suffices to prove that
it is not the case that Σ(ω) =

∑∞
n=0 1n∈T0ζn(ω)Xn is P-almost surely S-weakly summable, where

S ⊆ X ∗
τ is a countable collection of norming functionals. Suppose, to the contrary, that Σ were

almost surely S-weakly summable. By the Itô–Nisio theorem, this would imply that {ΣN (ω)}∞
N=0

converges strongly for P-almost all ω ∈ Ω. But, the conjunction of eq. (74) and infn∈T ∥Xn∥ > 0
implies instead that {ΣN (ω)}∞

N=0 almost surely fails to converge strongly. □

Proposition 4.2. Let f : N → N. If it is the case that

τ − lim
N→∞

N∑
n=0

ϵf(n)(ω)xn (77)

exists for P-almost all ω ∈ Ω, then, for any subset T ⊆ N,

τ − lim
N→∞

N∑
n=0,f(n)∈T

ϵf(n)(ω)xn (78)

exists for P-almost all ω ∈ Ω. ■

Proof. Let

ϵ′
n =

{
ϵn (n /∈ T )
−ϵn (n ∈ T ).

(79)
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We can now consider the random formal series
∞∑

n=0
(ϵ′

f(n) − ϵf(n))xn =
∞∑

n=0
ϵ′
f(n)xn −

∞∑
n=0

ϵf(n)xn (80)

= 2
∞∑

n=0,f(n)∈T
ϵf(n)xn. (81)

The two random formal series on the right-hand side of eq. (80) are equidistributed, so, under the
hypothesis of the proposition, both are τ -summable for P-almost all ω ∈ Ω. Thus, the formal series
on the right-hand side of eq. (81) is P-almost surely τ -summable. □

We deduce Theorem 1.2 (and thus Theorem 1.1) as a corollary of the previous two propositions.
We prove the slightly strengthened claim that, for PHaar-almost all {ϵn}∞

n=0 ∈ {−1, +1}N, the formal
series in eq. (11) both fail to even be S-weakly summable. By Proposition 2.5, we just need to show
that it is not the case that, for PHaar-almost all {ϵn}∞

n=0 ∈ {−1, +1}N, the formal series
∞∑

n=0,f(n)∈T
ϵf(n)xn ∈ X N (82)

is S-weakly summable. Suppose, to the contrary, that it is S-weakly summable for PHaar-almost all
{ϵn}∞

n=0. Owing in part to the assumption that |f−1({n})| < ∞ for all n ∈ N (along with eq. (10)),
there exists a T0 ⊆ T such that

• f : f−1(T0) → N is monotone and
• infn∈T0∥

∑
n0∈f−1({n}) xn0∥ > 0.

By the previous proposition,
∑∞

n=0,f(n)∈T0
ϵf(n)xn ∈ X N is S-weakly summable P-almost surely.

Since f |f−1(T0) is monotone, we deduce that
∞∑

n=0,n∈T0

ϵn

[ ∑
n0∈f−1({n})

xn0

]
∈ X N (83)

is S-weakly summable P-almost surely. However, this contradicts Proposition 4.1.
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Appendix A. Admissible topologies

Let X denote a Banach space over K ∈ {R,C}, and let τ be an admissible topology on it.

Lemma A.1. The τ -weak topology, a.k.a. the σ(X , X ∗
τ )-topology, is admissible. ■

Proof.
(1) The τ -weak topology is an LCTVS-topology on X [Rud73, §3.10, §3.11] identical to or

weaker than the norm topology.
For each Λ ∈ X ∗

τ and closed interval I ⊆ [−∞, +∞], let CΛ,I denote the τ -weakly closed
subset (I) CΛ,I = Λ−1(I) if K = R or (II) CΛ,I = Λ−1({z ∈ C : ℜz ∈ I}) otherwise. By the
Hahn-Banach theorem, X ∗

τ is not empty — picking any Λ ∈ X ∗
τ ⊆ X ∗, there exists some

closed interval I such that CΛ,I ⊇ B, so we can form the intersection

B̃ =
⋂

Λ∈X ∗
τ ,I⊆[−∞,+∞]
CΛ,I⊇B

CΛ,I . (84)
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This is a τ -weakly closed set containing B. If x /∈ B, we can apply the Hahn-Banach
separation theorem [NB11, Thm. 7.8.6] to the sets {x} and B to get some Λ ∈ X ∗

τ such
that ℜΛx > 1 and ℜΛx0 < 1 for all x0 ∈ B. Then, since B is closed under multiplication by
−1, ℜΛx0 ∈ (−1, +1) for all x0 ∈ B, which means that CΛ,[−1,+1] appears on the right-hand
side of eq. (84).

Since x /∈ CΛ,[−1,+1], we get x /∈ B̃. We conclude that B̃ = B and, therefore, that the
latter is τ -weakly closed.

(2) If X is not separable, then τ is at least as strong as the weak topology. Since the weak
topology of the weak topology is just the weak topology [Rud73, §3.10, §3.11] – that is,
σ(X , X ∗

w ) = σ(X , X ∗), where Xw = σ(X , X ∗) – the τ -weak topology is at least as strong
as the weak topology.

Thus, the τ -weak topology is admissible. □

Lemma A.2. If X is separable, there exists a countable norming subset S ⊆ X ∗
τ . ■

Proof. Let {xn}∞
n=0 denote a dense subset of X \{0}. By [NB11, Thm. 7.8.6], there exists for each

n ∈ N and each R ∈ (0, ∥xn∥) an element Λn,R ∈ X ∗
τ such that ℜΛn,Rxn > 1 and ℜΛn,R < 1 on

the closed ball RB (which is τ -closed by admissibility). Since RB is closed under multiplication by
phases,

∥Λn,Rx∥ < 1 (85)
for all x ∈ RB. Thus, ∥Λn,R∥X ∗ ≤ 1/R. It follows that 1 < ℜΛn,Rxn < |Λn,Rxn| ≤ ∥xn∥/R, so
limR↑∥xn∥ |Λn,Rxn| = 1.

Now let S be the set of all functionals of the form RΛn,R for R of the form ∥xn∥ − 1/m for
m ∈ N+ sufficiently large such that 1/m < ∥xn∥. Then, it is straightforward to check that S is a
norming subset, and S is countable. □

Cf. [Car05, Lemma 6.7].

Lemma A.3. If X is separable and S ⊆ X ∗
τ is a norming subset, then the σ(X , S)-topology is

admissible. ■

Proof. We can assume without loss of generality that, if K = C, eiθΛ ∈ S whenever Λ ∈ S and
θ ∈ R. By [Rud73, Thm. 3.10], the σ(X , S)-topology is an LCTVS topology, and it is no stronger
than the norm topology. Consider

B̃ =
⋂

Λ∈S,I⊆[−∞,+∞]
CΛ,I⊇B

CΛ,I , (86)

which is a σ(X , S)-closed set containing B. If x /∈ B, then there exists some Λ ∈ S such that
|ℜΛx| ∈ (1, ∥xn∥]. Since S is norming, ∥Λ∥X ∗ ≤ 1, so CΛ,[−1,+1] appears on the right-hand side of
eq. (86). But,

x /∈ CΛ,[−1,+1], (87)
so x /∈ B̃.

We conclude that B̃ = B, so B is σ(X , S)-closed. □
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