A STRENGTHENED ORLICZ-PETTIS THEOREM VIA ITÔ-NISIO

ETHAN SUSSMAN

Abstract

In this note we deduce a strengthening of the Orlicz-Pettis theorem from the Itô-Nisio theorem. The argument shows that given any series in a Banach space which isn't summable (or more generally unconditionally summable), we can construct a (coarse-grained) subseries with the property that - under some appropriate notion of "almost all" - almost all further subseries thereof fail to be weakly summable. Moreover, a strengthening of the Itô-Nisio theorem by Hoffmann-Jørgensen allows us to replace 'weakly summable' with ' τ-weakly summable' for appropriate topologies τ weaker than the weak topology. A treatment of the Itô-Nisio theorem for admissible τ is given.

Contents

1. Introduction 1
2. Measurability 7
3. Proof of Itô-Nisio 10
4. Proof of Orlicz-Pettis 14
Acknowledgements 15
Appendix A. Admissible topologies 15
References 16

1. Introduction

Let \mathscr{X} denote a Banach space over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. Call a subset $\tau \subseteq 2^{\mathscr{X}}$ an admissible topology on \mathscr{X} if
(1) it is an LCTVS ${ }^{1}$-topology on \mathscr{X} identical to or weaker than the norm (a.k.a. strong) topology under which the norm-closed unit ball $\mathbb{B}=\{x \in \mathscr{X}:\|x\| \leq 1\}$ is τ-closed, and
(2) if \mathscr{X} is not separable, then τ is at least as strong as the weak topology.

Cf. [HJ74], from which the separable case of this definition arises. By the Hahn-Banach separation theorem, if τ is an admissible topology then the τ-weak topology (a.k.a. $\sigma\left(\mathscr{X}, \mathscr{X}_{\tau}^{*}\right)$-topology) is also admissible (see Lemma A.1).

Besides the norm topology itself, which is trivially admissible (and uninteresting below), the most familiar example of an admissible topology on \mathscr{X} is the weak topology. Many others arise in functional analysis. For example, given a compact Riemannian manifold M, for most function spaces \mathscr{F} it is the case that the $\sigma\left(\mathscr{F}, C^{\infty}(M)\right)$-topology (a.k.a. the topology of distributional convergence) is admissible. An even weaker typically admissible topology is that on \mathscr{F} generated by the functionals $\left\langle-, \varphi_{n}\right\rangle: \mathscr{D}^{\prime}(M) \rightarrow \mathbb{C}$ for $\varphi_{0}, \varphi_{1}, \varphi_{2}, \cdots$ the eigenfunctions of the Laplacian.

[^0]Denote by $\mathscr{X}^{\mathbb{N}}$ the vector space of all \mathscr{X}-valued sequences $\left\{x_{n}\right\}_{n=0}^{\infty} \subseteq \mathscr{X}$. In the usual way, we identify such sequences with \mathscr{X}-valued formal series (and denote accordingly). We say that a formal series $\sum_{n=0}^{\infty} x_{n} \in \mathscr{X}^{\mathbb{N}}$ is " τ-summable" if $\sum_{n=0}^{N} x_{n} \in \mathscr{X}$ converges as $N \rightarrow \infty$ in \mathscr{X}_{τ}.

Consider the following (slightly generalized) version of the Orlicz-Pettis theorem [Orl29]:
Theorem 1.1. Suppose that τ is an admissible topology on \mathscr{X}. If $\sum_{n=0}^{\infty} x_{n} \in \mathscr{X}^{\mathbb{N}}$ fails to be unconditionally summable in the norm topology, then

- there exist some $\epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \cdots \in\{-1,+1\}$ such that the sequence $\Sigma\left(\left\{\epsilon_{n}\right\}_{n=0}^{\infty}\right)=\left\{\Sigma_{N}\right\}_{N=0}^{\infty}$ defined by

$$
\begin{equation*}
\Sigma_{N}=\sum_{n=0}^{N} \epsilon_{n} x_{n} \tag{1}
\end{equation*}
$$

does not τ-converge as $N \rightarrow \infty$ to any element of \mathscr{X}, and

- there exist some $\chi_{0}, \chi_{1}, \chi_{2}, \cdots \in\{0,1\}$ such that the sequence $S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)=\left\{S_{N}\right\}_{N=0}^{\infty}$ defined by

$$
\begin{equation*}
S_{N}=\sum_{n=0}^{N} \chi_{n} x_{n}, \tag{2}
\end{equation*}
$$

does not τ-converge as $N \rightarrow \infty$ to any element of \mathscr{X}.
In particular, this applies if $\sum_{n=0}^{\infty} x_{n}$ is not summable in the norm topology.
Remark. From the formulas

$$
\begin{align*}
& \Sigma_{N}\left(\left\{\epsilon_{n}\right\}_{n=0}^{N}\right)=S_{N}\left(\left\{2^{-1}\left(1+\epsilon_{n}\right)\right\}_{n=0}^{N}\right)-S_{N}\left(\left\{2^{-1}\left(1-\epsilon_{n}\right)\right\}_{n=0}^{N}\right) \tag{3}\\
& S_{N}\left(\left\{\chi_{n}\right\}_{n=0}^{N}\right)=2^{-1} \Sigma_{N}\left(\{1\}_{n=0}^{N}\right)+2^{-1} \Sigma_{N}\left(\left\{2 \chi_{n}-1\right\}_{n=0}^{N}\right), \tag{4}
\end{align*}
$$

we deduce that $\Sigma\left(\left\{\epsilon_{n}\right\}_{n=0}^{\infty}\right)$ is τ-convergent for all $\left\{\epsilon_{n}\right\}_{n=0}^{\infty} \in\{-1,+1\}^{\mathbb{N}}$ if and only if $S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)$ is τ-convergent for all $\left\{\chi_{n}\right\}_{n=0}^{\infty} \in\{0,1\}^{\mathbb{N}}$. We will phrase the discussion below in terms of whichever of $\Sigma(-), S(-)$ is convenient, but this equivalence should be kept in mind.

See Proposition 2.5 for the probabilistic version of this remark.
Example. Let M be a compact Riemannian manifold and $\mathscr{F} \subseteq \mathscr{D}^{\prime}(M)$ be a function space on M. Let τ denote the topology generated by the functionals $\left\langle-, \varphi_{n}\right\rangle_{L^{2}(M)}$, where $\varphi_{0}, \varphi_{1}, \varphi_{2}, \cdots$ denote the eigenfunctions of the Laplace-Beltrami operator. Suppose that τ is admissible. This holds, for example, if \mathscr{F} is an L^{p}-based Sobolev space for $p \in[1, \infty)$.

Then, for any $\left\{x_{n}\right\}_{n=0}^{\infty} \subseteq \mathscr{F}$, the formal series $\sum_{n=0}^{\infty} x_{n}$ is unconditionally summable in \mathscr{F} (in norm) if and only if

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left|\left\langle x_{n}, \varphi_{m}\right\rangle\right|<\infty \tag{5}
\end{equation*}
$$

for all $m \in \mathbb{N}$ and, for all $\left\{\chi_{n}\right\}_{n=0}^{\infty} \subseteq\{0,1\}$, there exists an element $S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right) \in \mathscr{F}$ whose m th Fourier coefficient is given by

$$
\begin{equation*}
\left\langle S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right), \varphi_{m}\right\rangle=\sum_{n=0}^{\infty} \chi_{n}\left\langle x_{n}, \varphi_{m}\right\rangle . \tag{6}
\end{equation*}
$$

We focus on Banach spaces - as opposed to more general LCTVSs - for simplicity. Most of the considerations below apply equally well to Fréchet spaces. There is a long history of variants of the Orlicz-Pettis theorem for various sorts of TVSs [Die77]. A short proof of the Orlicz-Pettis theorem for Banach spaces can be found in [BP58], and a textbook presentation can be found in [Meg98]. The proof below has much in common with a probabilistic proof [Die84] based on the Bochner integral (due to Kwapień).

The proof below is nonconstructive, in the following sense: upon being given a formal series $\sum_{n=0}^{\infty} x_{n} \in \mathscr{X}^{\mathbb{N}}$ which fails to be unconditionally summable, we do not construct any particular sequence $\left\{\epsilon_{n}\right\}_{n=0}^{\infty} \subseteq\{-1,+1\}$ such that $\Sigma\left(\left\{\epsilon_{n}\right\}_{n=0}^{\infty}\right) \subseteq \mathscr{X}$ fails to converge in \mathscr{X}_{τ}, or any particular $\left\{\chi_{n}\right\}_{n=0}^{\infty} \subseteq\{0,1\}$ such that $S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right) \subseteq \mathscr{X}$ fails to converge in \mathscr{X}_{τ}. All proofs of the Orlicz-Pettis theorem seem to be nonconstructive in this regard. We do, however, construct a function

$$
\begin{equation*}
\mathcal{E}:\left\{\left\{x_{n}\right\}_{n=0}^{\infty} \in \mathscr{X}^{\mathbb{N}} \text { not unconditionally summable }\right\} \rightarrow 2^{\{-1,+1\}^{\mathbb{N}}} \tag{7}
\end{equation*}
$$

such that, when $\left\{x_{n}\right\}_{n=0}^{\infty}$ is not unconditionally summable, $\Sigma\left(\left\{\epsilon_{n}\right\}_{n=0}^{\infty}\right)$ and $S\left(\left\{2^{-1}\left(1-\epsilon_{n}\right)\right\}_{n=0}^{\infty}\right)$ both fail to be τ-summable for $\mathbb{P}_{\text {Coarse }}$-almost all sequences $\left\{\epsilon_{n}\right\}_{n=0}^{\infty} \in \mathcal{E}$, where

$$
\begin{equation*}
\mathbb{P}_{\text {Coarse }}:\left.\operatorname{Borel}\left(\{-1,+1\}^{\mathbb{N}}\right)\right|_{\mathcal{E}\left(\left\{x_{n}\right\}_{n=0}^{\infty}\right)} \rightarrow[0,1] \tag{8}
\end{equation*}
$$

is a probability measure on the subspace σ-algebra

$$
\begin{equation*}
\left.\operatorname{Borel}\left(\{-1,+1\}^{\mathbb{N}}\right)\right|_{\mathcal{E}\left(\left\{x_{n}\right\}_{n=0}^{\infty}\right)}=\left\{S \cap \mathcal{E}\left(\left\{x_{n}\right\}_{n=0}^{\infty}\right): S \in \operatorname{Borel}\left(\{-1,+1\}^{\mathbb{N}}\right)\right\} . \tag{9}
\end{equation*}
$$

So, while the proof is nonconstructive, it is only just. Put more colorfully, the proof follows the "hay in a haystack" philosophy familiar from applications of the probabilistic method to combinatorics [AS16]: using an appropriate sampling procedure, we choose a random subseries and show that with "high probability" (which in this case means probability one) - it has the desired property.

Precisely, letting $\mathbb{P}_{\text {Haar }}$ denote the Haar measure on the Cantor group $\{-1,+1\}^{\mathbb{N}} \cong \mathbb{Z}_{2}^{\mathbb{N}}$ [Die84] (which is a compact topological group under the product topology, by Tychonoff's theorem):

Theorem 1.2 (Probabilist's Orlicz-Pettis Theorem). Suppose that $f: \mathbb{N} \rightarrow \mathbb{N}$ is a function such that $\left|f^{-1}(\{n\})\right|<\infty$ for all $n \in \mathbb{N}$. If $\mathcal{T} \subseteq \mathbb{N}$ is infinite and satisfies

$$
\begin{equation*}
\limsup _{\substack{n \rightarrow \infty \\ n \in \mathcal{T}}}\left\|\sum_{n_{0} \in f^{-1}(\{n\})} x_{n_{0}}\right\|>0, \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0, f(n) \in \mathcal{T}}^{\infty} \epsilon_{f(n)} x_{n} \in \mathscr{X}^{\mathbb{N}}, \quad \sum_{n=0, f(n) \in \mathcal{T}}^{\infty} \frac{1}{2}\left(1-\epsilon_{f(n)}\right) x_{n} \in \mathscr{X}^{\mathbb{N}} \tag{11}
\end{equation*}
$$

both fail to be τ-summable.
The relation to Orlicz-Pettis is as follows. If $\sum_{n=0}^{\infty} x_{n} \in \mathscr{X}^{\mathbb{N}}$ is not unconditionally summable, then we can find some pairwise disjoint, finite subsets $\mathcal{N}_{0}, \mathcal{N}_{1}, \mathcal{N}_{2}, \cdots \subseteq \mathbb{N}$ such that

$$
\begin{equation*}
\inf _{N \in \mathbb{N}}\left\|\sum_{n \in \mathcal{N}_{N}} x_{n}\right\|>0 . \tag{12}
\end{equation*}
$$

We can then choose some $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(n)=f(m)$ if and only if either $n=m$ or $n, m \in \mathcal{N}_{N}$ for some $N \in \mathbb{N}$. Thus, if we set $\mathcal{T}=\mathbb{N}$, eq. (10) holds. Appealing to Theorem 1.2, we conclude that, for $\mathbb{P}_{\text {Haar-almost all }\left\{\epsilon_{n}\right\}_{n=0}^{\infty} \text {, the formal series }}$

$$
\begin{equation*}
\sum_{n=0}^{\infty} \epsilon_{f(n)} x_{n} \in \mathscr{X}^{\mathbb{N}}, \quad \sum_{n=0}^{\infty} \frac{1}{2}\left(1-\epsilon_{f(n)}\right) x_{n} \in \mathscr{X}^{\mathbb{N}} \tag{13}
\end{equation*}
$$

both fail to be τ-summable. Theorem 1.1, therefore, follows from Theorem 1.2. The connection with eq. (7), eq. (8) is that we can choose f such that \mathcal{E} is the set of $\left\{\epsilon_{n}\right\}_{n=0}^{\infty} \in\{-1,+1\}^{\mathbb{N}}$ such that $\epsilon_{n}=\epsilon_{m}$ whenever $f(n)=f(m)$, and $\mathbb{P}_{\text {Coarse }}$ is $\mathbb{P}_{\text {Haar }}$ conditioned on the event that $\left\{\epsilon_{n}\right\}_{n=0}^{\infty} \in \mathcal{E}$.
Remark. The Haar measure on the Cantor group is the unique measure on $\operatorname{Borel}\left(\{-1,+1\}^{\mathbb{N}}\right)=$ $\sigma\left(\left\{\epsilon_{n}\right\}_{n=0}^{\infty}\right)$ such that if we define $\epsilon_{n}:\{-1,+1\}^{\mathbb{N}} \rightarrow\{-1,+1\}$ by $\epsilon_{n}:\left\{\epsilon_{m}^{\prime}\right\}_{m=0}^{\infty} \mapsto \epsilon_{n}^{\prime}$, the random variables $\epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \cdots$ are i.i.d. Rademacher random variables.

Remark. It suffices to prove the theorems above when \mathscr{X} is separable. Indeed, if \mathscr{X} is not separable and \mathscr{Y} denotes the norm-closure of the span of $x_{0}, x_{1}, x_{2}, \cdots \in \mathscr{X}$, then, for any $\left\{\lambda_{n}\right\}_{n=0}^{\infty} \subseteq \mathbb{K}$,

$$
\begin{equation*}
\tau-\lim _{N \rightarrow \infty} \sum_{n=0}^{N} \lambda_{n} x_{n} \tag{14}
\end{equation*}
$$

exists in \mathscr{X} if and only if it exists in \mathscr{Y}. (This is a consequence of the requirement that τ be at least as strong as the weak topology, so the limit in eq. (14) is also a weak limit. Norm-closed convex subsets of \mathscr{X} are weakly closed by Hahn-Banach, so this implies that \mathscr{Y} is τ-closed.)

The subspace topology on $\mathscr{Y} \hookrightarrow \mathscr{X}_{\tau}$ is admissible, and \mathscr{Y} is separable, so we can deduce Theorem 1.1 and Theorem 1.2 for \mathscr{X} from the same theorems for \mathscr{Y}.
Remark. If \mathscr{X} is not separable and τ not at least as strong as the weak topology, then the conclusions of these theorems may fail to hold, even if the norm-closed balls in \mathscr{X} are τ-closed. As a simple counterexample, let $\mathscr{X}=L^{\infty}[0,1]$, and let τ be the $\sigma\left(L^{\infty}, L^{1}\right)$-topology. This being a weak-* topology, the norm-closed balls are τ-closed (and even τ-compact). Let

$$
\begin{equation*}
\Sigma_{N}(t)=t^{N} \tag{15}
\end{equation*}
$$

$x_{n}(t)=\Sigma_{n}(t)-\Sigma_{n-1}(t)$ for $n \geq 1, x_{0}(t)=\Sigma_{0}(t)=1$. It turns out that the series $\sum_{n=0}^{\infty} x_{n}$ is τ-subseries summable. Indeed, if $\left\{\chi_{n}\right\}_{n=0}^{\infty} \subseteq\{0,1\}$, then define

$$
\begin{equation*}
S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)(t)=\sum_{n=0}^{\infty} \chi_{n} x_{n}(t) \in \mathbb{R} \tag{16}
\end{equation*}
$$

for each $t \in[0,1]$. By the monotone convergence theorem, this converges pointwise (so the definition makes sense, and $S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)$ is a measurable function of t, and satisfies $S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)(t) \in[0,1]$, so $S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right) \in L^{\infty}[0,1]$. If $f \in L^{1}[0,1]$, then

$$
\begin{equation*}
\left|\int_{0}^{1} f(t) \sum_{n=N}^{\infty} \chi_{n} x_{n}(t) \mathrm{d} t\right| \leq\left|\int_{0}^{1-1 / \sqrt{N}} f(t) \sum_{n=N}^{\infty} \chi_{n} x_{n}(t) \mathrm{d} t\right|+\left|\int_{1-1 / \sqrt{N}}^{1} f(t) \sum_{n=N}^{\infty} \chi_{n} x_{n}(t) \mathrm{d} t\right| . \tag{17}
\end{equation*}
$$

For $N \geq 1$, the first term on the right-hand side is bounded above by

$$
\begin{equation*}
\|f\|_{L^{1}} \sup _{t \in[0,1-1 / \sqrt{N}]} \sum_{n=N}^{\infty}\left|x_{n}(t)\right|=\|f\|_{L^{1}} \sup _{t \in[0,1-1 / \sqrt{N}]} t^{N-1}=\|f\|_{L^{1}}\left(1-\frac{1}{\sqrt{N}}\right)^{N-1} \tag{18}
\end{equation*}
$$

which converges to 0 as $N \rightarrow \infty$. On the other hand, the second term on the right-hand side of eq. (17) is bounded above by

$$
\begin{equation*}
\left(\sup _{t \in[0,1]} \sum_{n=0}^{\infty}\left|x_{n}(t)\right|\right) \int_{1-1 / \sqrt{N}}^{1}|f(t)| \mathrm{d} t=2 \int_{1-1 / \sqrt{N}}^{1}|f(t)| \mathrm{d} t, \tag{19}
\end{equation*}
$$

which converges to 0 as $N \rightarrow \infty$ by the measurability of f. So, we can conclude that the convergence in eq. (16) is in τ.

But, Σ_{N} does not converge uniformly on $[0,1]$ as $N \rightarrow \infty$, so $\sum_{n=0}^{\infty} x_{n}$ is not strongly summable in $\mathscr{X}=L^{\infty}[0,1]$. Thus, the conclusion of Theorem 1.1 does not hold for this space \mathscr{X} and this topology τ.
Example. If $\mathscr{X}=C^{0}[0,1]$, the set of continuous functions $[0,1] \rightarrow \mathbb{C}$ with the topology of uniform convergence, and τ is the $\sigma\left(C^{0}, L^{1}\right)$-topology, then the hypotheses of the theorems regarding \mathscr{X}, τ are satisfied, since \mathscr{X} is separable and the norm-closed balls in \mathscr{X} are τ-closed. Letting $x_{n}(t)$ be as in the previous remark, the failure of $\sum_{n=0}^{\infty} x_{n}$ to be strongly summable implies (by Theorem 1.2) that
 the pointwise limit $S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)(t)$ as in eq. (16), and we saw convergence in the $\sigma\left(L^{\infty}, L^{1}\right)$-topology. Consequently, if there were to exist some

$$
\begin{equation*}
\tilde{S}\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)(t) \in C^{0}[0,1] \tag{20}
\end{equation*}
$$

Figure 1. A plot of $S_{N}(t)=1+\sum_{n=1}^{N} \chi_{n}\left(t^{n}-t^{n-1}\right)$ vs. t (horizontal axis) for large N and for $\left\{\chi_{n}\right\}_{n=0}^{\infty}$ sampled according to $\mathbb{P}_{\text {Coarse }}$. For large $N, S_{N}(t)$ oscillates rapidly as $t \rightarrow 1^{-}$, much like the topologist's sine curve, in accordance with the prediction that the full sum $S(t)=\lim _{N \rightarrow \infty} S_{N}(t)$ does not have a well-defined limit as $t \rightarrow 1^{-}$.
agreeing with $S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)(t)$ almost everywhere, then $\sum_{n=0}^{\infty} \chi_{n} x_{n}$ would have to converge to $\tilde{S}\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)$ in $\tau=\sigma\left(C^{0}, L^{1}\right)$, since this is just the subspace topology of $\sigma\left(L^{\infty}, L^{1}\right)$. So, it must be the case that, for $\mathbb{P}_{\text {Coarse }}$-almost all $\left\{\chi_{n}\right\}_{n=0}^{\infty}$,

$$
\begin{equation*}
\tilde{S}\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)(t) \notin C^{0}[0,1] \tag{21}
\end{equation*}
$$

if $\tilde{S}\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)$ agrees with $S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)$ almost everywhere in $[0,1]_{t}$. But, the series $\sum_{n=0}^{\infty} \chi_{n} x_{n}$ converges uniformly in $[0,1-\delta]$ for every $\delta \in(0,1)$, so $S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right) \in C^{0}[0,1)$. If $\lim _{t \rightarrow 1^{-}} S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)(t)$ were to exist, then we could define

$$
\tilde{S}\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)(t)= \begin{cases}S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)(t) & (t<1) \tag{22}\\ \lim _{s \rightarrow 1^{-}} S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)(s) & (t=1),\end{cases}
$$

and this would lie in $C^{0}[0,1]$ and agree with $S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)$ almost everywhere in $[0,1]_{t}$. So, it must be the case that $\lim _{t \rightarrow 1^{-}} S\left(\left\{\chi_{n}\right\}_{n=0}^{\infty}\right)(t)$ fails to exist for $\mathbb{P}_{\text {Coarse }}$-almost all $\left\{\chi_{n}\right\}_{n=0}^{\infty}$. See Figure 1 .

Remark. When \mathscr{X} is separable, it suffices to consider the case when τ is the topology generated by a countable norming set of functionals. Recall that a subset $\mathcal{S} \subseteq \mathscr{X}_{\tau}^{*}$ is called norming if

$$
\begin{equation*}
\|x\|=\sup _{\Lambda \in \mathcal{S}}|\Lambda x| \tag{23}
\end{equation*}
$$

for all $x \in \mathscr{X}$. We can scale the members of a norming subset to get another norming subset whose members Λ satisfy $\|\Lambda\|_{\mathscr{X}^{*}}=1$, and this generates the same topology. If τ is admissible, then (by the Hahn-Banach theorem and separability) there exists a countable norming subset $\mathcal{S} \subseteq \mathscr{X}_{\tau}^{*}$ (see Lemma A.2). Whenever $\mathcal{S} \subseteq \mathscr{X}_{\tau}^{*}$ is a countable norming subset, the $\sigma(\mathscr{X}, \mathcal{S})$-topology is admissible as well (see Lemma A.3), and identical with or weaker than τ.

It is not necessary to consider probability spaces other than

$$
\begin{equation*}
\left(\{-1,+1\}^{\mathbb{N}}, \operatorname{Borel}\left(\{-1,+1\}^{\mathbb{N}}\right), \mathbb{P}_{\text {Haar }}\right) \tag{24}
\end{equation*}
$$

but it will be convenient to have a bit more freedom. Let $(\Omega, \mathcal{F}, \mathbb{P})$ denote a probability space on which i.i.d. Bernoulli random variables

$$
\begin{equation*}
\chi_{0}, \chi_{1}, \chi_{2}, \cdots: \Omega \rightarrow\{0,1\} \tag{25}
\end{equation*}
$$

are defined. For example,

$$
\begin{equation*}
(\Omega, \mathcal{F}, \mathbb{P})=\left(\{-1,+1\}^{\mathbb{N}}, \operatorname{Borel}\left(\{-1,+1\}^{\mathbb{N}}\right), \mathbb{P}_{\text {Haar }}\right), \tag{26}
\end{equation*}
$$

in which case we set $\chi_{n}=(1 / 2)\left(1-\epsilon_{n}\right)$. Given this setup and given a formal series $\sum_{n=0}^{\infty} x_{n} \in \mathscr{X}^{\mathbb{N}}$, we can construct a random formal subseries $S: \Omega \rightarrow \mathscr{X}^{\mathbb{N}}$ by

$$
\begin{equation*}
S(\omega)=\sum_{n=0}^{\infty} \chi_{n}(\omega) x_{n} . \tag{27}
\end{equation*}
$$

This is a measurable function from Ω to $\mathscr{X}^{\mathbb{N}}$ when \mathscr{X} is separable (see Lemma 2.1)
Suppose that \mathscr{X} is separable. Given any Borel subset $\mathrm{P} \subseteq \mathscr{X}^{\mathbb{N}}$ the probability $\mathbb{P}\left(S^{-1}(\mathrm{P})\right) \in[0,1]$ of the "event" $S \in \mathrm{P}$ is well-defined. Given some "property" P - which we identify with a not-necessarily-Borel subset $\mathrm{P} \subseteq \mathscr{X}^{\mathbb{N}}$ - that a formal series may or may not possess, to say that almost all subseries of $\sum_{n=0}^{\infty} x_{n}$ have property P means that there exists some $F \in \mathcal{F}$ with

$$
\begin{equation*}
\mathbb{P}(F)=1 \tag{28}
\end{equation*}
$$

and $\omega \in F \Rightarrow S(\omega) \in \mathrm{P}$. In this case, we say that S has the property P for \mathbb{P}-almost all ω. (Note that we do not require $S^{-1}(\mathrm{P}) \in \mathcal{F}$, although this is automatic if P is Borel, and can be arranged by passing to the completion of \mathbb{P}.) Analogous locutions will be used for random formal series generally. If P is Borel then $S(\omega)$ will have the property P for \mathbb{P}-almost all $\omega \in \Omega$ if and only if $\mathbb{P}\left(S^{-1}(\mathrm{P})\right)=1$.

In order to prove the theorems above, we use the following variant of a theorem of Itô and Nisio [IN68] refined by Hoffmann-Jørgensen [HJ74]:

Theorem 1.3. Suppose that τ is an admissible topology on \mathscr{X}. Let

$$
\begin{equation*}
\gamma_{0}, \gamma_{1}, \gamma_{2}, \cdots: \Omega \rightarrow\{-1,+1\} \tag{29}
\end{equation*}
$$

be independent, symmetric random variables on $(\Omega, \mathcal{F}, \mathbb{P})$. If \mathscr{X} is a Banach space and $\left\{x_{n}\right\}_{n=0}^{\infty} \in$ $\mathscr{X}^{\mathbb{N}}$, the following are equivalent:
(I) for \mathbb{P}-almost all $\omega \in \Omega, \sum_{n=0}^{\infty} \gamma_{n}(\omega) x_{n}$ is summable in \mathscr{X},
(II) for \mathbb{P}-almost all $\omega \in \Omega, \sum_{n=0}^{\infty} \gamma_{n}(\omega) x_{n}$ is τ-summable, i.e. summable in \mathscr{X}_{τ}.

Moreover, whether or not the conditions above hold depends only on $\left\{x_{n}\right\}_{n=0}^{\infty}$ and the laws of each of $\gamma_{0}, \gamma_{1}, \gamma_{2}, \cdots$.

This result is essentially contained in [HJ74], but, since our formulation is slightly different, we present a proof in $\S 3$ below.

See [Hyt+16] for a modern account of the Itô-Nisio result in the case when τ is the weak topology. Our proof follows theirs.

A special case of this theorem was stated in [Sus22], and the proof was sketched. This paper fills in some details of that sketch. ${ }^{2}$

Remark. We will refer to Theorem 1.3 as "the Itô-Nisio theorem," with the following three caveats:

- Unlike in the usual Itô-Nisio theorem, we do not discuss convergence in probability.
- The result is often stated with general Bochner-measurable symmetric and independent random variables $x_{n}(\omega): \Omega \rightarrow \mathscr{X}^{\mathbb{N}}$ in place of $\gamma_{n}(\omega) x_{n}$. (A \mathscr{X}-valued random variable X will be called symmetric if X and $-X$ are equidistributed, i.e. have the same law. ${ }^{3}$) In fact, Theorem 1.3 implies the more general version via a rerandomization argument.
- Itô and Nisio only consider the case when τ is the weak topology, the generalization to admissible τ being the result of [HJ74].

[^1]Remark. A strengthening of the Itô-Nisio result in the case when \mathscr{X} does not admit an isometric embedding $c_{0} \hookrightarrow \mathscr{X}$ is essentially contained - and explicitly conjectured - in [HJ74]. The proof is due to Kwapień [Kwa74]. If (and only if) \mathscr{X} does not admit an isometric embedding $c_{0} \hookrightarrow \mathscr{X}$, then (I), (II) in Theorem 1.3 are equivalent to
(III) for almost all $\omega \in \Omega, \sup _{N \in \mathbb{N}}\left\|\sum_{n=0}^{N} \epsilon_{n}(\omega) x_{n}\right\|<\infty$.
(The event described above, that of "uniform boundedness," is also measurable. See Lemma 2.2.)
Recall that - by the uniform boundedness principle - the weak convergence of a sequence $\left\{X_{N}\right\}_{N=0}^{\infty} \subseteq \mathscr{X}$ implies that $\sup _{N}\left\|X_{N}\right\|<\infty$, so (II) implies (III) when τ is the weak topology. Condition (I) obviously implies (III), so by the Itô-Nisio theorem (once we've proven it), (II) implies (III) for any admissible τ. The converse obviously does not hold if \mathscr{X} admits an isometric embedding $c_{0} \hookrightarrow \mathscr{X}$.

Remark. By Lemma 2.2, the events described in (I), (III) above are measurable, and so, Theorem 1.3 is a statement about their probabilities. If \mathscr{X} is separable and τ is the topology generated by a countable norming collection of functionals, the event in (II) is measurable as well. It is a consequence of Theorem 1.3 that, if the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is complete, then (II) is measurable regardless.

An outline for the rest of this note is as follows:

- In $\S 2$, we fill in some measure-theoretic details related to the main line of argument.
- We prove the Itô-Nisio theorem in $\S 3$ using a version of the standard argument based on uniform tightness and Lévy's maximal inequality.
- Using Theorem 1.3, we prove the probabilist's Orlicz-Pettis theorem in $\S 4$

2. Measurability

Let \mathscr{X} be an arbitrary separable Banach space over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$, and let τ be an admissible topology on it. Below, $\epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \cdots$ will be as in Theorem 1.3, i.i.d. Rademacher random variables $\Omega \rightarrow\{-1,+1\}$. Similarly, $\chi_{0}, \chi_{1}, \chi_{2}, \cdots$ will be i.i.d. uniformly distributed $\Omega \rightarrow\{0,1\}$.
Lemma 2.1. The function $S: \Omega \rightarrow \mathscr{X}^{\mathbb{N}}$ defined by eq. (27) is measurable with respect to the Borel σ-algebra $\operatorname{Borel}\left(\mathscr{X}^{\mathbb{N}}\right)$, so it is a well-defined random formal \mathscr{X}-valued series.

Proof. The Borel σ-algebra of a countable product of separable metric spaces agrees with the product \mathcal{P} of the Borel σ-algebras of the individual factors $\left[K a 102\right.$, Lemma 1.2]. So, Borel $\left(\mathscr{X}^{\mathbb{N}}\right)=$ $\sigma\left(\operatorname{eval}_{n}: n \in \mathbb{N}\right)=\mathcal{P}$, where

$$
\begin{equation*}
\operatorname{eval}_{n}: \mathscr{X}^{\mathbb{N}} \rightarrow \mathscr{X} \tag{30}
\end{equation*}
$$

is shorthand for the map $\sum_{n=0}^{\infty} x_{n} \mapsto x_{n}$. To deduce that S is Borel measurable, we just observe that it is measurable with respect to the σ-algebra $\sigma\left(\right.$ eval $\left._{n}: n \in \mathbb{N}\right)$, since eval ${ }_{n} \circ S(\omega)=\chi_{n}(\omega) x_{n}$.

Let $\mathrm{P}_{\mathrm{I}}, \mathrm{P}_{\mathrm{II}}, \mathrm{P}_{\mathrm{III}} \subseteq \mathscr{X}^{\mathbb{N}}$ denote the sets of (I) strongly summable formal series, (II) τ-summable formal series, and (III) bounded formal series, respectively. In other words,

$$
\begin{gather*}
\mathrm{P}_{\mathrm{I}}=\left\{\left\{x_{n}\right\}_{n=0}^{\infty} \in \mathscr{X}^{\mathbb{N}}: \lim _{N \rightarrow \infty} \sum_{n=0}^{N} x_{n} \text { exists in } \mathscr{X}\right\}, \tag{31}\\
\mathrm{P}_{\mathrm{II}}=\left\{\left\{x_{n}\right\}_{n=0}^{\infty} \in \mathscr{X}^{\mathbb{N}}: \tau-\lim _{N \rightarrow \infty} \sum_{n=0}^{N} x_{n} \text { exists in } \mathscr{X}_{\tau}\right\}, \tag{32}\\
\mathrm{P}_{\mathrm{III}}=\left\{\left\{x_{n}\right\}_{n=0}^{\infty} \in \mathscr{X}^{\mathbb{N}}: \sup _{N \in \mathbb{N}}\left\|\sum_{n=0}^{N} x_{n}\right\|<\infty\right\} . \tag{33}
\end{gather*}
$$

Likewise, given a countable norming subset $\mathcal{S} \subseteq \mathscr{X}_{\tau}^{*}$, let

$$
\begin{equation*}
\mathrm{P}_{\mathrm{II}^{\prime}}=\mathrm{P}_{\mathrm{II}^{\prime}}(\mathcal{S})=\left\{\left\{x_{n}\right\}_{n=0}^{\infty} \in \mathscr{X}^{\mathbb{N}}: \mathcal{S}-\lim _{N \rightarrow \infty} \sum_{n=0}^{N} x_{n} \text { exists in } \mathscr{X}_{\sigma(\mathscr{X}, \mathcal{S})}\right\} \tag{34}
\end{equation*}
$$

denote the set of \mathcal{S}-weakly summable formal \mathscr{X}-valued series.
Lemma 2.2. $\mathrm{P}_{\mathrm{I}}, \mathrm{P}_{\mathrm{II}^{\prime}}, \mathrm{P}_{\mathrm{III}} \in \operatorname{Borel}\left(\mathscr{X}^{\mathbb{N}}\right)$. Consequently, given any random formal series $\Sigma: \Omega \rightarrow \mathscr{X}^{\mathbb{N}}$, $\Sigma^{-1}\left(\mathrm{P}_{i}\right) \in \mathcal{F}$ for each $i \in\left\{\mathrm{I}, \mathrm{II}^{\prime}, \mathrm{III}\right\}$.

Proof. For each $M, N \in \mathbb{N}$, the function $\mathfrak{N}_{N, M}: \mathscr{X}^{\mathbb{N}} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
\mathfrak{N}_{N, M}\left(\left\{x_{n}\right\}_{n=0}^{\infty}\right)=\left\|\sum_{n=M}^{N} x_{n}\right\| \tag{35}
\end{equation*}
$$

satisfies $\mathfrak{N}_{N, M}^{-1}(S) \in \mathcal{P}$ for all $S \in \operatorname{Borel}(\mathbb{R})$. Therefore, $\mathrm{P}_{\mathrm{III}}=\cup_{R \in \mathbb{N}} \cap_{N \in \mathbb{N}} \mathfrak{N}_{N, 0}^{-1}([0, R])$ is in \mathcal{P}, as is

$$
\begin{equation*}
\mathrm{P}_{\mathrm{I}}=\bigcap_{R \in \mathbb{N}^{+}} \bigcup_{M \in \mathbb{N}} \bigcap_{N \geq M} \mathfrak{N}_{N, M}^{-1}([0,1 / R]) \tag{36}
\end{equation*}
$$

Let $\mathscr{X}_{0} \subseteq \mathscr{X}$ denote a dense countable subset. Claim: a sequence $\left\{X_{N}\right\}_{N=0}^{\infty} \subseteq \mathscr{X}$ converges \mathcal{S}-weakly if and only if for each rational $\varepsilon>0$ there exists $X_{\approx}=X_{\approx}(\varepsilon) \in \mathscr{X}_{0}$ such that for each $\Lambda \in \mathcal{S}$ there exists a $N_{0}=N_{0}(\varepsilon, \Lambda) \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\Lambda\left(X_{N}-X_{\approx}\right)\right|<\varepsilon \tag{37}
\end{equation*}
$$

for all $N \geq N_{0}$.

- Proof of 'only if:' if $X_{N} \rightarrow X \mathcal{S}$-weakly, then, for each $\varepsilon>0$, choose $X_{\approx}=X_{\approx}(\varepsilon) \in \mathscr{X}_{0}$ such that $\left\|X-X_{\approx}\right\|<\varepsilon / 2$, and for each $\Lambda \in \mathcal{S}$ choose $N_{0}(\varepsilon, \Lambda)$ such that $\left|\Lambda\left(X_{N}-X\right)\right|<\varepsilon / 2$ for all $N \geq N_{0}$.

Since the elements of \mathcal{S} have operator norm at most one, $\left|\Lambda\left(X-X_{\approx}\right)\right|<\varepsilon / 2$.
Combining these two inequalities, eq. (37) holds for all $N \geq N_{0}$.

- Proof of 'if:' suppose we are given $X_{\approx}(\varepsilon)$ with the desired property. First, observe that $\left\{X_{\approx}(1 / N)\right\}_{N=1}^{\infty}$ is Cauchy. Indeed, it follows from the definition of the $X_{\approx}(\varepsilon)$ that $\mid \Lambda\left(X_{\approx}(\varepsilon)-\right.$ $\left.X_{\approx}\left(\varepsilon^{\prime}\right)\right) \mid<\varepsilon+\varepsilon^{\prime}$ for all $\Lambda \in \mathcal{S}$, which implies (since \mathcal{S} is norming) that $\left\|X_{\approx}(\varepsilon)-X_{\approx}\left(\varepsilon^{\prime}\right)\right\| \leq$ $\varepsilon+\varepsilon^{\prime}$. So, by the completeness of \mathscr{X}, there exists some $X \in \mathscr{X}$ such that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} X_{\approx}(1 / N)=X \tag{38}
\end{equation*}
$$

We now need to show that, as $N \rightarrow \infty, X_{N} \rightarrow X \mathcal{S}$-weakly. Indeed, given any $\Lambda \in \mathcal{S}$ and $M \in \mathbb{N}^{+}$,

$$
\begin{equation*}
\left|\Lambda\left(X_{N}-X\right)\right| \leq\left|\Lambda\left(X_{N}-X_{\approx}(1 / M)\right)\right|+\left|\Lambda\left(X-X_{\approx}(1 / M)\right)\right| \tag{39}
\end{equation*}
$$

Given any $\varepsilon>0$, pick M such that $1 / M<\varepsilon / 2$ and such that $\left\|X_{\approx}(1 / M)-X\right\|<\varepsilon / 2$. Since the elements of \mathcal{S} have operator norm at most one, $\left|\Lambda\left(X-X_{\approx}(1 / M)\right)\right|<\varepsilon / 2$. By the hypothesis of this direction, we can choose $N_{0}=N_{0}(\varepsilon, \Lambda)$ sufficiently large such that $\left|\Lambda\left(X_{N}-X_{\approx}(1 / M)\right)\right|<1 / M<\varepsilon / 2$ for all $N \geq N_{0}$. Therefore, $\left|\Lambda\left(X_{N}-X\right)\right|<\varepsilon$ for all $N \geq N_{0}$. It follows that $X_{N} \rightarrow X \mathcal{S}$-weakly.
We therefore conclude that

$$
\begin{equation*}
\mathrm{P}_{\mathrm{II}^{\prime}}=\bigcap_{\varepsilon>0, \varepsilon \in \mathbb{Q}} \bigcup_{X \approx \in \mathscr{X}_{0}} \bigcap_{\Lambda \in \mathcal{S}} \bigcup_{M \in \mathbb{N}} \bigcap_{N \geq M}\left\{\left\{x_{n}\right\}_{n=0}^{\infty}:\left|\Lambda\left(X_{N}-X_{\approx}\right)\right|<\varepsilon\right\} \tag{40}
\end{equation*}
$$

is in \mathcal{P} as well, where $X_{N}=x_{0}+\cdots+x_{N-1}$, which depends measurably on $\left\{x_{n}\right\}_{n=0}^{\infty}$.

Remark. We do not address the question of when P_{II} is Borel. Even when \mathscr{X}_{τ}^{*} is not second countable, it can be the case that $\mathrm{P}_{\mathrm{II}} \in \mathcal{P}$. For example, if $\mathscr{X}=\ell^{1}(\mathbb{N})$, then sequential weak convergence is equivalent to sequential strong convergence [Car05, Theorem 6.2], and hence $\mathrm{P}_{\mathrm{I}}=\mathrm{P}_{\mathrm{II}}$.

Let $\pi_{N}: \mathscr{X}^{\mathbb{N}} \rightarrow \mathscr{X}^{\mathbb{N}}$ denote the left-shift map $\sum_{n=0}^{\infty} x_{n} \mapsto \sum_{n=0}^{\infty} x_{n+N}$. Let $\pi_{N}^{*} \mathcal{P}=\left\{\pi_{N}^{-1}(S)\right.$: $S \in \mathcal{P}\}$.

Lemma 2.3. Let $\mathrm{P}_{\mathrm{I}}, \mathrm{P}_{\mathrm{II}^{\prime}}, \mathrm{P}_{\mathrm{III}}$ be as above. Then

$$
\begin{equation*}
\mathrm{P}_{\mathrm{I}}, \mathrm{P}_{\mathrm{II}^{\prime}}, \mathrm{P}_{\mathrm{III}} \in \mathcal{T} \tag{41}
\end{equation*}
$$

where $\mathcal{T} \subseteq \operatorname{Borel}\left(\mathscr{X}^{\mathbb{N}}\right)$ is the "tail σ-algebra" $\mathcal{T}=\cap_{N \in \mathbb{N}} \pi_{N}^{*} \mathcal{P}$. Consequently, given any \mathbb{K}-valued random variables $\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots: \Omega \rightarrow \mathbb{K}$, the random formal series $\Sigma: \Omega \rightarrow \mathscr{X}^{\mathbb{N}}$ given by $\Sigma(\omega)=$ $\sum_{n=0}^{\infty} \lambda_{n}(\omega) x_{n}$ is such that

$$
\begin{equation*}
\Sigma^{-1}\left(\mathrm{P}_{i}\right) \in \cap_{N \in \mathbb{N}} \sigma\left(\left\{\lambda_{n}\right\}_{n=N}^{\infty}\right) \tag{42}
\end{equation*}
$$

for each $i \in\left\{\mathrm{I}, \mathrm{II}^{\prime}, \mathrm{III}\right\}$.
Proof. Clearly, $\pi_{N}^{-1}\left(\mathrm{P}_{i}\right)=\mathrm{P}_{i}$ for each $i \in\{\mathrm{I}, \mathrm{II}, \mathrm{III}\}$. By Lemma 2.2, we can therefore conclude that $\mathrm{P}_{i} \in \mathcal{T}$. If Σ is as above, then $\Sigma^{*} \circ \pi_{N}^{*} \mathcal{P} \subseteq \sigma\left(\left\{\lambda_{n}\right\}_{n=N}^{\infty}\right)$. Since $\Sigma^{-1}\left(\mathrm{P}_{i}\right)$ is in the left-hand side for each $N \in \mathbb{N}$, eq. (42) follows.

Proposition 2.4. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfy $\left|f^{-1}(\{n\})\right|<\infty$ for all $n \in \mathbb{N}$. Suppose that $\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots$: $\Omega \rightarrow \mathbb{K}$ are independent random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and consider the random formal series $\Sigma: \Omega \rightarrow \mathscr{X}^{\mathbb{N}}$ given by

$$
\begin{equation*}
\Sigma(\omega)=\sum_{n=0}^{\infty} \lambda_{f(n)}(\omega) x_{n} . \tag{43}
\end{equation*}
$$

Then $\mathbb{P}\left(\Sigma^{-1}(\mathrm{P})\right)=\mathbb{P}[\Sigma \in \mathrm{P}] \in\{0,1\}$ for any element $\mathrm{P} \in \mathcal{T}$, and in particular for the sets P_{i} for each $i \in\left\{\mathrm{I}, \mathrm{II}^{\prime}, \mathrm{III}\right\}$.

Proof. Since $\lambda_{0}, \lambda_{1}, \lambda_{2}, \cdots$ are now assumed to be independent, that $\mathbb{P}[\Sigma \in P] \in\{0,1\}$ follows immediately from the Kolmogorov zero-one law [Dur19, Theorem 2.5.3]. By Lemma 2.3, this applies to $\mathrm{P}_{\mathrm{I}}, \mathrm{P}_{\mathrm{II}}, \mathrm{P}_{\mathrm{III}}$.
Proposition 2.5. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ satisfy $\left|f^{-1}(\{n\})\right|<\infty$ for all $n \in \mathbb{N}$. Suppose that $\mathrm{P} \subseteq \mathscr{X}^{\mathbb{N}}$ is $a \mathbb{K}$-subspace and that $\zeta_{0}, \zeta_{1}, \zeta_{2}, \cdots: \Omega \rightarrow \mathbb{K}$ are a collection of symmetric, independent \mathbb{K}-valued random variables.

Then, letting $\Sigma, S: \Omega \rightarrow \mathscr{X}^{\mathbb{N}}$ denote the random formal series

$$
\begin{equation*}
\Sigma(\omega)=\sum_{n=0}^{\infty} \zeta_{f(n)}(\omega) x_{n} \quad \text { and } \quad S(\omega)=\sum_{n=0}^{\infty} \chi_{f(n)}(\omega) x_{n}, \tag{44}
\end{equation*}
$$

where $\chi_{n}=2^{-1}\left(1-\zeta_{n}\right)$, the following are equivalent: $(*) \Sigma \in \mathrm{P}$ for \mathbb{P}-almost all $\omega \in \Omega$ and $\sum_{n=0}^{\infty} x_{n} \in \mathrm{P},(* *) S \in \mathrm{P}$ for \mathbb{P}-almost all $\omega \in \Omega$. Consequently, if $\mathrm{P} \in \mathcal{T}$, by Proposition 2.4 the following are equivalent: (*') $\Sigma \notin \mathrm{P}$ for \mathbb{P}-almost all $\omega \in \Omega$ or $\sum_{n=0}^{\infty} x_{n} \notin \mathrm{P}$ and ($* *^{\prime}$) $S \notin \mathrm{P}$ for \mathbb{P}-almost all $\omega \in \Omega$.

This is essentially an immediate consequence of eq. (3), eq. (4), mutatis mutandis.
Proof. First suppose that $(*)$ holds. In particular, $\sum_{n=0}^{\infty} x_{n} \in \mathrm{P}$. Then, since P is a subspace of $\mathscr{X}^{\mathbb{N}}$,

$$
\begin{equation*}
\sum_{n=0}^{\infty} \chi_{f(n)}(\omega) x_{n}=-\frac{1}{2} \sum_{n=0}^{\infty} \zeta_{f(n)}(\omega) x_{n}+\frac{1}{2} \sum_{n=0}^{\infty} x_{n} \tag{45}
\end{equation*}
$$

is in P if $\sum_{n=0}^{\infty} \zeta_{n}(\omega) x_{n}$ is. By assumption, this holds for \mathbb{P}-almost all $\omega \in \Omega$, and so we conclude that ($* *$) holds.

Conversely, suppose that $(* *)$ holds, so that $S(\omega) \in \mathrm{P}$ for all ω in some some subset $F \in \mathcal{F}$ with $\mathbb{P}(F)=1$. Clearly, the two formal series $S, S^{\prime}: \Omega \rightarrow \mathscr{X}^{\mathbb{N}}$,

$$
\begin{equation*}
S(\omega)=\sum_{n=0}^{\infty} \chi_{f(n)}(\omega) x_{n} \quad \text { and } \quad S^{\prime}(\omega)=\sum_{n=0}^{\infty}\left(1-\chi_{f(n)}(\omega)\right) x_{n} \tag{46}
\end{equation*}
$$

are equidistributed. We deduce that $S^{\prime}(\omega) \in \mathrm{P}$ for almost all $\omega \in \Omega$, i.e. that there exists some $F^{\prime} \in \mathcal{F}$ with $\mathbb{P}\left(F^{\prime}\right)=1$ such that $S^{\prime}(\omega) \in \mathrm{P}$ whenever $\omega \in F^{\prime}$. This implies, since P is a subspace of
$\mathscr{X}^{\mathbb{N}}$, that the random formal series

$$
\begin{align*}
& S(\omega)+S^{\prime}(\omega)=\sum_{n=0}^{\infty} x_{n} \tag{47}\\
& S(\omega)-S^{\prime}(\omega)=-\sum_{n=0}^{\infty} \zeta_{f(n)}(\omega) x_{n} \tag{48}
\end{align*}
$$

are both in P for all $\omega \in F \cap F^{\prime}$. Since $\mathbb{P}\left(F \cap F^{\prime}\right)=1$, it is the case that $F \cap F^{\prime} \neq \varnothing$, and so we conclude that $\sum_{n=0}^{\infty} x_{n} \in \mathrm{P}$. Likewise, $\sum_{n=0}^{\infty} \zeta_{f(n)}(\omega) x_{n} \in \mathrm{P}$ for almost all $\omega \in \Omega$.

Proposition 2.5 applies in particular to the sets $\mathrm{P}_{\mathrm{I}}, \mathrm{P}_{\mathrm{II}}, \mathrm{P}_{\mathrm{III}}$. We will not discuss $\mathrm{P}_{\mathrm{III}}$ further, but the preceding results are useful for the treatment of the Jørgensen-Kwapień and Bessaga-Pełczyński theorems along the lines of $\S 4$.

3. Proof of Itô-Nisio

Let \mathscr{X} be a separable Banach space over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$. We now give a treatment, via the method in $[\mathrm{Hyt}+16]$, of the particular variant of the Itô-Nisio theorem stated in Theorem 1.3.

The key result allowing the generalization from the weak topology to all admissible topologies is:
Proposition 3.1. If τ is an admissible topology on \mathscr{X}, then $\operatorname{Borel}(\mathscr{X})=\operatorname{Borel}\left(\mathscr{X}_{\tau}\right)$.
Proof. The inclusion $\operatorname{Borel}(\mathscr{X}) \supseteq \operatorname{Borel}\left(\mathscr{X}_{\tau}\right)$ is an immediate consequence of the assumption that τ is weaker than or identical to the norm topology, so it suffices to prove that $\operatorname{Borel}\left(\mathscr{X}_{\tau}\right)$ contains a collection of sets that generate $\operatorname{Borel}(\mathscr{X})$ as a σ-algebra. Consider the collection

$$
\begin{equation*}
\mathcal{B}=\left\{x+\lambda \mathbb{B}: x \in \mathscr{X}, \lambda \in \mathbb{R}^{\geq 0}\right\} \subseteq \operatorname{Borel}(\mathscr{X}) \tag{49}
\end{equation*}
$$

of all norm-closed balls in \mathscr{X}. Since \mathscr{X} is separable, the collection of all open balls generates $\operatorname{Borel}(\mathscr{X})$, and each open ball $x+\lambda \mathbb{B}^{\circ}, x \in \mathscr{X}, \lambda>0$, is a countable union

$$
\begin{equation*}
x+\lambda \mathbb{B}^{\circ}=\bigcup_{N \in \mathbb{N}, 1 / N<\lambda}(x+(\lambda-1 / N) \mathbb{B}) \tag{50}
\end{equation*}
$$

of closed balls, so the closed balls generate $\operatorname{Borel}(\mathscr{X})$. Since τ is an LCTVS topology, once we know that \mathbb{B} is τ-closed, the same holds for all other norm-closed balls. Because τ is admissible, the elements of \mathcal{B} are τ-closed, so $\mathcal{B} \subseteq \operatorname{Borel}\left(\mathscr{X}_{\tau}\right)$.

Suppose now that τ is admissible, and suppose that $(\Omega, \mathcal{F}, \mathbb{P})$ is a probability space on which symmetric, independent random variables $\gamma_{0}, \gamma_{1}, \gamma_{2}, \cdots: \Omega \rightarrow \mathbb{K}$ are defined.
Proposition 3.2. Suppose that $\sum_{n=0}^{\infty} \gamma_{n}(\omega) x_{n}$ converges in \mathscr{X}_{τ} for \mathbb{P}-almost all $\omega \in \Omega$, so that we may find some $F \in \mathcal{F}$ with $\mathbb{P}(F)=1$ such that

$$
\begin{equation*}
\Sigma_{\infty}(\omega)=\tau-\lim _{N \rightarrow \infty} \sum_{n=0}^{N} \gamma_{n}(\omega) x_{n} \tag{51}
\end{equation*}
$$

exists for all $\omega \in F$. Set $\Sigma_{\infty}(\omega)=0$ for all $\omega \in \Omega \backslash F$. Then, Σ_{∞} is a well-defined \mathscr{X}-valued random variable.

Proof. We want to prove that Σ_{∞} is measurable with respect to \mathcal{F} and $\operatorname{Borel}(\mathscr{X})$. By Proposition 3.1 and Lemma A.1, $\operatorname{Borel}(\mathscr{X})=\operatorname{Borel}\left(\mathscr{X}_{\tau}\right)=\operatorname{Borel}\left(\sigma\left(\mathscr{X}, \mathscr{X}_{\tau}^{*}\right)\right)=\sigma\left(\mathscr{X}_{\tau}^{*}\right)$, so it suffices to check that $\Lambda \circ \Sigma_{\infty}$ is a measurable \mathbb{K}-valued function for each $\Lambda \in \mathscr{X}_{\tau}^{*}$. Certainly,

$$
\Lambda \circ \tilde{\Sigma}_{N}(\omega)=1_{\omega \in F} \Lambda \circ \Sigma_{N}(\omega)= \begin{cases}\Sigma_{N}(\omega) & (\omega \in F) \tag{52}\\ 0 & (\omega \in \Omega \backslash F)\end{cases}
$$

is measurable. Consequently, $\Lambda \circ \Sigma_{\infty}=\lim _{N \rightarrow \infty} \Lambda \circ \tilde{\Sigma}_{N}$ is the limit of measurable \mathbb{K}-valued random variables and, therefore, measurable.

Proposition 3.3. Consider the setup of Proposition 3.2. For each $N \in \mathbb{N}$, the \mathscr{X}-valued random variables Σ_{∞} and $\Sigma_{\infty}-2 \Sigma_{N}$ are equidistributed.

Proof. Denote the laws $\Sigma_{\infty}, \Sigma_{\infty}-2 \Sigma_{N}$ by $\mu, \lambda_{N}: \operatorname{Borel}(\mathscr{X}) \rightarrow[0,1]$, respectively. The measures μ, λ_{N} are uniquely determined by their Fourier transforms $\mathcal{F} \mu, \mathcal{F} \lambda_{N}: \mathscr{X}_{\tau}^{*} \rightarrow \mathbb{C}$,

$$
\begin{equation*}
\mathcal{F} \mu(\Lambda)=\int_{\Omega} e^{-i \Lambda \Sigma_{\infty}(\omega)} \mathrm{d} \mathbb{P}(\omega)=\int_{\mathscr{X}} e^{-i \Lambda x} \mathrm{~d} \mu(x), \tag{53}
\end{equation*}
$$

where $\mathcal{F} \lambda_{N}$ is defined analogously. For each $\Lambda \in \mathscr{X}_{\tau}^{*}, \Lambda\left(\Sigma_{\infty}-\Sigma_{N}\right)$ and $\Lambda\left(\Sigma_{N}\right)$ are clearly independent, and $\Lambda\left(\Sigma_{N}\right)$ is equidistributed with $-\Lambda\left(\Sigma_{N}\right)$, so

$$
\begin{align*}
\mathcal{F} \mu(\Lambda)=\int_{\Omega} e^{-i \Lambda \Sigma_{\infty}(\omega)} \mathrm{d} \mathbb{P}(\omega) & =\int_{\Omega} e^{-i \Lambda\left(\Sigma_{\infty}(\omega)-\Sigma_{N}(\omega)\right)} e^{-i \Lambda \Sigma_{N}(\omega)} \mathrm{d} \mathbb{P}(\omega) \\
& =\left(\int_{\Omega} e^{-i \Lambda\left(\Sigma_{\infty}(\omega)-\Sigma_{N}(\omega)\right)} \mathrm{d} \mathbb{P}(\omega)\right)\left(\int_{\Omega} e^{-i \Lambda \Sigma_{N}(\omega)} \mathrm{d} \mathbb{P}(\omega)\right) \\
& =\left(\int_{\Omega} e^{-i \Lambda\left(\Sigma_{\infty}(\omega)-\Sigma_{N}(\omega)\right)} \mathrm{d} \mathbb{P}(\omega)\right)\left(\int_{\Omega} e^{+i \Lambda \Sigma_{N}(\omega)} \mathrm{d} \mathbb{P}(\omega)\right) \tag{54}\\
& =\int_{\Omega} e^{-i \Lambda\left(\Sigma_{\infty}(\omega)-\Sigma_{N}(\omega)\right)} e^{+i \Lambda \Sigma_{N}(\omega)} d \mathbb{P}(\omega) \\
& =\int_{\Omega} e^{-i \Lambda\left(\Sigma_{\infty}(\omega)-2 \Sigma_{N}(\omega)\right)} \mathrm{d} \mathbb{P}(\omega)=\mathcal{F} \lambda_{N}(\Lambda) .
\end{align*}
$$

Hence the Fourier transforms of μ, λ_{N} agree, and we conclude that Σ_{∞} and $\Sigma_{\infty}-2 \Sigma_{N}$ are equidistributed.

The proof is identical to the standard one, except we need to know that the law of an \mathscr{X} valued random variable is uniquely determined by the restriction of its Fourier transform (a.k.a. "characteristic functional") from \mathscr{X}^{*} to \mathscr{X}_{τ}^{*}, for any admissible τ. The proof of this fact for τ the strong or weak topologies, which is just the proof that a finite Borel measure on \mathscr{X} is uniquely determined by the Fourier transform of its law, is given in [Hyt+16, E.1.16, E.1.17]. The general statement follows from analogous reasoning: the finite-dimensional version (i.e. finite Borel measures on \mathbb{R}^{d} are identifiable with particular tempered distributions, and are, therefore, uniquely determined by their Fourier transforms), the Dynkin $\pi-\lambda$ theorem (which implies that a finite measure is uniquely determined by its restriction to any π-system which generates the σ-algebra on which the measure is defined [Dur19, Theorem A.1.5]), and Proposition 3.1.

Another way to prove the proposition is to show that Σ_{∞} agrees, almost everywhere, with the composition of the random formal series $\sum_{n=0}^{\infty} \gamma_{n}(-) x_{n}: \Omega \rightarrow \mathscr{X}^{\mathbb{N}}$ and $\Sigma_{\infty, \text { Uni }}: \mathscr{X}^{\mathbb{N}} \rightarrow \mathscr{X}$,

$$
\Sigma_{\infty, \mathrm{Uni}}\left(\sum_{n=0}^{\infty} x_{n}\right)= \begin{cases}\mathcal{S}-\lim _{N \rightarrow \infty} \sum_{n=0}^{N} x_{n} & \left(\sum_{n=0}^{\infty} x_{n} \in \mathrm{P}_{\mathrm{II}}\right) \tag{55}\\ 0 & \text { (otherwise) }\end{cases}
$$

where $\mathcal{S} \subseteq \mathscr{X}_{\tau}^{*}$ is a countable norming collection of functionals and P_{II}, is as in $\S 2$. By the results in $\S 2, \Sigma_{\infty, \text { Uni }}: \mathscr{X}^{\mathbb{N}} \rightarrow \mathscr{X}$ is Borel measurable. Thus, we can form the pushforward under it of the law of the formal series $\sum_{n=0}^{\infty} \gamma_{n}(-) x_{n}$. The initial claim, then, is that the law of Σ_{∞} is this pushforwards. Likewise, the pushforwards of the law of the random formal series

$$
\begin{equation*}
\omega \mapsto-\sum_{n=0}^{N} \gamma_{n}(\omega) x_{n}+\sum_{n=N+1}^{\infty} \gamma_{n}(\omega) x_{n} \in \mathscr{X}^{\mathbb{N}} \tag{56}
\end{equation*}
$$

is the law of $\Sigma_{\infty}-2 \Sigma_{N}$. Since the random formal series eq. (56) is equidistributed with the original, we deduce that Σ_{∞} and $\Sigma_{\infty}-2 \Sigma_{N}$ are equidistributed as well.

Recall that an \mathscr{X}-valued random variable $X: \Omega \rightarrow \mathscr{X}$ is called tight if for every $\varepsilon>0$ there exists a norm-compact set $K \subseteq \mathscr{X}$ such that $\mathbb{P}[X \notin K] \leq \varepsilon$. By an elementary argument, every
\mathscr{X}-valued random variable is tight [Hyt+16, Proposition 6.4.5]. A family \mathcal{X} of \mathscr{X}-valued random variables is called uniformly tight if we can choose the same $K=K(\varepsilon)$ for every $X \in \mathcal{X}$, i.e. if for each $\varepsilon>0$ there exists some norm-compact $K \subseteq \mathscr{X}$ such that $\mathbb{P}[X \notin K] \leq \varepsilon$ holds for all $X \in \mathcal{X}$. If \mathcal{X} is uniformly tight, then

$$
\begin{equation*}
\mathcal{X}-\mathcal{X}=\left\{X_{1}-X_{2}: X_{1}, X_{2} \in \mathcal{X}\right\} \tag{57}
\end{equation*}
$$

is uniformly tight as well, a fact which is used below. (The map $\Delta: \mathscr{X} \times \mathscr{X} \rightarrow \mathscr{X}$ given by $(x, y) \mapsto x-y$ is continuous. If $K \subseteq \mathscr{X}$ is compact, then $K \times K$ is a compact subset of $\mathscr{X} \times \mathscr{X}$. Its image $\Delta(K \times K)=K-K$ under Δ is, therefore, also compact. By a union bound,

$$
\begin{equation*}
\mathbb{P}\left[X_{1}-X_{2} \notin \Delta(K \times K)\right] \leq \mathbb{P}\left[X_{1} \notin K\right]+\mathbb{P}\left[X_{2} \notin K\right] . \tag{58}
\end{equation*}
$$

See [Hyt+16, Lemma 6.4.6].)
To complete the proof of the Itô-Nisio theorem, we use Lévy's maximal inequality [Hyt+16, Proposition 6.1.12] ${ }^{4}$:
Proposition 3.4 (Lévy's maximal inequality). Let \mathscr{X} be a separable Banach space over \mathbb{K}. Let $x_{0}, x_{1}, x_{2}, \cdots$ be independent symmetric \mathscr{X}-valued random variables. Then, setting $\Sigma_{N}=\sum_{n=0}^{N} x_{n}$,

$$
\begin{equation*}
\mathbb{P}\left[\left(\exists N_{0} \in\{0, \cdots, N\}\right)\left\|\Sigma_{N_{0}}\right\| \geq R\right] \leq 2 \mathbb{P}\left[\left\|\Sigma_{N}\right\| \geq R\right] \tag{59}
\end{equation*}
$$

for all $N \in \mathbb{N}$ and real $R>0$.
Proposition 3.5. Suppose that $\sum_{n=0}^{\infty} \gamma_{n}(\omega) x_{n}$ converges in \mathscr{X}_{τ} for \mathbb{P}-almost all $\omega \in \Omega$, and let Σ_{∞} denote the \mathscr{X}-valued random variable constructed in the statement of Proposition 3.2. Then

$$
\begin{equation*}
\Sigma_{\infty}(\omega)=\lim _{N \rightarrow \infty} \sum_{n=0}^{N} \gamma_{n}(\omega) x_{n} \tag{60}
\end{equation*}
$$

for \mathbb{P}-almost all $\omega \in \Omega$.
The limit here is taken in the strong topology.
Proof. The proof is split into three parts. We first show that it suffices to show that $\Sigma_{N} \rightarrow \Sigma_{\infty}$ in probability, where $\Sigma_{N}=\sum_{n=0}^{N} \gamma_{n}(\omega) x_{n}$, i.e. that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mathbb{P}\left[\left\|\Sigma_{\infty}-\Sigma_{N}\right\|>\varepsilon\right]=0 \tag{61}
\end{equation*}
$$

for all $\varepsilon>0$. This part of the argument uses Lévy's inequality. We then establish (via a standard trick) the uniform tightness of $\left\{\Sigma_{N}\right\}_{N=0}^{\infty}$. The third step involves showing that, if Σ_{N} fails to converge to Σ_{∞} in probability, then, with positive probability, Σ_{N} fails to converge to Σ_{∞} in \mathscr{X}_{τ}. Under our assumption to the contrary, we can then conclude that $\Sigma_{N} \rightarrow \Sigma_{\infty}$ in probability, which by the first part of the argument completes the proof of the proposition.
(1) Suppose that $\lim _{N \rightarrow \infty} \mathbb{P}\left[\left\|\Sigma_{\infty}-\Sigma_{N}\right\|>\varepsilon\right]=0$ for all $\varepsilon>0$. We want to prove that $\Sigma_{N} \rightarrow \Sigma_{\infty}$ \mathbb{P}-almost surely. It suffices to prove that $\left\{\Sigma_{N}\right\}_{N=0}^{\infty}$ is \mathbb{P}-almost surely Cauchy, since then by the completeness of \mathscr{X} it converges strongly \mathbb{P}-almost surely to some random limit $\Sigma_{\infty}^{\prime}: \Omega \rightarrow \mathscr{X}$. Since the τ topology is weaker than (or identical to) the strong topology and Hausdorff, $\Sigma_{\infty}^{\prime}=\Sigma_{\infty} \mathbb{P}$-almost surely.

By the triangle inequality, for any $M, M^{\prime}, N \in \mathbb{N},\left\|\Sigma_{M}-\Sigma_{M^{\prime}}\right\| \leq\left\|\Sigma_{M}-\Sigma_{N}\right\|+\left\|\Sigma_{M^{\prime}}-\Sigma_{N}\right\|$. Therefore, by a union bound,

$$
\begin{equation*}
\mathbb{P}\left[\bigcup_{M, M^{\prime} \geq N}\left\|\Sigma_{M}-\Sigma_{M^{\prime}}\right\| \geq \varepsilon\right] \leq 2 \mathbb{P}\left[\bigcup_{M \geq N}\left\|\Sigma_{M}-\Sigma_{N}\right\| \geq \varepsilon / 2\right] . \tag{62}
\end{equation*}
$$

[^2]By the countable additivity of \mathbb{P} and by Lévy's maximal inequality,

$$
\begin{align*}
2 \mathbb{P}\left[\bigcup_{M \geq N}\left\|\Sigma_{M}-\Sigma_{N}\right\| \geq \varepsilon / 2\right] & =\lim _{N^{\prime} \rightarrow \infty} 2 \mathbb{P}\left[\bigcup_{N^{\prime} \geq M \geq N}\left\|\Sigma_{M}-\Sigma_{N}\right\| \geq \varepsilon / 2\right] \tag{63}\\
& \leq \lim _{N^{\prime} \rightarrow \infty} 4 \mathbb{P}\left[\left\|\Sigma_{N^{\prime}}-\Sigma_{N}\right\| \geq \varepsilon / 2\right] . \tag{64}
\end{align*}
$$

Consequently,

$$
\begin{align*}
\mathbb{P}\left[\bigcup_{\varepsilon>0} \bigcap_{N=0}^{\infty} \bigcup_{M, M^{\prime} \geq N}\left\|\Sigma_{M}-\Sigma_{M^{\prime}}\right\| \geq \varepsilon\right] & =\lim _{\varepsilon \rightarrow 0^{+}} \lim _{N \rightarrow \infty} \mathbb{P}\left[\bigcup_{M, M^{\prime} \geq N}\left\|\Sigma_{M}-\Sigma_{M^{\prime}}\right\| \geq \varepsilon\right] \tag{65}\\
& \leq 4 \lim _{\varepsilon \rightarrow 0^{+}} \lim _{N \rightarrow \infty} \lim _{N^{\prime} \rightarrow \infty} \mathbb{P}\left[\left\|\Sigma_{N^{\prime}}-\Sigma_{N}\right\| \geq \varepsilon / 2\right]
\end{align*}
$$

By the triangle inequality and a union bound,

$$
\begin{equation*}
\mathbb{P}\left[\left\|\Sigma_{N^{\prime}}-\Sigma_{N}\right\| \geq \varepsilon / 2\right] \leq \mathbb{P}\left[\left\|\Sigma_{\infty}-\Sigma_{N}\right\| \geq \varepsilon / 4\right]+\mathbb{P}\left[\left\|\Sigma_{N^{\prime}}-\Sigma_{\infty}\right\| \geq \varepsilon / 4\right] \tag{66}
\end{equation*}
$$

It follows from the assumption that $\Sigma_{N} \rightarrow \Sigma_{\infty}$ in probability that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \lim _{N^{\prime} \rightarrow \infty} \mathbb{P}\left[\left\|\Sigma_{N^{\prime}}-\Sigma_{N}\right\| \geq \varepsilon / 2\right]=0 \tag{67}
\end{equation*}
$$

Consequently, the right-hand side and thus left-hand side of eq. (65) are zero. The event on the left-hand side of eq. (65) is the event that the sequence $\left\{\Sigma_{N}\right\}_{N=0}^{\infty}$ fails to be Cauchy, so the preceding argument shows that $\left\{\Sigma_{N}(\omega)\right\}_{N=0}^{\infty}$ is Cauchy for \mathbb{P}-almost all $\omega \in \Omega$.
(2) By Proposition 3.3, Σ_{∞} and $\Sigma_{\infty}-2 \Sigma_{N}$ are equidistributed, for each $N \in \mathbb{N}$. For any $\varepsilon>0$, by the (automatic) tightness of Σ_{∞} there is a norm-compact subset $K \subseteq \mathscr{X}$ such that $\mathbb{P}\left[\Sigma_{\infty} \notin K\right]<\varepsilon$. Let $L=(1 / 2)(K-K)$, which is also compact. Then, by a union bound,

$$
\begin{equation*}
\mathbb{P}\left[\Sigma_{N} \notin L\right] \leq \mathbb{P}\left[\Sigma_{\infty} \notin K\right]+\mathbb{P}\left[\Sigma_{\infty}-2 \Sigma_{N} \notin K\right]=2 \mathbb{P}\left[\Sigma_{\infty} \notin K\right]<2 \varepsilon . \tag{68}
\end{equation*}
$$

We conclude that $\left\{\Sigma_{N}\right\}_{N=0}^{\infty}$ is uniformly tight.
Also, since Σ_{∞} is tight, the family $\mathcal{X}=\left\{\Sigma_{N}\right\}_{N=0}^{\infty} \cup\left\{\Sigma_{\infty}\right\}$ is uniformly tight, which implies that the family $\left\{\Sigma_{\infty}-\Sigma_{N}\right\}_{N=0}^{\infty} \subseteq \mathcal{X}-\mathcal{X}$ is uniformly tight. Consequently, there exists for each $\varepsilon>0$ a norm-compact subset $K_{0}=K_{0}(\varepsilon) \subseteq \mathscr{X}$ such that

$$
\begin{equation*}
\mathbb{P}\left[\left(\Sigma_{\infty}-\Sigma_{N}\right) \notin K_{0}(\varepsilon)\right] \leq \varepsilon \tag{69}
\end{equation*}
$$

for all $N \in \mathbb{N}$.
(3) Suppose that Σ_{N} does not converge to Σ_{∞} in probability, so that there exist some $\varepsilon, \delta>0$ and some subsequence $\left\{\Sigma_{N_{k}}\right\}_{k=0}^{\infty} \subseteq\left\{\Sigma_{N}\right\}_{N=0}^{\infty}$ such that

$$
\begin{equation*}
\mathbb{P}\left[\left\|\Sigma_{\infty}-\Sigma_{N_{k}}\right\|>\varepsilon\right] \geq \delta \tag{70}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Consider the set $K_{0}=K_{0}(\delta / 2)$ defined in eq. (69), so that $\mathbb{P}\left[\left(\Sigma_{\infty}-\Sigma_{N}\right) \notin\right.$ $\left.K_{0}\right] \leq \delta / 2$ for all $N \in \mathbb{N}$. Then, combining this inequality with the inequality eq. (70), $\mathbb{P}\left[\left(\Sigma_{\infty}-\Sigma_{N_{k}}\right) \in K_{0} \backslash \varepsilon \mathbb{B}\right] \geq \delta / 2$ for all $k \in \mathbb{N}$. It follows that the quantity

$$
\begin{align*}
\mathbb{P}\left[\left(\Sigma_{\infty}-\Sigma_{N_{k}}\right) \in K_{0} \backslash \varepsilon \mathbb{B} \text { i.o. }\right] & =\mathbb{P}\left[\cap_{K \in \mathbb{N}} \cup_{k \geq K}\left(\Sigma_{\infty}-\Sigma_{N_{k}}\right) \in K_{0} \backslash \varepsilon \mathbb{B}\right] \tag{71}\\
& =\lim _{K \rightarrow \infty} \mathbb{P}\left[\cup_{k \geq K}\left(\Sigma_{\infty}-\Sigma_{N_{k}}\right) \in K_{0} \backslash \varepsilon \mathbb{B}\right] \tag{72}
\end{align*}
$$

(where "i.o." means for infinitely many k) is bounded below by $\delta / 2$ and is in particular positive. So, for ω in some set of positive probability, there exists an ω-dependent subsequence $\left\{N_{\kappa}^{\prime}(\omega)\right\}_{\kappa=0}^{\infty}=\left\{N_{k_{\kappa}}(\omega)\right\}_{\kappa=0}^{\infty}$ such that $\Sigma_{\infty}(\omega)-\Sigma_{N_{\kappa}^{\prime}}(\omega) \in K_{0} \backslash \varepsilon \mathbb{B}$ for all $\kappa \in \mathbb{N}$.

Since K_{0} is a compact subset of a metric space, it is sequentially compact, so by passing to a further subsequence we can assume without loss of generality that $\Sigma_{\infty}(\omega)-\Sigma_{N_{\kappa}^{\prime}}(\omega)$ converges strongly to some ω-dependent $\Delta(\omega) \in \mathscr{X}$, for ω in some subset of positive
probability. But, for such $\omega,\|\Delta(\omega)\| \geq \varepsilon$ necessarily, so $\Delta(\omega) \neq 0$. Since τ is weaker than or identical to the strong topology,

$$
\begin{equation*}
\left(\Sigma_{\infty}(\omega)-\Sigma_{N_{k}^{\prime}}(\omega)\right) \rightarrow \Delta(\omega) \neq 0 \tag{73}
\end{equation*}
$$

in \mathscr{X}_{τ} for such ω. Since τ is Hausdorff, $\Sigma_{N}(\omega)$ does not τ-converge to $\Sigma_{\infty}(\omega)$ as $N \rightarrow \infty$. We conclude that (60) holds for \mathbb{P}-almost all $\omega \in \Omega$ under the hypotheses of the proposition.

It is clear that which of the cases in Theorem 1.3 hold depends only on $\left\{x_{n}\right\}_{n=0}^{\infty}$ and the laws of the random variables $\gamma_{0}, \gamma_{1}, \gamma_{2}, \cdots$.

4. Proof of Orlicz-Pettis

Let \mathscr{X} be a separable Banach space over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$, and let τ be an admissible topology on it.
Proposition 4.1. Suppose that $\zeta_{0}, \zeta_{1}, \zeta_{2}, \cdots: \Omega \rightarrow \mathbb{K}$ are a collection of symmetric, independent \mathbb{K}-valued random variables such that, for some infinite $\mathcal{T} \subseteq \mathbb{N}$,

$$
\begin{equation*}
\mathbb{P}\left[\exists \varepsilon>0 \text { s.t. }\left|\zeta_{n}\right|>\varepsilon \text { for infinitely many } n \in \mathcal{T}\right]=1 \tag{74}
\end{equation*}
$$

Suppose further that $\left\{X_{n}\right\}_{n=0}^{\infty} \in \mathscr{X}^{\mathbb{N}}$ is some sequence satisfying

$$
\begin{equation*}
\inf _{n \in \mathcal{T}}\left\|X_{n}\right\|>0 . \tag{75}
\end{equation*}
$$

Then, for any $\mathcal{T}_{0} \subseteq \mathbb{N}$ such that $\mathcal{T}_{0} \supseteq \mathcal{T}$, it is the case that, for \mathbb{P}-almost all $\omega \in \Omega$, the sequence $\left\{\Sigma_{N}(\omega)\right\}_{N=0}^{\infty}$ given by

$$
\begin{equation*}
\Sigma_{N}(\omega)=\sum_{n=0, n \in \mathcal{T}_{0}}^{N} \zeta_{n}(\omega) X_{n} \tag{76}
\end{equation*}
$$

fails to τ-converge as $N \rightarrow \infty$. Therefore, the random formal series $\Sigma: \Omega \rightarrow \mathscr{X}^{\mathbb{N}}$ defined by $\Sigma(\omega)=\sum_{n=0}^{\infty} 1_{n \in \mathcal{T}_{0}} \zeta_{n}(\omega) X_{n}$ satisfies $\Sigma(\omega) \notin \mathrm{P}_{\text {II }}$ for \mathbb{P}-almost all $\omega \in \Omega$.

Proof. By Proposition 2.4 and the inclusion $\mathrm{P}_{\mathrm{II}^{\prime}} \supset \mathrm{P}_{\mathrm{II}}$ (where $\mathrm{P}_{\mathrm{II}^{\prime}}$ is as in $\S 2$), it suffices to prove that it is not the case that $\Sigma(\omega)=\sum_{n=0}^{\infty} 1_{n \in \mathcal{T}_{0}} \zeta_{n}(\omega) X_{n}$ is \mathbb{P}-almost surely \mathcal{S}-weakly summable, where $\mathcal{S} \subseteq \mathscr{X}_{\tau}^{*}$ is a countable collection of norming functionals. Suppose, to the contrary, that Σ were almost surely \mathcal{S}-weakly summable. By the Itô-Nisio theorem, this would imply that $\left\{\Sigma_{N}(\omega)\right\}_{N=0}^{\infty}$ converges strongly for \mathbb{P}-almost all $\omega \in \Omega$. But, the conjunction of eq. (74) and $\inf _{n \in \mathcal{T}}\left\|X_{n}\right\|>0$ implies instead that $\left\{\Sigma_{N}(\omega)\right\}_{N=0}^{\infty}$ almost surely fails to converge strongly.

Proposition 4.2. Let $f: \mathbb{N} \rightarrow \mathbb{N}$. If it is the case that

$$
\begin{equation*}
\tau-\lim _{N \rightarrow \infty} \sum_{n=0}^{N} \epsilon_{f(n)}(\omega) x_{n} \tag{77}
\end{equation*}
$$

exists for \mathbb{P}-almost all $\omega \in \Omega$, then, for any subset $\mathcal{T} \subseteq \mathbb{N}$,

$$
\begin{equation*}
\tau-\lim _{N \rightarrow \infty} \sum_{n=0, f(n) \in \mathcal{T}}^{N} \epsilon_{f(n)}(\omega) x_{n} \tag{78}
\end{equation*}
$$

exists for \mathbb{P}-almost all $\omega \in \Omega$.
Proof. Let

$$
\epsilon_{n}^{\prime}= \begin{cases}\epsilon_{n} & (n \notin \mathcal{T}) \tag{79}\\ -\epsilon_{n} & (n \in \mathcal{T}) .\end{cases}
$$

We can now consider the random formal series

$$
\begin{align*}
\sum_{n=0}^{\infty}\left(\epsilon_{f(n)}^{\prime}-\epsilon_{f(n)}\right) x_{n} & =\sum_{n=0}^{\infty} \epsilon_{f(n)}^{\prime} x_{n}-\sum_{n=0}^{\infty} \epsilon_{f(n)} x_{n} \tag{80}\\
& =2 \sum_{n=0, f(n) \in \mathcal{T}} \epsilon_{f(n)} x_{n} . \tag{81}
\end{align*}
$$

The two random formal series on the right-hand side of eq. (80) are equidistributed, so, under the hypothesis of the proposition, both are τ-summable for \mathbb{P}-almost all $\omega \in \Omega$. Thus, the formal series on the right-hand side of eq. (81) is \mathbb{P}-almost surely τ-summable.

We deduce Theorem 1.2 (and thus Theorem 1.1) as a corollary of the previous two propositions. We prove the slightly strengthened claim that, for $\mathbb{P}_{\text {Haar }}$-almost all $\left\{\epsilon_{n}\right\}_{n=0}^{\infty} \in\{-1,+1\}^{\mathbb{N}}$, the formal series in eq. (11) both fail to even be \mathcal{S}-weakly summable. By Proposition 2.5, we just need to show that it is not the case that, for $\mathbb{P}_{\text {Haar }}$-almost all $\left\{\epsilon_{n}\right\}_{n=0}^{\infty} \in\{-1,+1\}^{\mathbb{N}}$, the formal series

$$
\begin{equation*}
\sum_{n=0, f(n) \in \mathcal{T}}^{\infty} \epsilon_{f(n)} x_{n} \in \mathscr{X}^{\mathbb{N}} \tag{82}
\end{equation*}
$$

is \mathcal{S}-weakly summable. Suppose, to the contrary, that it is \mathcal{S}-weakly summable for $\mathbb{P}_{\text {Haar }}$-almost all $\left\{\epsilon_{n}\right\}_{n=0}^{\infty}$. Owing in part to the assumption that $\left|f^{-1}(\{n\})\right|<\infty$ for all $n \in \mathbb{N}$ (along with eq. (10)), there exists a $\mathcal{T}_{0} \subseteq \mathcal{T}$ such that

- $f: f^{-1}\left(\mathcal{T}_{0}\right) \rightarrow \mathbb{N}$ is monotone and
- $\inf _{n \in \mathcal{T}_{0}}\left\|\sum_{n_{0} \in f^{-1}(\{n\})} x_{n_{0}}\right\|>0$.

By the previous proposition, $\sum_{n=0, f(n) \in \mathcal{T}_{0}}^{\infty} \epsilon_{f(n)} x_{n} \in \mathscr{X}^{\mathbb{N}}$ is \mathcal{S}-weakly summable \mathbb{P}-almost surely. Since $\left.f\right|_{f^{-1}\left(\mathcal{T}_{0}\right)}$ is monotone, we deduce that

$$
\begin{equation*}
\sum_{n=0, n \in \mathcal{T}_{0}}^{\infty} \epsilon_{n}\left[\sum_{n_{0} \in f^{-1}(\{n\})} x_{n_{0}}\right] \in \mathscr{X}^{\mathbb{N}} \tag{83}
\end{equation*}
$$

is \mathcal{S}-weakly summable \mathbb{P}-almost surely. However, this contradicts Proposition 4.1.

Acknowledgements

This work was partially supported by a Hertz fellowship. The author would like to thank the reviewer for their comments.

Appendix A. Admissible topologies

Let \mathscr{X} denote a Banach space over $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$, and let τ be an admissible topology on it.
Lemma A.1. The τ-weak topology, a.k.a. the $\sigma\left(\mathscr{X}, \mathscr{X}_{\tau}^{*}\right)$-topology, is admissible.
Proof.
(1) The τ-weak topology is an LCTVS-topology on \mathscr{X} [Rud73, $\S 3.10, \S 3.11]$ identical to or weaker than the norm topology.

For each $\Lambda \in \mathscr{X}_{\tau}^{*}$ and closed interval $I \subseteq[-\infty,+\infty]$, let $C_{\Lambda, I}$ denote the τ-weakly closed subset (I) $C_{\Lambda, I}=\Lambda^{-1}(I)$ if $\mathbb{K}=\mathbb{R}$ or (II) $C_{\Lambda, I}=\Lambda^{-1}(\{z \in \mathbb{C}: \Re z \in I\})$ otherwise. By the Hahn-Banach theorem, \mathscr{X}_{τ}^{*} is not empty - picking any $\Lambda \in \mathscr{X}_{\tau}^{*} \subseteq \mathscr{X}^{*}$, there exists some closed interval I such that $C_{\Lambda, I} \supseteq \mathbb{B}$, so we can form the intersection

$$
\begin{equation*}
\tilde{\mathbb{B}}=\bigcap_{\substack{\Lambda \in \mathscr{X}_{T}^{*}, I \subseteq[-\infty,+\infty] \\ C_{\Lambda, I} \supseteq \mathbb{B}}} C_{\Lambda, I} . \tag{84}
\end{equation*}
$$

This is a τ-weakly closed set containing \mathbb{B}. If $x \notin \mathbb{B}$, we can apply the Hahn-Banach separation theorem [NB11, Thm. 7.8.6] to the sets $\{x\}$ and \mathbb{B} to get some $\Lambda \in \mathscr{X}_{\tau}^{*}$ such that $\Re \Lambda x>1$ and $\Re \Lambda x_{0}<1$ for all $x_{0} \in \mathbb{B}$. Then, since \mathbb{B} is closed under multiplication by $-1, \Re \Lambda x_{0} \in(-1,+1)$ for all $x_{0} \in \mathbb{B}$, which means that $C_{\Lambda,[-1,+1]}$ appears on the right-hand side of eq. (84).

Since $x \notin C_{\Lambda,[-1,+1]}$, we get $x \notin \tilde{\mathbb{B}}$. We conclude that $\tilde{\mathbb{B}}=\mathbb{B}$ and, therefore, that the latter is τ-weakly closed.
(2) If \mathscr{X} is not separable, then τ is at least as strong as the weak topology. Since the weak topology of the weak topology is just the weak topology [Rud73, §3.10, §3.11] - that is, $\sigma\left(\mathscr{X}, \mathscr{X}_{\mathrm{w}}^{*}\right)=\sigma\left(\mathscr{X}, \mathscr{X}^{*}\right)$, where $\mathscr{X}_{\mathrm{w}}=\sigma\left(\mathscr{X}, \mathscr{X}^{*}\right)-$ the τ-weak topology is at least as strong as the weak topology.
Thus, the τ-weak topology is admissible.
Lemma A.2. If \mathscr{X} is separable, there exists a countable norming subset $\mathcal{S} \subseteq \mathscr{X}_{\tau}^{*}$.
Proof. Let $\left\{x_{n}\right\}_{n=0}^{\infty}$ denote a dense subset of $\mathscr{X} \backslash\{0\}$. By [NB11, Thm. 7.8.6], there exists for each $n \in \mathbb{N}$ and each $R \in\left(0,\left\|x_{n}\right\|\right)$ an element $\Lambda_{n, R} \in \mathscr{X}_{\tau}^{*}$ such that $\Re \Lambda_{n, R} x_{n}>1$ and $\Re \Lambda_{n, R}<1$ on the closed ball $R \mathbb{B}$ (which is τ-closed by admissibility). Since $R \mathbb{B}$ is closed under multiplication by phases,

$$
\begin{equation*}
\left\|\Lambda_{n, R} x\right\|<1 \tag{85}
\end{equation*}
$$

for all $x \in R \mathbb{B}$. Thus, $\left\|\Lambda_{n, R}\right\|_{\mathscr{P}^{*}} \leq 1 / R$. It follows that $1<\Re \Lambda_{n, R} x_{n}<\left|\Lambda_{n, R} x_{n}\right| \leq\left\|x_{n}\right\| / R$, so $\lim _{R \uparrow\left\|x_{n}\right\|}\left|\Lambda_{n, R} x_{n}\right|=1$.

Now let \mathcal{S} be the set of all functionals of the form $R \Lambda_{n, R}$ for R of the form $\left\|x_{n}\right\|-1 / m$ for $m \in \mathbb{N}^{+}$sufficiently large such that $1 / m<\left\|x_{n}\right\|$. Then, it is straightforward to check that \mathcal{S} is a norming subset, and \mathcal{S} is countable.

Cf. [Car05, Lemma 6.7].
Lemma A.3. If \mathscr{X} is separable and $\mathcal{S} \subseteq \mathscr{X}_{\tau}^{*}$ is a norming subset, then the $\sigma(\mathscr{X}, \mathcal{S})$-topology is admissible.
Proof. We can assume without loss of generality that, if $\mathbb{K}=\mathbb{C}, e^{i \theta} \Lambda \in \mathcal{S}$ whenever $\Lambda \in \mathcal{S}$ and $\theta \in \mathbb{R}$. By [Rud73, Thm. 3.10], the $\sigma(\mathscr{X}, \mathcal{S})$-topology is an LCTVS topology, and it is no stronger than the norm topology. Consider

$$
\begin{equation*}
\tilde{\mathbb{B}}=\bigcap_{\substack{\Lambda \in \mathcal{S}, I \subseteq[-\infty,+\infty] \\ C_{\Lambda, I} \supseteq \mathbb{B}}} C_{\Lambda, I}, \tag{86}
\end{equation*}
$$

which is a $\sigma(\mathscr{X}, \mathcal{S})$-closed set containing \mathbb{B}. If $x \notin \mathbb{B}$, then there exists some $\Lambda \in \mathcal{S}$ such that $|\Re \Lambda x| \in\left(1,\left\|x_{n}\right\|\right]$. Since \mathcal{S} is norming, $\|\Lambda\|_{\mathscr{X}}{ }^{*} \leq 1$, so $C_{\Lambda,[-1,+1]}$ appears on the right-hand side of eq. (86). But,

$$
\begin{equation*}
x \notin C_{\Lambda,[-1,+1]}, \tag{87}
\end{equation*}
$$

so $x \notin \tilde{\mathbb{B}}$.
We conclude that $\tilde{\mathbb{B}}=\mathbb{B}$, so \mathbb{B} is $\sigma(\mathscr{X}, \mathcal{S})$-closed.

References

[AS16] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley Series in Discrete Mathematics and Optimization. Fourth ed. John Wiley \& Sons, Inc., 2016 (cit. on p. 3).
[BP58] C. Bessaga and A. Pełczyński. "On bases and unconditional convergence of series in Banach spaces". Studia Math. 17 (1958), 151-164. DOI: 10.4064/sm-17-2-151-164 (cit. on p. 2).
[Car05] N. Carothers. A Short Course on Banach Space Theory. London Mathematical Society Student Texts 64. Cambridge University Press, 2005 (cit. on pp. 8, 16).
[Die77] P. Dierolf. "Theorems of the Orlicz-Pettis-type for locally convex spaces". Manuscripta Math. 20.1 (1977), 73-94. DOI: 10.1007/BF01181241 (cit. on p. 2).
[Die84] J. Diestel. "The Orlicz-Pettis Theorem". Sequences and series in Banach spaces. Graduate Texts in Mathematics 92. Springer-Verlag, 1984, 24-31. Doi: 10.1007/978-1-4612-5200-9 (cit. on pp. 2, 3).
[Dur19] R. Durrett. Probability - Theory and Examples. Cambridge Series in Statistical and Probabilistic Mathematics 49. Fifth ed. Cambridge University Press, 2019. Doi: 10.1017/9781108591034 (cit. on pp. 9, 11).
[HJ74] J. Hoffmann-Jørgensen. "Sums of independent Banach space valued random variables". Studia Math. 52 (1974), 159-186. DOI: $10.4064 / \mathrm{sm}-52-2-159-186$ (cit. on pp. 1, 6, 7).
[Hyt+16] T. Hytönen, J. Van Neerven, M. Veraar, and L. Weis. Analysis in Banach Spaces. Volume II: Probabilistic Methods and Operator Theory. A Series of Modern Surveys in Mathematics 67. Springer, 2016. Doi: 10.1007/978-3-319-69808-3 (cit. on pp. 6, 10-12).
[IN68] K. Itô and M. Nisio. "On the convergence of sums of independent Banach space valued random variables". Osaka Math. J. 5 (1968), 35-48. URL: http://projecteuclid.org/euclid.ojm/1200692040 (cit. on p. 6).
[Kal02] O. Kallenberg. Foundations of Modern Probability. Probability and its Applications. Second ed. SpringerVerlag, 2002. DOI: 10.1007/978-1-4757-4015-8 (cit. on p. 7).
[Kwa74] S. Kwapien. "On Banach spaces containing $c_{0} "$. Studia Math. 52 (1974), 187-188 (cit. on p. 7).
[Meg98] R. Megginson. An Introduction to Banach Space Theory. Graduate Texts in Mathematics 183. Springer Science \& Business Media, 1998. DoI: 10.1007/978-1-4612-0603-3 (cit. on p. 2).
[NB11] L. Narici and E. Beckenstein. Topological Vector Spaces. Pure and Applied Mathematics 296. Second ed. CRC Press, 2011 (cit. on p. 16).
[Orl29] W. Orlicz. "Beiträge zur theorie der orthogonalentwicklungen II". Studia Math. 1 (1929), 241-255. URL: http://eudml.org/doc/216979 (cit. on p. 2).
[Rud73] W. Rudin. Functional Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., 1973 (cit. on pp. 1, 15, 16).
[Sus22] E. Sussman. "The microlocal irregularity of Gaussian noise". Studia Math. 266 (2022), 1-54. arXiv: 2012.07084 [math.SP] (cit. on p. 6).

Email address: ethanws@mit.edu
Department of Mathematics, Massachusetts Institute of Technology, Massachusetts 02139-4307, USA

[^0]: Date: June 22nd, 2024 (Last update; expanded remark and added example). January 3rd, 2023 (Published version). July 1st, 2021 (Preprint).

 2020 Mathematics Subject Classification. 46B09, 60B05.
 Key words and phrases. Itô-Nisio, Orlicz-Pettis, Gaussian noise.
 ${ }^{1}$ By 'LCTVS' we mean a Hausdorff locally convex topological vector space, so we follow the conventions in [Rud73].

[^1]: ${ }^{2}$ See [Sus22, Thm. 3.11]. The statement there involves convergence in probability, but the proof in $\S 3$ below applies.
 ${ }^{3}$ Note that, if $\mathbb{K}=\mathbb{C}$, this convention differs from some in the literature, in particular [Hyt+16, Definition 6.1.4]. (We use 'symmetric' when they would use 'real-symmetric.')

[^2]: ${ }^{4}$ The statement there uses strict inequalities for the events, but the version for nonstrict inequalities follows by the countable additivity of \mathbb{P}.

