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Abstract. For a full rank lattice Λ ⊂ Rd and A ∈ Rd, consider Nd,0;Λ,A(Σ) = #([Λ + A]∩ΣBd) =
#{k ∈ Λ : |k + A| ≤ Σ}. Consider the iterated integrals

Nd,k+1;Λ,A(Σ) =
∫ Σ

0
Nd,k;Λ,A(σ) dσ,

for k ∈ N. After an elementary derivation via the Poisson summation formula of the sharp large-Σ
asymptotics of N3,k;Λ,A(Σ) for k ≥ 2 (these having an O(Σ) error term), we discuss how they are
encoded in the structure of the Fourier transform FN3;Λ,A(τ). The analysis is related to Hörmander’s
analysis of spectral Riesz means, as the iterated integrals above are weighted spectral Riesz means
for the simplest magnetic Schrödinger operator on the flat 3-torus. That the N3,k;Λ,A(Σ) obey
an asymptotic expansion to O(Σ2) is a special case of a general result holding for all magnetic
Schrödinger operators on all manifolds, and the subleading polynomial corrections can be identified
in terms of the Laurent series of the half-wave trace at τ = 0. The improvement to O(Σ) for k ≥ 2
follows from a bound on the growth rate of the half-wave trace at late times.
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1. Introduction

For d ∈ N+, let Λ ⊂ Rd denote a full rank lattice, and let Covol(Λ) > 0 denote its covolume. Let
A ∈ Rd. Consider the function Nd;Λ,A : [0,∞)→ N+ given by

Nd;Λ,A(Σ) = #([Λ + A] ∩ ΣBd) = #{k ∈ Λ : |k + A| ≤ Σ}, (1)

where Bd ⊂ Rd is the closed unit ball. (For Σ < 0, we define Nd;Λ,A(Σ) = 0.) It is geometrically clear
that Nd;Λ,A(Σ) = Σd VolBd Covol(Λ)−1 + O(Σd−1), as Gauss observed. Let Nd;Λ = Nd;Λ,0. The
Gauss d-ellipsoid problem (d-sphere problem when Λ = Zd) is to find – in the form of a polynomial
bound (possibly with logarithmic corrections) – the size of the error Nd;Λ(Σ)−Σd VolBd Covol(Λ)−1.
The d = 2 case is known simply as the Gauss ellipse (or circle) problem, and the d = 3 case is known
as the Gauss ellipsoid (or sphere) problem. For d = 2, it is conjectured that

N2;Λ(Σ) = πCovol(Λ)−1Σ2 +O(Σν) (2)
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if ν > 1/2. See [Ivi+04] for a bibliography. For d = 3, it is conjectured that that

N3;Λ(Σ) = (4π/3) Covol(Λ)−1Σ3 +O(Σν) (3)
if ν > 1. Progress can be found in a bevy of works, going back to Hardy, Landau, Ramanujan,
Sierpińsky, and van der Corput, allowing any ν > 3/2. At present, the best result for the sphere
problem is due to Heath-Brown [Hea99], who shows that we may take any ν > 21/16 = 1.3125 (and
whose proof shows that if the generalized Riemann hypothesis holds then, assuming extraneous
errors in the proof are dealt with, we may take any ν > 5/4). This built off of previous work
of Chamizo and Iwaniec [CI95], who showed that eq. (3) holds for any ν > 29/22 = 1.31818 · · · ,
which in turn was based off of papers of Chen [Che63] and Vinogradov [Vin63] which allowed
any ν > 4/3. See [LP82][Hux96][Ivi+04] for related results. For arbitrary Λ ⊂ R3, Krätzel and
Nowak [KN91][KN92] established eq. (3) for ν > 74/50, this being improved by Müller [Mül99] to
ν > 63/43 and recently Guo [Guo12] to ν > 231/158 ≈ 1.46202 · · · (these results holding for more
general convex bodies as well). See [BG99][Göt04] for sharp results for d ≥ 5. Estimating N3;Λ,A is
a difficult problem. In this note, we do something much easier: examine some related quantities
which, in contrast to N3,Λ,A, can be estimated sharply.

Let Nd,0;Λ,A = Nd;Λ,A and define, for each k ∈ N+, Nd,k;Λ,A(Σ) =
∫ Σ

0 Nd,k−1;Λ,A(σ) dσ, i.e.

Nd,1;Λ,A(Σ) =
∫ Σ

0
Nd;Λ,A(σ) dσ,

Nd,2;Λ,A(Σ) =
∫ Σ

0

∫ σ

0
Nd;Λ,A(σ′) dσ′ dσ,

Nd,3;Λ,A(Σ) =
∫ Σ

0

∫ σ

0

∫ σ′

0
Nd;Λ,A(σ′′) dσ′′ dσ′ dσ, · · · .

(4)

(For Σ ≤ 0, Nd;k;Λ,A(Σ) = 0.) We will refer to these functions as “iterated integrals” of Nd;Λ,A. We
focus on the case d = 3. Even though it is somewhat straightforward (perhaps modulo relatively
unimportant technicalities) to give a direct treatment, the authors do not know of one in the
literature. (As we will explain below, Hörmander [Hör68a][Hör68b, §5] has a general treatment of
such asymptotics, but when applied to the case at hand they fail to be sharp.) Our main motivation
is to examine how the large-Σ asymptotics of the N3,k;Λ,A are encoded in the Fourier transform
of Nd;Λ,A. All other motivation aside, it seems worthwhile to give a relatively self-contained
presentation.

Although we cannot deduce from the results below anything interesting about the asymptotics of
N3;Λ,A beyond the easy result

N3;Λ,A = (4π/3) Covol(Λ)−1Σ3 +O(Σ3/2+ε), (5)
the asymptotics of N3,1;Λ,A, N3,2;Λ,A, · · · are suggestive and serve well to illustrate the oscillatory
nature of the remainder. The results below are therefore complementary to estimates of the second
moment ∫ Σ

0
|N3,0;Z3(σ)− (4π/3)σ3|2 dσ (6)

as Σ→∞, such as those found in [Lau99][Hul+18], which give no information regarding the sign of
the discrepancy N3,0;Z3(Σ)− (4π/3)Σ3.

A closely related notion to the iterated integrals above is that of “spectral Riesz means.” For
k ∈ N, the kth Riesz mean of the counting function N3;Λ,A is defined as

RkΣN3;Λ,A(Σ) = k!Σ−kN3,k;Λ,A(Σ) =
∫ Σ

0

(
1− σ

Σ
)k

dN3;Λ,A(σ). (7)

This is the kth Riesz mean of the eigenvalue counting function for the magnetic Schrödinger operator
4+ 2iA · ∇+ ‖A‖2 on the flat 3-torus T3 = R3/Λ∗, where 4 is the positive semidefinite Laplacian
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and A · ∇ = Ax∂x +Ay∂y +Az∂z. It is a theorem of Hörmander [Hör68a][Hör68b, §5] that the kth
spectral Riesz mean for any closed Riemannian manifold has an asymptotic expansion in powers
of Σ, with an O(Σd−k−1) error term. Thus, the kth iterated integral of the eigenvalue counting
function has an asymptotic expansion in powers of Σ with an O(Σd−1) error term. This error is of
size O(Σ2) in the d = 3 case of interest here. Instead, the analysis below results in an O(Σ) error
for k ≥ 2.

In discussing Weyl remainders, it can be useful [EF99] to identify the eigenvalue counting with a
tempered distribution. Specifically, letting S(R) ⊂ C∞(R) denote the Fréchet space of Schwartz
functions, we conflate the function Nd,k;Λ,A : R→ R with the mapping

S(R) 3 χ 7→
∫ ∞

0
χ(σ)Nd,k;Λ,A(σ) dσ ∈ C. (8)

(It is straightforward to verify that eq. (8) is continuous and therefore defines a tempered distribution.)
One reason for doing so is that we will be working with the Fourier transform. Another is that it
trivializes matters of convergence when talking about infinite series; convergence holds (sometimes
only) after “smearing in Σ,” i.e. in the weak topology generated by the functionals given by
integration against the various Schwartz functions. Indeed, some of the formulas below are not
convergent in the ordinary sense, but they make sense when the left-hand and right-hand sides are
interpreted distributionally. This is not an obstacle to getting some ordinarily convergent formula,
as Remark 2.3 indicates, as we can just smear against a convenient choice of test function, but
the smearing might obscure relevant features or otherwise overcomplicate the formulas. When
convergence does hold in a stronger topology than that of S ′(R), this can be proven as a secondary
result. Thus, one advantage of this approach is that it separates the underlying harmonic analysis
from secondary technical considerations regarding convergence.

We will work with two spaces of generalized functions:
• Ṡ ′(R≥0) ⊂ S ′(R) is the (linear and topological) subspace consisting of tempered distributions
supported on [0,∞) = R≥0, that is the set of tempered distributions u ∈ S ′(R) such
that u(χ) = 0 whenever the support of χ is disjoint from [0,∞). (In a much more
interesting setting than the 1D setting considered here, Melrose [Mel81] calls them “supported
distributions.”) We endow Ṡ ′(R≥0) with the subspace topology induced by the inclusion

Ṡ ′(R≥0) ↪→ S ′(R), (9)

which makes Ṡ ′(R≥0) into an LCTVS.
• S ′(R≥0) = Ṡ(R≥0)∗ (LCTVS-dual), where Ṡ(R≥0

Σ ) denotes the Fréchet space of all smooth
functions χ : [0,∞)Σ → C which vanish to infinite order at the origin and which decay
rapidly as Σ→∞, along with all of their derivatives. (Melrose calls the elements of S ′(R≥0)
“extendable distributions.”)

Some facts about these spaces are reviewed in §A. References for the theory of distributions include
[RS72][Mel81][Hör90][Dij13]. For our purposes, it is not necessary to specify a collection of seminorms
generating the topology of S ′(R≥0) — it suffices to note that S ′(R≥0) is canonically identifiable with

Ṡ ′(R≥0)/C[∂]δ = {u mod C[∂]δ : u ∈ Ṡ ′(R≥0)}, (10)
where C[∂]δ denotes the set of linear combinations of a Dirac δ-function and its derivatives. Indeed,
given any u ∈ Ṡ ′(R≥0), so that u is a map u : S(R)→ C, we can restrict u to Ṡ(R≥0). This defines
an onto linear map

Ṡ ′(R≥0)→ S ′(R≥0) (11)
whose kernel consists precisely of C[∂]δ. Thus, we have an induced invertible linear map

Ṡ ′(R≥0)/C[∂]δ → S ′(R≥0), (12)
and it is a homeomorphism. See [Mel81, Lemma 1.2] for the general case.
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We can identify any element of ∪K∈R〈Σ〉KL1[0,∞)Σ with an element of S ′(R≥0
Σ ) in the same way

as done with ordinary tempered distributions.
So, for each d ∈ N+, k ∈ N, full rank Λ ⊂ Rd, and A ∈ Rd, the functions Nd;Λ,A and N3,k;Λ,A

can be interpreted as elements of Ṡ ′(R≥0) or S ′(R≥0). (A clash of notational conventions will lead
to us being inconsistent with regards to factors of the Heaviside step function

Θ : R→ {0, 1}, Θ(σ) = 1σ≥0. (13)

When considering N3,k;Λ,A as a tempered distribution, we must write the step functions explicitly,
but when we are working in Ṡ ′(R≥0) we will typically omit them.)

Remark. We follow the notational convention of Melrose in using overdots, e.g. ‘S ′(R≥0)’ to denote
the dual of Ṡ(R≥0) and ‘Ṡ ′(R≥0)’ to denote the dual of S(R≥0). So, according to this convention,
the ‘′’ should not be read as dualization. We will mostly drop the ‘modC[∂]δ’ that should be
written when specifying elements of Ṡ ′(R≥0)/C[∂]δ. Hence, we will notationally conflate extendable
distributions with supported distributions extending them. In addition, as discussed above, we will
make ample use of conventional abuses of notation allowing the identification of locally integrable,
polynomially growing functions with tempered distributions. Regarding formal variables, when we
write ‘N3;Λ(Σ) ∈ S ′(RΣ)’ (or anything similar), we mean that N3;Λ is identifiable with an element
of S ′(R), with Σ playing a formal role, notationally speaking. The (optional) subscripts just declare
which variable is being integrated against where such disambiguation is felt to be useful.

In the latter half of our presentation, §4 and §5, we turn to the toroidal half-wave trace. Because
N3;Λ,A(Σ) /∈ L1(RΣ), its Fourier transform must be defined in the sense of Schwartz; explicitly,
FN3;Λ,A : S(R)→ C is given by

FN3;Λ,A(χ) =
∫ ∞

0
N3;Λ,A(Σ)Fχ(Σ) dΣ (14)

for any χ ∈ S(R), where our conventions in defining F : S(R)→ S(R) are

Fχ(σ) =
∫ +∞

−∞
e−iτσχ(τ) dτ. (15)

(We will use τ to denote the Fourier dual variable to Σ, σ.) Equation (14) is the Fourier transform
with respect to Σ, as opposed to the coordinate Σ2, the latter of which would correspond to the
heat kernel rather than the wave kernel. While FN3;Λ,A is a well-defined tempered distribution, it
is not a function. It has singularities, and we will keep track of them. The Laplace transform of
N3;Λ,A(Σ) in Σ2 (which is well-defined as an improper integral) is essentially a power of a Jacobi
theta function, therefore an automorphic form after analytic continuation, and this entails that the
Fourier transform of N3;Λ,A(Σ) in Σ2 (the distributional boundary value of a modular form at the
real axis) has full singular support. It is a tempered distribution, but it is nowhere locally a function.
In contrast, FN3;Λ,A(τ) has an isolated singularity at τ = 0 and actually has a Laurent series there.
It is a function except at a discrete set of times, around each of which it can be expanded in Laurent
series:

Theorem 1.1. Setting µ3;Λ,A(Σ) =
∑

Σ∈Λ δ(Σ− |Σ + A|) ∈ S ′(RΣ), the toroidal half-wave trace
Fµ3;Λ,A(τ) ∈ S ′(Rτ ) is given by

Fµ3;Λ,A(τ) = 8πi
Covol(Λ)

[ π

(τ − i0)3 + τ
∑

k∈Λ∗\{0}

cos(2πA · k)
((τ − i0)2 − 4π2|k|2)2

]
, (16)

where the sum is unconditionally convergent in S ′(Rτ ).
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Figure 1. A loglog plot of N3,4(Σ) = N3,4;Z3,0(Σ) for Σ ∈ {
√
λ/8 : λ ∈ N, 1 ≤

λ ≤ 1600}, along with the results of subtracting from N3,4 the non-oscillatory
terms in eq. (18). The last function plotted is just o4(Σ) = o4;Z3;0(Σ), as defined by
eq. (20). The constants C0 = C0;Z3,0 and C2 = C2;Z3,0 were numerically approximated
to within about 10−9, and we ignore the resultant experimental error (of order
approximately 10−6) introduced in computing the functions above.

Integrating this using Proposition A.4, we ge get an explicit formula

FN3;Λ,A(τ) = 8π2

Covol(Λ)
1

(τ − i0)4 + 8π
Covol(Λ)

∑
k∈Λ∗\{0}

cos(2πA · k)
((τ − i0)2 − 4π2|k|2)2 (17)

for FN3;Λ,A.
The half-wave trace on general compact Riemannian manifolds was studied by Chazarain [Cha74],

Hörmander [Hör68b], and Duistermaat & Guillemin [DG75], and together they established the
precise singularity structure of the half-wave trace of any closed Riemannian manifold. We will
not use this general theory, since we can just compute FN3;Λ,A(τ) explicitly, but the singularity
structure in eq. (16) is in accord with these more general results. That FN3;Λ,A(τ) has an isolated
singularity (of known form) at the origin is useful, because it allows us to separate the polynomial
growth of N3;Λ,A(Σ) as Σ→∞ (coming from the pole of the Fourier transform at the origin) and
an oscillatory remainder, coming from the rest. From this perspective, the additional result needed
to deduce sharp asymptotics for the Nd,k;Λ,A (for sufficiently large k) is global quantitative control
on the half-wave trace, with a polynomial rate of growth (where the meaning of “sufficiently large”
is determined by the degree of the rate of growth).

Via the Poisson summation formula, we can compute out the oscillatory contribution to Nd,0;Λ,A
exactly, for every d ≥ 1: it is an infinite sum of Bessel functions, yielding a formula for Nd;Λ,A(Σ)
generalizing (in a weak, distributional sense) the well-known formula for N2;Z2(Σ) — cf. [IK04, §4.4].
While we cannot estimate the size of this oscillatory term precisely, the situation changes upon
integration in Σ, since upon passing to the Fourier transform this corresponds to a weighting by 1/τ ,
which improves decay as τ → ±∞. Hence, after integrating, we can better estimate the oscillatory
term. However, the division by τ makes more severe the singularity of the half-wave trace at the
origin, adding new terms to the Laurent series there. Applying the inverse Fourier transform then
yields new polynomial terms. The end result is:

Theorem 1.2. For each k = 0, 1, 2, 3, · · · ,

N3,k;Λ,A(Σ) = 8π
(3 + k)!

Σ3+k

Covol(Λ) +
k−1∑
m=0

Ck−1−m;Λ,A
m! Σm + ok;Λ,A(Σ) (18)

as an element of Ṡ ′(R≥0), where {Cj;Λ,A}∞j=0 ⊂ R is defined by (the absolutely convergent series)

Cj;Λ,A = 1
Covol(Λ)


0 (j odd),
+(2j + 4)(2π)−j−3∑

k∈Λ∗\{0} cos(2πA · k)|k|−4−j (j = 0 mod 4),
−(2j + 4)(2π)−j−3∑

k∈Λ∗\{0} cos(2πA · k)|k|−4−j (j = 2 mod 4),
(19)
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and ok;Λ,A ∈ Ṡ ′(R≥0) is given by

ok;Λ,A(Σ) = − 1
πCovol(Λ)

∑
k∈Λ∗\{0}

1
|k|2

1
(2π|k|)k cos(2πA · k)

×

(−1)
k
2
[
Σ cos(2π|k|Σ)− k+1

2π|k| sin(2π|k|Σ)
]

(k ∈ 2N)
(−1)d

k
2 e
[
Σ sin(2π|k|Σ)− k+1

2π|k| cos(2π|k|Σ)
]

(k /∈ 2N).
(20)

The series in eq. (20) is unconditionally summable in Ṡ ′(R≥0).
If k ≥ 2, then eq. (18) holds in the ordinary sense, for each Σ ≥ 0 (with the series in eq. (20)

ordinarily absolutely convergent). Moreover, if k ≥ 2, ok;Λ,A : [0,∞)→ R is continuous. It vanishes
at the origin, and, for any compact K ⊂ R≥0, the series in eq. (20), restricted to K, converges
uniformly to it.

Corollary 1.3. As Σ→∞,

N3,1;Λ,A(Σ) = π

3
Σ4

Covol(Λ) +OΛ,A(Σ log Σ) (21)

holds. ��

Corollary 1.4. For each k ≥ 2,

N3,k;Λ,A(Σ) = 8π
(3 + k)!

Σ3+k

Covol(Λ) +
k−1∑
m=2

Ck−1−m;Λ,A
m! Σm +Ok,Λ,A(Σ) (22)

for all Σ ≥ 0. ��

The subscripts on the big-O’s denote that the bounds depend on the listed parameters in some
unexamined way. Below, we will leave this dependence implicit.

Finally, we check that there are no serious cancellations in eq. (20):

Theorem 1.5. For no integer k ≥ 1 does there exist an α = αA,Λ,k ∈ R and ε > 0 such that

N3,k;Λ,A(Σ) = 8π
(3 + k)!

Σ3+k

Covol(Λ) +
k−1∑
m=2

Ck−1−m;Λ,A
m! Σm + αΣ +O(Σ1−ε)

as Σ→∞.

See Figure 1 for an illustration of Theorem 1.2, Corollary 1.4, Theorem 1.5 in the instructive case
k = 4, Λ = Z3, A = 0. The oscillatory character of N3,4;Z3(Σ)− (π/630)Σ7 − (C0;Λ/6)Σ3 − C2;ΛΣ
is clearly visible, as is the linear growth rate of the amplitudes in the terms of the oscillatory
remainder.

The computation used below to prove the first of these results is very standard — it is just a
(somewhat nondirect) application of the Poisson summation formula, keeping track of the possible
singularity at the origin. It can be understood in terms of the “method of images” for solving PDE
on Td, but this just amounts to an application of the Poisson summation formula anyways. A brisk
presentation of the core of the argument in the case Λ = Z3, A = 0 can be found in [CI95, §2][IK04,
§4.4], and a presentation of van der Corput’s version can be found in [Pin09, §4.5.2]. The case of
a general lattice or nonzero shift does not require any new ideas. The results for k > 0 require
in our presentation a secondary argument in §3 (though after some smoothing in Σ this can be
replaced by an appeal to the precise amount of regularity in Σ required in [CI95, Lemma 2.1][IK04,
Corollary 4.8]). The slightly technical point here is that in the traditional presentation of these
sorts of computations, one wants to apply the Poisson summation formula to the function

fΣ(Σ) = (Σ− |Σ|)k+ ∈ C0(RdΣ), (23)
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which is not smooth and therefore not Schwartz. Once can appeal to [SW72, Chp. VII, Cor. 2.6] in
order to justify the application, but this requires first computing out FfΣ. The computation of this
Fourier transform is analogous to the computation in §3.

Corollary 1.3 is extracted from Theorem 1.2 in §4 via a very elementary smoothing argument.
We elaborate briefly on how the results above give more precise information regarding spectral

Riesz means on flat 3-tori than what is known for general manifolds. Hörmander’s asymptotic
expansion for the spectral Riesz means of T3 is contained in Corollary 1.3, Corollary 1.4. The
asymptotic expansions in Corollary 1.3 and Corollary 1.4 are more precise, however — besides
being completely explicit about what the coefficients in Hörmander’s asymptotic expansion are, the
error term is only of size O(Σ) for k ≥ 2 and O(Σ log Σ) for k = 1, instead of O(Σ2). Moreover,
for k ≥ 2, Theorem 1.2 gives an absolutely convergent trigonometric sum for the error term, which
is very particular to the torus. To boot, whereas it is typically not known when Hörmander’s
O(Σ2) estimate is sharp, the estimate here is actually sharp, as Theorem 1.5 shows. We think that
Corollary 1.4 is interesting in part as a sharp estimate of some spectral Riesz means, and to our
knowledge this result is the first sharp estimate of higher Riesz means for some non-Zoll manifolds
of dimension > 1. Although we do not carry it out, an analogous computation to the one below
gives sharp asymptotics for the “off-diagonal” spectral Riesz means of T3. See [Hör68a][Ful99] for
more on spectral Riesz means in general.

Conceptually, the feature of T3 – and flat tori more generally – that allows proving this refined
asymptotic expansion is the slow growth of the (say 2-fold regularized) toroidal half-wave trace (as
measured in an appropriate sense). Thus, while our proof is partly based on an explicit computation,
a similar result will hold on any closed Riemannian manifold on which the half-wave trace grows
polynomially with respect to an appropriate Sobolev-type norm measuring negative regularity. See
[Sus21] for a related discussion of Weyl remainders themselves. The detailed analysis of the toroidal
half-wave trace found in §5 is difficult to locate in the literature (if it exists, it is unknown to the
authors). We use the results in this section to prove Theorem 1.5. We remark in closing that, even
in the Λ = Z3,A = 0 case, the summation formulas [CI95, Lemma 2.1][IK04, Corollary 4.8] do not
suffice for the proof of Theorem 1.1 (they only determine Fµ3;Λ,A modulo a polynomial), so it is
not clear that one can avoid the additional technical details in the treatment below.

2. An explicit functional formula for Nd;Λ,A

The Poisson summation formula for Λ says that∑
Σ∈[Λ+A]

f(Σ) =
∑
Σ∈Λ

fA(Σ) = 1
Covol(Λ)

∑
k∈Λ∗

FfA(2πk) = 1
Covol(Λ)

∑
k∈Λ∗

e2πik·AFf(2πk) (24)

for all f ∈ S(Rd), where fA(Σ) = f(Σ + A). In other words, both sums converge unconditionally –
trivially, in this case, because f and Ff are Schwartz – and their limits agree.

Let Σ = (σ1, . . . , σd) and r = (σ2
1 + · · ·+ σ2

d)1/2 = ‖Σ‖.
Suppose now that f has the form f(σ1, . . . , σd) = F (r) for some F ∈ S(R) whose odd-order

derivatives all vanish at zero. For example, any

F ∈ Ṡ(R≥0) = Ċ∞(R≥0) ∩ S(R) (25)

has this property, as does any Schwartz function that is constant in some neighborhood of the origin.
For such F , f is actually Schwartz, so the Poisson summation formula applies, yielding∑

Σ∈[Λ+A]
F (|Σ|) = 1

Covol(Λ)
∑

k∈Λ∗
e2πik·AFf(2πk) (26)

= 1
Covol(Λ)

∑
k∈Λ∗

e2πik·A
∫ ∞

0
F (r)rd−1

∫
Sd−1

e−2πirk·θ dAreaSd−1(θ) dr. (27)
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In the expression above is a standard form of the Bessel function of the first kind:∫
Sd−1

eiw·θ dAreaSd−1(θ) =
{

(2π)ν+1|w|−νJν(|w|) (w 6= 0),
Area(Sd−1) (w = 0),

(28)

where ν = d/2− 1. See [GS64, pg. 198][SW72, pg. 154]. Substituting this into eq. (27),∑
Σ∈[Λ+A]

F (|Σ|) = A

Covol(Λ)

∫ ∞
0

F (r)rd−1 dr

+ 1
Covol(Λ)

∑
k∈Λ∗\{0}

2π cos(2πk ·A)
∫ ∞

0
F (r)rd/2|k|−νJν(2πr|k|) dr, (29)

where A = Area(Sd−1) and we used the symmetry of Λ∗ to replace the exp(2πik·A) with cos(2πk·A).
Note that the formal series

∑
Σ∈Λ δ(Σ− |Σ + A|) ∈ S ′(RΣ)Λ is unconditionally summable to a

tempered distribution (which is in fact a Borel measure), which we denote ∆(Σ) =
∑

Σ∈Λ δ(Σ−
|Σ + A|). The left-hand side of eq. (29) can therefore be written as follows:∑

Σ∈[Λ+A]
F (|Σ|) =

∫ +∞

−∞
F (Σ)

∑
Σ∈Λ

δ(Σ− |Σ + A|) dΣ = ∆(F ), (30)

where the integral is formal. Similarly – letting, for k 6= 0, Jk ∈ S ′(R) denote the tempered
distribution χ 7→

∫
R χ(Σ)Jk(Σ) dΣ given by integration against the function

Jk(Σ) =
{

2πΣd/2|k|−νJν(2π|k|Σ) (Σ > 0)
0 (Σ ≤ 0),

(31)

(which we denote Jk(Σ) = 2πΘ(Σ)Σd/2|k|−νJν(2πΣ|k|)) – the summand on the right-hand side of
eq. (29) is cos(2πik ·A)Jk(F ). (Note that the subscript ‘k’ in Jk is not related to the subscript ‘ν’
in Jν .)

The formal series
∑

k∈Λ∗\{0} cos(2πk ·A)Jk ∈ S ′(R)Λ\{0} is unconditionally summable in S ′(R≥0),
as an integration-by-parts argument shows. The identities above show that

∆(F ) = A

Covol(Λ)

∫ ∞
0

F (r)rd−1 dr + 1
Covol(Λ)

[ ∑
k∈Λ∗\{0}

cos(2πk ·A)Jk
]
(F ), (32)

for all F as above. So, we have arrived at [IK04, Theorem 4.6]:

Proposition 2.1. As elements of S ′(R≥0
Σ ), Covol(Λ)∆(Σ) = AΣd−1 +

∑
k∈Λ∗\{0} cos(2πk ·A)Jk(Σ).

��

We will need to pay attention to Dirac terms, but first we observe the following, which is suggested
by formally integrating the identity in Proposition 2.1:

Proposition 2.2. As elements of S ′(R≥0
Σ ), we have

Nd;Λ,A(Σ) = Σd VolBd

Covol(Λ) + Σd/2

Covol(Λ)
∑

k∈Λ∗\{0}
cos(2πk ·A)|k|−d/2Jd/2(2π|k|Σ), (33)

where the sum is unconditionally convergent in S ′(R≥0
Σ ). �

Proof. We only need to rigorously justify the formal integration. We first check that the left-hand
and right-hand sides of eq. (33), considered as elements of S ′(R≥0), have the same derivative. We
observe:

(I) ∂Nd;Λ,A(Σ) = ∆(Σ) when both sides are considered as elements of S ′(R), so this continues
to hold when both sides are continued as elements of S ′(R≥0), and
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(II) the sum

Σd/2 ∑
k∈Λ∗\{0}

cos(2πk ·A)|k|−d/2Θ(Σ)Jd/2(2π|k|Σ) ∈ S ′(R≥0
Σ )Λ∗\{0} (34)

is unconditionally convergent in S ′(R≥0) by an integration-by-parts argument, and the
derivative of the extendable distribution in eq. (34) is

∑
k∈Λ∗\{0} cos(2πk ·A)Jk.

So, indeed, the two sides of eq. (33) have the same derivative in S ′(R≥0). This is equivalent to
saying that, when interpreted as elements of Ṡ ′(R≥0), they have the same derivative modulo C[∂]δ.

By Proposition A.1, we conclude that, as an element of S ′(R≥0
Σ ),

Nd;Λ,A(Σ) = c+ Σd VolBd

Covol(Λ) + Σd/2

Covol(Λ)
∑

k∈Λ∗\{0}
|k|−d/2 cos(2πk ·A)Jd/2(2π|k|Σ) (35)

for some constant c = cΛ,A ∈ C, which we have to show is zero. (We are omitting the Θ(Σ) in
eq. (35).)

For χ ∈ C∞c (R) that is constant in a neighborhood of the origin, we calculate Nd;Λ,A(∂χ) =∫∞
0 Nd;Λ,A(Σ)χ′(Σ) dΣ in two ways:
• Since ∂Nd;Λ,A(Σ) = ∆(Σ) as elements of S(R), Nd;Λ,A(∂χ) = −∆(χ). By eq. (29),

−∆(χ) = −A
∫ ∞

0

χ(Σ)Σd−1 dΣ
Covol(Λ) − 2π

∑
k∈Λ∗\{0}

cos(2πk ·A)
|k|ν Covol(Λ)

∫ ∞
0

χ(Σ)Σd/2Jν(2π|k|Σ) dΣ (36)

= VolBd

Covol(Λ)

∫ ∞
0

χ′(Σ)Σd dΣ +
∞∑

k∈Λ∗\{0}

cos(2πk ·A)
|k|d/2 Covol(Λ)

∫ ∞
0

χ′(Σ)Σd/2Jd/2(2π|k|Σ) dΣ.

(37)

• Applying eq. (35), which we can do because Nd;Λ,A(∂χ) = Nd;Λ,A(Θ∂χ) and Θ∂χ ∈ Ṡ(R≥0),
yields

Nd;Λ,A(∂χ) = −cχ(0) + VolBd

Covol(Λ)

∫ ∞
0

χ′(Σ)Σd dΣ

+
∞∑

k∈Λ∗\{0}

cos(2πk ·A)
|k|d/2 Covol(Λ)

∫ ∞
0

χ′(Σ)Σd/2Jd/2(2π|k|Σ) dΣ. (38)

Comparing eq. (37) and eq. (38), we deduce that c
∫∞

0 χ′(Σ) dΣ = −cχ(0) = 0. Since we can choose
χ as above that is nonzero at zero, we conclude that c = 0. �

Remark 2.3. When d = 2,
∑∞
n=1 r2(n)n−1/2J1(2π

√
nΣ) converges (conditionally) for Σ > 0 with

Σ2 /∈ Z (as shown by Hardy). If d ≥ 3 then there does not exist any Σ > 0 such that the sum
on the right-hand side of eq. (33) converges in the ordinary sense, hence it must be interpreted
“distributionally:” given any Schwartz function χ ∈ S(R),∫ ∞

0
χ(Σ)Nd;Λ(Σ) dΣ = VolBd

Covol(Λ)

∫ ∞
0

χ(Σ)Σd dΣ

+ 1
Covol(Λ)

∑
k∈Λ∗\{0}

1
|k|d/2

∫ ∞
0

χ(Σ)Σd/2Jd/2(2π|k|Σ) dΣ, (39)

where the sum on the right-hand side is absolutely convergent. For example, since Nd;Zd is constant
on intervals of the form [

√
n,
√
n+ 1) for n ∈ N, choosing χ ∈ C∞c (R) supported in [

√
n,
√
n+ 1)
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with
∫
R χ(Σ) dΣ = 1,

Nd;Zd(
√
n) = VolBd

∫ ∞
0

χ(Σ)Σd dΣ +
∞∑
n=1

rd(n)
nd/4

∫ ∞
0

χ(Σ)Σd/2Jd/2(2π
√
nΣ) dΣ, (40)

where rd(n) = {k ∈ Zd : |k| = n}.

Whenever d ∈ 2N + 1, the Bessel function Jd/2(z) can be written as a linear combination of
trigonometric functions whose coefficients are Laurent polynomials in z. For d = 3, we have

J3/2(z) =
√

2
πz

(
− cos(z) + 1

z
sin(z)

)
(41)

for all z ∈ C\(−∞, 0]. Substituting this in to eq. (33), we get:

Proposition 2.4. As an element of S ′(R≥0
Σ ), N3;Λ,A(Σ) is given by

4π
3

Σ3

Covol(Λ) −
1

πCovol(Λ)
∑

k∈Λ∗\{0}

1
|k|2 cos(2πk ·A)

[
Σ cos(2π|k|Σ)− 1

2π|k| sin(2π|k|Σ)
]
, (42)

where the sum on the right-hand side is (unconditionally) convergent in S ′(R≥0
Σ ). ��

3. An explicit formula for N3,k;Λ,A, k ≥ 1

We now proceed to iterate the formal integration leading us from Proposition 2.1 to Proposition 2.2.
We have not, however, yet proven that the series on the right-hand side of eq. (33) converges
unconditionally in Ṡ ′(R≥0), i.e. in S ′(R) (after inserting Θ’s) (we only noted that – by integration-
by-parts – it converges unconditionally in S ′(R≥0) ∼= Ṡ ′(R≥0)/C[∂]δ). And, the computations in the
previous section, leading up to eq. (29), were only done for Schwartz functions F ∈ S(R) that are
the sum of an even function and an element of Ṡ(R≥0). For proving Proposition 2.2, this sufficed,
but for repeated integrations we need to allow arbitrary Schwartz F .

For each k ∈ N, let ∂−k : Ṡ ′(R≥0)→ Ṡ ′(R≥0) denote the well-defined set-theoretic inverse of ∂k,
i.e. the kth power of the operator ∂−1 defined in eq. (139). Heuristically, ∂−kχ is given by k-fold
iterated integrations of χ from 0 and this holds literally when applied to integrable functions, and
consequently

∂−kN3;Λ,A(Σ) = N3,k;Λ,A(Σ), (43)
where both sides are interpreted as elements of Ṡ ′(R≥0).

As a preliminary step in computing N3,k;Λ,A via eq. (43), we define {Ñ3,k;Λ,A}k∈N ⊂ S ′(R≥0)
such that

• Ñ3,0;Λ,A = N3,0;Λ,A in S ′(R≥0),
• and

Ñ3,0;Λ,A(Σ) = ∂kÑ3,k;Λ,A(Σ), (44)
also in S ′(R≥0). We will check that the formal series defining Ñ3,k;Λ,A converges unconditionally in
Ṡ ′(R≥0) for k ≥ 2, and by differentiating we will conclude the same for k = 0, 1, hence essentially
proving that the series on the right-hand side of Proposition 2.1 converges absolutely in some
negative regularity Sobolev space.

This will allow us to interpret eq. (44) as an identity in Ṡ ′(R≥0).
Given now that Ñ3,0;Λ,A is a well-defined element of Ṡ ′(R≥0), the fact that Ñ3,0;Λ,A = N3,0;Λ,A in

S ′(R≥0) means that
Ñ3,0;Λ,A(Σ) = P (∂)δ(Σ) +N3,0;Λ,A(Σ) (45)

in Ṡ(R≥0
Σ ) for some polynomial P = PΛ,A. Equation (44) then determines Ñ3,k;Λ,A in terms of

N3,0;Λ,A modulo polynomials and derivatives of Dirac δ-functions (the results of integrating C[∂]δ).
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It will turn out that we defined Ñ3,k;Λ,A so that, as elements of Ṡ ′(R≥0),

Ñ3,k;Λ,A = N3,k;Λ,A, (46)

meaning that P = 0. This will be proven by checking that limΣ→0+ Ñ3,k;Λ,A(Σ) = 0 for all k ≥ 1.
This second statement will be clear for all k ≥ 2, since Ñ3,k;Λ,A will be a continuous function on

all of R. The k = 1 case is a little more delicate, but the potential logarithmic singularity is not
severe enough to cause trouble.

3.1. Formal Integration. Set

Ñ3,k;Λ,A(Σ) = 8π
(3 + k)!

Σ3+k

Covol(Λ)Θ(Σ)

− 1
πCovol(Λ)

∑
k∈Λ∗\{0}

1
|k|2 cos(2πk ·A)∂−k

[
Σ cos(2π|k|Σ)Θ(Σ)− 1

2π|k| sin(2π|k|Σ)Θ(Σ)
]
. (47)

The series is unconditionally summable in S ′(R≥0), so Ñ3,k;Λ,A is a well-defined element of S ′(R≥0).
All of the computations in this section will be done in S ′(R≥0).
The function

∂−k[Σ cos(2π|k|Σ)Θ(Σ)− (2π|k|)−1 sin(2π|k|Σ)Θ(Σ)] (48)

is a k-fold iterated definite integral of σ cos(2π|k|σ)− (2π|k|)−1 sin(2π|k|σ) along σ ∈ [0,Σ].
Let Σk = 2π|k|Σ, so that ∂Σ = 2π|k|∂Σk . Then, ∂

−k
Σ = (2π)−k|k|−k∂−kΣk

, so

∂−k
[
Σ cos(Σk)− 1

2π|k| sin(Σk)
]

= (2π)−(k+1)|k|−(k+1)∂−kΣk
[Σk cos(Σk)− sin(Σk)]. (49)

It can be seen inductively that there exist αk, βk, γk, δk ∈ R and polynomials Qk ∈ R[Σ] such that

∂−kΣ [Σ cos(Σ)− sin(Σ)] = Qk(Σ) + αkΣ cos Σ + βkΣ sin Σ + γk cos Σ + δk sin Σ. (50)

Plugging this into the computation above,

Ñ3,k;Λ,A(Σ) = 8π
(3 + k)!

Σ3+k

Covol(Λ) −
1

πCovol(Λ)
∑

k∈Λ∗\{0}

1
|k|2

1
(2π|k|)k+1 cos(2πk ·A)

× [Qk(Σk) + αkΣk cos Σk + βkΣk sin Σk + γk cos Σk + δk sin Σk], (51)

where we are now omitting the factors of Θ(Σ), both sides being interpreted as elements of S ′(R≥0).
So, in order to compute Ñ3,k;Λ,A for k ≥ 1, all that needs to be done is compute αk, βk, γk, δk,

and Qk.
Set α0 = 1, β0 = 0, γ0 = 0, δ0 = −1. Since αk, βk, γk, δk can be defined in terms of

αk−1, βk−1, γk−1, δk−1 via a system of linear equations whose coefficients do not depend on k,
αk
βk
γk
δk

 =


m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34
m41 m42 m43 m44


k

α0
β0
γ0
δ0

 (52)

for some matrix M = {mij}4i,j=1 with entries mij ∈ R. From∫ Σ

0
σ cos(σ) dσ = −1 + cos(Σ) + Σ sin(Σ),

∫ Σ

0
σ sin(σ) dσ = −Σ cos(Σ) + sin(Σ), (53)
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along with
∫ Σ

0 cos(σ) dσ = sin(Σ) and
∫ Σ

0 sin(σ) dσ = 1− cos(Σ), we conclude that the only nonzero
matrix entries are m12 = −1, m21 = +1, m31 = +1, m34 = −1, m42 = +1, and m43 = +1. That is,

M =


0 −1 0 0

+1 0 0 0
+1 0 0 −1
0 +1 +1 0

 =
(
J 0
1 J

)
, (54)

where J ∈ R2×2 is the matrix corresponding to a clockwise 90◦ rotation of R2. We inductively
deduce that, for all k ∈ N,

Mk =
(

Jk 0
kJk−1 Jk

)
. (55)

We have Jk = 1 if k = 0 mod 4, Jk = J if k = 1 mod 4, Jk = −1 if k = 2 mod 4, and Jk = −J if
k = 3 mod 4; so, Mk is given by

0 −1 0 0
+1 0 0 0
+k 0 0 −1
0 +k +1 0

 ,

−1 0 0 0
0 −1 0 0
0 −k −1 0

+k 0 0 −1

 ,


0 +1 0 0
−1 0 0 0
−k 0 0 +1
0 −k −1 0

 ,


+1 0 0 0
0 +1 0 0
0 +k +1 0
−k 0 0 +1


(56)

in the four cases k = 1, 2, 3, 4 mod 4 respectively.
Using these in eq. (52), we have αk = <[ik], βk = −=[ik], γk = (k + 1)=[ik], δk = −(k + 1)<[ik].

From the computations above, we also see that

Qk(Σ) =
∫ Σ

0
Qk−1(σ) dσ − αk−1 + δk−1 =

∫ Σ

0
Qk−1(σ) dσ − (k + 1)=[ik]. (57)

The jth component of this, [Qk]j , is given by (j!)−1∂jQk(0) = (j!)−1Qk−j(0) = −(k−j+1)=[ik−j ]/j!
if k − j ≥ 1 and 0 otherwise. So,

Qk(Σ) =
k−1∑
j=0

(k − j + 1)=[ik−j+2]Σ
j

j! . (58)

We therefore conclude that, for all k ∈ N,

Ñ3,k;Λ,A(Σ) = 8π
(3 + k)!

Σ3+k

Covol(Λ) −
1

πCovol(Λ)
∑

k∈Λ∗\{0}

1
|k|2

1
(2π|k|)k+1 cos(2πk ·A)

[
2π|k|<[ik]Σ cos(2π|k|Σ)− 2π|k|=[ik]Σ sin(2π|k|Σ) + (k + 1)=[ik] cos(2π|k|Σ)

− (k + 1)<[ik] sin(2π|k|Σ) +
k−1∑
j=0

k − j + 1
j! (2π|k|Σ)j=[ik−j+2]

]
. (59)

We may pull out the polynomial part of the sum and write (adding back in the factors of Θ for
later reference)

Ñ3,k;Λ,A(Σ) = 8π
(3 + k)!

Σ3+k

Covol(Λ)Θ(Σ)

+ Θ(Σ)
πCovol(Λ)

k−1∑
j=0

k − j + 1
j!

cos(2πk ·A)
(2π)k−j+1 =[ik−j ]

( ∑
k∈Λ∗\{0}

1
|k|k−j+3

)
Σj + ok;Λ,A(Σ), (60)
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for

ok;Λ,A(Σ) = − Θ(Σ)
πCovol(Λ)

∑
k∈Λ∗\{0}

1
|k|2

cos(2πk ·A)
(2π|k|)k

[
<[ik]Σ cos(2π|k|Σ)−=[ik]Σ sin(2π|k|Σ)

+ k + 1
2π|k|=[ik] cos(2π|k|Σ)− k + 1

2π|k|<[ik] sin(2π|k|Σ)
]
. (61)

By comparing ok;Λ,A with a volume integral:

Lemma 3.1. Let k ≥ 2. Given any compact K ⊆ [0,∞), the series on the right-hand side of
eq. (59) is uniformly convergent in K, so Ñ3,k;Λ,A, as defined by eq. (60), can be considered as an
element of C0[0,∞). ��

Furthermore, Ñ3,k;Λ,A(0) = 0 for all k ≥ 2, so Ñ3,k;Λ,A can be considered as an element of C0(R).
Similar statements apply to ok;Λ,A.

3.2. Absence of Dirac Terms.

Proposition 3.2. For each k ≥ 0, the formal series

ok;Λ,A(Σ) = − 1
πCovol(Λ)

∑
k∈Λ∗\{0}

1
|k|2

Θ(Σ)
(2π|k|)k cos(2πk ·A)

[
<[ik]Σ cos(2π|k|Σ)

−=[ik]Σ sin(2π|k|Σ) + k + 1
2π|k|=[ik] cos(2π|k|Σ)− k + 1

2π|k|<[ik] sin(2π|k|Σ)
]

(62)

is unconditionally summable in S ′(R), hence eq. (60) defines an element of S ′(R). �

Proof. Given Lemma 3.1, the proposition holds for k ≥ 2. We now use this to deduce the k = 0, 1
cases. For k ∈ N+,

∂ok;Λ,A(Σ) = ok−1;Λ,A(Σ)− 1
πCovol(Λ)

∑
k∈Λ∗\{0}

1
|k|2

k + 1
(2π|k|)k+1 cos(2πk ·A)=[ik]δ(Σ) (63)

at the level of formal series in Ṡ ′(R≥0).
For k = 2, the second formal series in eq. (63) is just zero, from which it follows that the series

in eq. (62) is unconditionally summable in S ′(R) for k = 1 and that the derivative of eq. (62),
considered as an element of S ′(R), is equal to the sum.

For k = 1, the second formal series is absolutely convergent, from which it follows that the series
in eq. (62) is unconditionally summable in S ′(R) for k = 0 and that the derivative of eq. (62) as an
element of S ′(R) is equal to the sum. �

The preceding proposition shows that eq. (62) defines, for each k ∈ N, a tempered distribution,
and moreover that eq. (63) holds in the usual distributional sense. Manifestly,

ok;Λ,A(Σ), Ñ3,k;Λ,A(Σ) ∈ Ṡ ′(R≥0) (64)

In other words, the given equation is an unconditionally convergent series in Ṡ ′(R≥0).
Reversing the formal integration that led us to eq. (60),

∂Ñ3,k;Λ,A = Ñ3,k−1;Λ,A (65)

in S ′(R) for k ∈ N+. Let ∆̃ = ∂Ñ3,0;Λ,A ∈ S ′(R). This is given by

∆̃(Σ) = AΣd−1

Covol(Λ)Θ(Σ) + 1
Covol(Λ)

∑
k∈Λ∗\{0}

cos(2πk ·A)Jk(Σ), (66)

where the sum is unconditionally summable in S ′(R).
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Proposition 3.3. As an element of S ′(R),

∆(Σ) = 4πΣ2

Covol(Λ)Θ(Σ) + P (∂)δ(Σ) + 1
Covol(Λ)

∑
k∈Λ∗\{0}

cos(2πk ·A)Jk(Σ) (67)

for some polynomial P = PΛ,A whose even order terms are all zero. �

Proof. Consider the support of E(Σ) = ∆(Σ)− ∆̃(Σ).
• By Proposition 2.1, E is supported on (−∞, 0].
• Since both ∆ and ∆̃ are supported on [0,∞), the same is true for E.

So, E is supported at the origin. Since the only distributions supported on points are linear
combinations of δ-functions and derivatives thereof [Dij13, Theorem 5.5], eq. (67) holds for some
polynomial P .

Given Schwartz F ∈ S(R),

∆(F ) = 4π
Covol(Λ)

∫ ∞
0

Σ2F (Σ) dΣ +
∞∑
j=0

[P ]j(−1)jF (j)(0)

+ 1
Covol(Λ)

∑
k∈Λ∗\{0}

∫ ∞
0

F (Σ) cos(2πk ·A)Jk(Σ) dΣ. (68)

Applying this for arbitrary even F and comparing with eq. (29), which held for any even F ∈ S(R),
we conclude that the even order terms of P all vanish. �

Put differently, ∆(Σ) = P (∂)δ(Σ) + ∆̃(Σ). Since integrals in Ṡ ′(R≥0) are unique,

N3,k;Λ,A(Σ) =
k∑
j=0

[P ]j
Σk−j

(k − j)!Θ(Σ) +
∞∑

j=k+1
[P ]jδ(j−k−1)(Σ) + Ñ3,k;Λ,A(Σ) (69)

for each k ≥ 1. By Lemma 3.1, Ñ3,k;Λ,A(Σ) is continuous for k ≥ 2. Obviously, the same holds for
N3,k;Λ,A for k ≥ 2, so eq. (69) forces that [P ]2, [P ]3, [P ]4, · · · are all zero (though we already knew
that [P ]2, [P ]4, · · · were all zero). By the previous proposition, [P ]0 as well, so

P (∂) = C∂ (70)
for some C ∈ C.

Proposition 3.4. The coefficient C in eq. (70) is equal to 0. �

Proof. We examine eq. (69) for k = 1. Taking into account the vanishing of [P ]j for j 6= 1, this says
that N3,1;Λ,A(Σ) = CΘ(Σ) + Ñ3,1;Λ,A. Since CΘ : R → C is a piecewise continuous function and
N3,1;Λ,A : R→ R is a continuous function, the difference Ñ3,1;Λ,A = N3,1;Λ,A − CΘ is the distribution
corresponding to a piecewise continuous function as well. Then, Ñ3,1;Λ,A(Σ) = N3,1;Λ,A(Σ)−CΘ(Σ)
holds in the ordinary sense for all Σ 6= 0, and we can write

lim
Σ→0+

Ñ3,1;Λ,A(Σ) = lim
Σ→0+

N3,1;Λ,A(Σ)− C = −C. (71)

Given any χ ∈ C∞c (R), from the unconditional convergence, in S ′(R), of the series defining Ñ3,1;Λ,A,

Covol(Λ)
∫ ∞

0
χ(Σ)Ñ3,1;Λ,A(Σ) dΣ = π

3

∫ ∞
0

χ(Σ)Σ4 dΣ

+ 1
2π3

[ ∑
k∈Λ∗\{0}

cos(2πk ·A)
|k|4

] ∫ ∞
0

χ(Σ) dΣ

+ 1
2π2

∑
k∈Λ∗\{0}

1
|k|3 cos(2πk ·A)

∫ ∞
0

χ(Σ)
[
Σ sin(2π|k|Σ)− 1

π|k| cos(2π|k|Σ)
]

dΣ. (72)
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Now suppose that χ is supported in (0,+ε), 0 < ε < 1. In the following computations, we use big-O
notation with bounds independent of χ, ε, and parameters r,R (introduced below). We have the
following bounds:

• The first is
∫∞

0 χ(Σ)Σ4 dΣ = O(ε4‖χ‖L1).
• For any r > 1,∑

k∈Λ∗\{0},|k|≤r

1
|k|3 cos(2πk ·A)

∫ ∞
0

χ(Σ)Σ sin(2π|k|Σ) dΣ = O(ε‖χ‖L1 log(1 + r)). (73)

• For any r > 1,∑
k∈Λ∗,|k|>r

1
|k|3 cos(2πk ·A)

∫ ∞
0

χ(Σ)Σ sin(2π|k|Σ) dΣ

=
∑
|k|>r

1
2π|k|4 cos(2πk ·A)

∫ ∞
0

[χ(Σ) + Σχ′(Σ)] cos(2π|k|Σ) dΣ

= O(r−1(‖χ‖L1 + ε‖χ′‖L1)). (74)

• Since |1− cos(2π|k|Σ)| ≤ 2π2|k|2Σ2 for all Σ ∈ R,∑
k∈Λ∗\{0},|k|≤R

1
|k|4 cos(2πk ·A)

∫ ∞
0

χ(Σ)[1− cos(2π|k|Σ)] dΣ = O(ε2R‖χ‖L1)

for any R > 1.
• On the other hand, just using a sup bound,∑

k∈Λ∗,|k|>R

1
|k|4 cos(2πk ·A)

∫ ∞
0

χ(Σ)[1− cos(2π|k|Σ)] dΣ = O(R−1‖χ‖L1).

Combining these estimates, we conclude that∫ ∞
0

χ(Σ)Ñ3,1;Λ,A(Σ) dΣ = O((ε log(1 + r) + ε2R+R−1 + r−1)‖χ‖L1 + r−1ε‖χ′‖L1). (75)

We now fix χ1 ∈ C∞c (R), supported in the open unit interval and satisfying
∫ 1

0 χ1(σ) dσ = 1, and
we define rescalings χε = ε−1χ1(ε−1σ) for each ε ∈ (0, 1). Then ‖χε‖L1 = ‖χ1‖L1 and ‖χ′ε‖L1 =
ε−1‖χ′1‖L1 . So, eq. (75) says∫ ∞

0
χε(Σ)Ñ3,1;Λ,A(Σ) dΣ = O(ε log(1 + r) + ε2R+R−1 + r−1). (76)

We can choose r = R = ε−1 to conclude that

lim
ε→0+

∫ ∞
0

χε(Σ)Ñ3,1;Λ,A(Σ) dΣ = 0. (77)

By the right-continuity of Ñ3,1;Λ,A at the origin, the left-hand side of eq. (77) is limε→0+ Ñ3,1;Λ,A(ε) =
−C. We can therefore conclude that C = 0. �

Plugging this information into eq. (69), we can deduce the main proposition of this section:

Proposition 3.5. For each k ∈ N,

N3,k;Λ,A(Σ) = 8π
(3 + k)!

Σ3+k

Covol(Λ)

+ 1
πCovol(Λ)

k−1∑
j=0

k − j + 1
j!

1
(2π)k−j+1=[ik−j ]

( ∑
k∈Λ∗\{0}

cos(2πk ·A)
|k|k−j+3

)
Σj + ok;Λ,A(Σ) (78)

as an element of Ṡ ′(R≥0), where ok;Λ,A ∈ Ṡ ′(R≥0) is given by eq. (61). ��
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Comparing Proposition 3.5 with eq. (18) and eq. (19), we conclude Theorem 1.2.

4. The asymptotics of N3,k;Λ,A, k ≥ 1, directly (sans sharpness)

For k ≥ 2, there exist constants ck such that |ok;Λ,A(Σ)| ≤ ckΣ for all Σ ≥ 0. This follows from
the convergence of ∑

k∈Λ∗\{0}

1
|k|2+k (79)

for k ≥ 2, which can be proven e.g. via comparison with a volume integral. We can therefore
conclude that, for k ≥ 2,

N3,k;Λ,A(Σ) = 8π
(3 + k)!

Σ3+k

Covol(Λ)

+ 1
πCovol(Λ)

k−1∑
j=0

k − j + 1
j!

1
(2π)k−j+1=[ik−j ]

( ∑
k∈Λ∗\{0}

cos(2πk ·A)
|k|(k−j+3)

)
Σj +O(Σ), (80)

as for all Σ > 0. Hence, Corollary 1.4 follows immediately from Theorem 1.2. The remainder of this
section is devoted to the k = 1 case.

For k = 1, eq. (79) is harmonically divergent, and so if it is the case that the series in eq. (61) is
convergent for given Σ > 0, it is going to only be conditionally convergent. Nevertheless, we can
still prove that

N3,1;Λ,A(Σ) = πΣ4

3 Covol(Λ) +O(Σ log Σ) (81)

as Σ→∞. By eq. (60),

N3,1;Λ,A(Σ) = πΣ4

3 Covol(Λ) + Σ
2π2 Covol(Λ)

∑
k∈Λ∗\{0}

cos(2πk ·A)
|k|3 sin(2π|k|Σ) +O(Σ), (82)

in the sense that the left-hand side, viewed as an element of S ′(R≥0), and
πΣ4

3 Covol(Λ) + Σ
2π2 Covol(Λ)

∑
k∈Λ∗\{0}

cos(2πk ·A)
|k|3 sin(2π|k|Σ), (83)

also viewed as an element of S ′(R≥0
Σ ), differ by an element of S ′(R≥0) lying in 〈Σ〉L∞(R≥0). In fact,

we can replace 〈Σ〉L∞(R≥0) with 〈Σ〉C0
b(R≥0) in the previous sentence, where C0

b (R≥0) is the set
of continuous bounded functions on the closed half-line.

Let χ ∈ C∞c (R) be a smooth, compactly supported, and real-valued function supported within
the open unit interval (0, 1), satisfying∫ 1

0
χ(σ) dσ = 1 and

∫ 1

0
χ(σ)σk dσ = 0 (84)

for all k = 1, 2, 3, 4. Such a function exists, and indeed χ can be constructed as a linear combination
of 5 bump functions via a linear algebraic argument:

• Let φ1, . . . , φ5 ∈ C∞c ((0, 1)) and M be the 5× 5 matrix whose (i, j)th entry is
∫ 1

0 φi(σ)σj dσ.
Then, χ can be taken as a linear combination of φ1, . . . , φ5 if detM 6= 0. Fix φ0 ∈ C∞c (R)
with φ0(0) = 1 and total mass one, so that, setting

φi(σ) = w−1φ0(w−1(σ − ai))
for i = 1, 2, 3, 4, 5, M can be made arbitrarily close in operator norm to the Vandermonde
matrix V on a1, . . . , a5 (and thus detM made arbitrarily close to detV) by taking w → 0+.
If a1, . . . , a5 are distinct, then detV 6= 0. So, for sufficiently small w, detM 6= 0 too.
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For each Σ0 > 1, let χΣ2
0
(σ) = ςΣ2

0
χ(ςΣ2

0
(σ − Σ0)) for ςΣ2

0
= 1/((Σ2

0 + 1)1/2 − Σ0) = 〈Σ0〉(1 +
O(1/〈Σ2

0〉)). Note that ∫ +∞

−∞
χΣ2

0
(σ) dσ =

∫ √Σ2
0+1

Σ0
χΣ2

0
(σ) dσ = 1. (85)

Then,∫ ∞
0

χΣ2
0
(Σ)

∫ Σ

0
N3;Λ,A(σ) dσ dΣ =

∫ Σ0

0
N3;Λ,A(σ) dσ +

∫ ∞
0

χΣ2
0
(Σ)

∫ Σ

Σ0
N3;Λ,A(σ) dσ dΣ, (86)

which is∫ Σ0

0
N3;Λ,A(σ) dσ +N3;Λ,A(Σ0)

∫ ∞
0

χΣ2
0
(Σ)(Σ− Σ0) dΣ

+
∫ ∞

0
χΣ2

0
(Σ)

∫ Σ

Σ0
(N3;Λ,A(σ)−N3;Λ,A(Σ0)) dσ dΣ. (87)

Per Gauss, the last term is O(Σ0). So,∫ ∞
0

χΣ2
0
(Σ)

∫ Σ

0
N3;Λ,A(σ) dσ dΣ =

∫ Σ0

0
N3;Λ,A(σ) dσ

+N3;Λ,A(Σ0)
∫ ∞

0
χΣ2

0
(Σ)(Σ− Σ0) dΣ +O(Σ0)

=
∫ Σ0

0
N3;Λ,A(σ) dσ +

N3;Λ,A(Σ0)
ςΣ2

0

∫ 1

0
χ(σ)σ dσ +O(Σ0)

=
∫ Σ0

0
N3;Λ,A(σ) dσ +O(Σ0).

(88)
On the other hand, ∫ ∞

0
χΣ2

0
(Σ)Σ4 dΣ =

∫ 1

0
χ(σ)

( σ

ςΣ2
0

− Σ0
)4

dσ = Σ4
0. (89)

Integrating both sides of eq. (82) against χΣ2
0
therefore yields∫ Σ0

0
N3;Λ,A(σ) dσ = πΣ4

0
3 Covol(Λ)

+ 1
Covol(Λ)

∑
k∈Λ∗\{0}

1
|k|3 cos(2πk ·A)

∫ ∞
0

Σ
2π2 sin(2π|k|Σ)χΣ2

0
(Σ) dΣ +O(Σ0), (90)

where the infinite series is absolutely summable. We split the sum into two halves, one with |k| ≤ R
for to-be-determined R > 0 and the (convergent) remainder. The first half is bounded as follows:
noting that ‖χΣ0‖L1 = ‖χ‖L1 ,∣∣∣ ∑

k∈Λ∗\{0},|k|≤R

1
|k|3 cos(2πk ·A)

∫ ∞
0

Σ
2π2 sin(2π|k|Σ)χΣ2

0
(Σ) dΣ

∣∣∣
≤

∑
k∈Λ∗\{0},|k|≤R

1
|k|3

∣∣∣ ∫ ∞
0

Σ
2π2 sin(2π|k|Σ)χΣ2

0
(Σ) dΣ

∣∣∣, (91)

which is bounded above by

‖χ‖L1(Σ2
0 + 1)1/2 ∑

k∈Λ∗\{0},|k|≤R

1
2π2|k|3 ≤ Σ0 log(R+ 1)z (92)
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for some z = z(χ,Λ) > 0 that does not depend on Σ0, R. The second half is bounded as follows:

∣∣∣ ∑
k∈Λ∗,|k|>R

1
|k|3 cos(2πk ·A)

∫ ∞
0

Σ
2π2 sin(2π|k|Σ)χΣ2

0
(Σ) dΣ

∣∣∣
≤
∣∣∣ ∑

k∈Λ∗,|k|>R

1
|k|4

cos(2πk ·A)
∫ ∞

0

Σ
4π3 cos(2π|k|Σ)χ′Σ2

0
(Σ) dΣ

∣∣∣
+
∣∣∣ ∞∑

k∈Λ∗,|k|>R

1
|k|4 cos(2πk ·A)

∫ ∞
0

1
4π3 cos(2π|k|Σ)χΣ2

0
(Σ) dΣ

∣∣∣. (93)

Using χ′Σ2
0
(Σ) = ς2

Σ2
0
χ′(ςΣ2

0
(Σ− Σ0)),

∣∣∣ ∞∑
k∈Λ∗,|k|>R

1
|k|4 cos(2πk ·A)

∫ ∞
0

Σ
4π3 cos(2π|k|Σ)χ′Σ2

0
(Σ) dΣ

∣∣∣
= ς2

Σ2
0

∣∣∣ ∞∑
k∈Λ∗,|k|>R

1
|k|4 cos(2πk ·A)

∫ ∞
0

Σ
4π3 cos(2π|k|Σ)χ′(ςΣ2

0
(Σ− Σ0)) dΣ

∣∣∣ (94)

is bounded above by

zΣ2
0

∞∑
k∈Λ∗,|k|>R

1
|k|4 = O(Σ2

0R
−1) (95)

for some z > 0 (not necessarily the same as before), and likewise for the second term on the
right-hand side of eq. (93). So, if R > 1,∫ Σ0

0
N3;Λ,A(σ) dσ = πΣ4

0
3 Covol(Λ) +O(Σ0 logR) +O(Σ2

0R
−1). (96)

We can therefore take R = Σ0 and conclude that∫ Σ

0
N3;Λ,A(σ) dσ = π

3
Σ4

Covol(Λ) +O(Σ log Σ) (97)

as Σ→∞. We have therefore proven Corollary 1.3.

5. The asymptotics of N3,k;Λ,A, k ≥ 2, via the Fourier transform

Missing from the previous section is a proof that the asymptotic expansions in eq. (80) and
eq. (81) are the best asymptotic expansions possible (assuming, at least, that we are only allowed to
use polynomials). In this section we will give another proof of these expansions, one which makes it
easy to deduce sharpness. While somewhat more involved than the direct arguments above, it uses
only structural features of FN3,0;Λ,A which are guaranteed to hold on conceptual grounds – the
relation to the wave equation on the standard 3-torus – so this approach has some appeal. Note that
while we compute out FN3,0;Λ,A fairly explicitly, we only use this computation in order to prove the
estimate Proposition 5.6 quickly. For the sake of Corollary 1.3, Corollary 1.4, Theorem 1.5, what
matters is the truth of this estimate, not the method of proof. We proceed via an L1, L2-based
analysis of the Fourier transform FN3;Λ,A = FN3;Λ,A(τ), whose singularity structure we analyze in
detail. The results below also serve to verify the hypotheses of the Tauberian theorem in [Sus21],
which, as stated there without proof, applies to the 3-torus.

It is straightforward to compute that:
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Proposition 5.1. For each r ≥ 0, the Fourier transform FJ ∈ S ′(R) of the function J(Σ) =
Θ(Σ)Σ3/2J1/2(2πrΣ) is

FJ(τ) = 4ir1/2 τ

((τ − i0)2 − 4π2r2)2 = 4ir1/2 τ − i0
((τ − i0)2 − 4π2r2)2 , (98)

i.e. the limit limε→0+ Hε ∈ S ′(R) (in the topology of S ′(R)) of Hε(τ) = 4ir1/2(τ − iε)((τ − iε)2 −
4π2r2)−2. ��

Let j ∈ R+. (For the present paper, it suffices to consider j ∈ N+, and for applications to Weyl’s
law more generally, j ∈ N+/2 should suffice.) For each s ∈ R, we have a well-defined Fourier
multiplier 〈D〉−s : S ′(R) → S ′(R). For each p ∈ [1,∞), we let S ′(R) ∩ Lploc(R) denote the set of
tempered distributions locally in Lp(R).

Proposition 5.2. Let j ≥ 1. For each T, s ∈ R and p ∈ [1,∞), (τ − T ± i0)−j ∈ 〈D〉−s(S ′(R) ∩
Lploc(R)) if and only if s < p−1 − j. �

Proof. By the translation invariance of 〈D〉−s, it suffices to consider the case T = 0, that is to show
that

〈D〉s 1
(τ ± i0)j ∈ L

p
loc(R) (99)

under and only under the stated conditions. Via complex conjugation, it suffices to consider the case
of Ps,j(τ) = 〈D〉s(τ−i0)−j . Claim: if j+s is not an integer, then there exists (I) some s, j-dependent
sequence {c`}∞`=0 containing only finitely many nonzero entries and (II) some E ∈ C0(R) such that

Ps,j(τ) =
∞∑
`=0

c`
(τ − i0)j+s−` + E(τ), (100)

where c0 6= 0. Indeed, F−1Ps,j(σ) = 〈σ〉sF−1P0,j(σ) = αj〈σ〉sΘ(σ)σj−1 for some αj ∈ C [GS64, pg.
360]. For any S ∈ N, for sufficiently large σ > 0 we have

〈σ〉s = ES(σ) +
S∑
n=0

βn,sσ
s−n (101)

for some ES ∈ 〈σ〉s−S−1L∞[σ0,∞), for some σ0 > 0. Then,

F−1Ps,j(σ) = αjΘ(σ)σj−1ES(σ) +
S∑
n=0

αjβn,sΘ(σ)σs+j−n−1 (102)

for σ > σ0. Defining ES : R\{0} → C by eq. (102) for all σ ∈ R\{0}, ES ∈ 〈σ〉s−S−1L∞(R) +
σ1−jL1

c(R). If S < s+ j then eq. (102) holds as an equality between tempered distributions. (For
such S, Θ(σ)σs+j−n ∈ L1

loc(Rσ) for all n = 0, . . . , S, so the right-hand side of eq. (102) actually
makes sense as a tempered distribution.) We take S = bs+ jc, which is strictly less than s+ j if s+ j
is not an integer. We have σj−1〈σ〉s−S−1L∞(R) + σj−1L1

c(R) ⊂ L1(R), so Θ(σ)σj−1Es(σ) ∈ L1(R).
Taking the Fourier transform, eq. (100) holds for

E = αjF [Θ(σ)σj−1ES(σ)] ∈ C0(R), (103)

with c` = 0 for ` > j + s. (And we see that the leading order coefficient in the main sum, c0, is
nonzero.)

From eq. (100), we conclude that Ps,j ∈ S ′(R)∩Lploc(R) if and only if j+s ≤ 0 or if τ−j−s ∈ Lploc(R),
meaning that ∫ 1

0

1
τpj+ps

dτ <∞. (104)



20 ELLIOTT FAIRCHILD AND ETHAN SUSSMAN*

This holds if and only if pj + ps < 1. (If j + s ≤ 0, this holds.) This is equivalent to s < p−1 − j.
This completes the proof of the proposition, except when s+ j is an integer, which we handle by
reduction to the generic case:

• If s < p−1 − j, then we can find some s0 with s < s0 < p−1 − j and s0 + j is not an
integer. The argument above therefore shows that Ps0,j ∈ S ′(R) ∩ Lploc(R). We have
Ps,j = 〈D〉s−s0Ps0,j . Since 〈D〉s−s0 : S ′(R) → S ′(R) is a Fourier multiplier (and a Kohn-
Nirenberg ΨDO) of negative order, the subspace S ′(R) ∩ Lploc(R) ⊂ S ′(R) is closed under it,
so Ps,j ∈ S ′(R) ∩ Lploc(R).
• If s > p−1 − j, then we can find some s0 with s > s0 > p−1 − j and s0 + j is not an integer.
If Ps,j were in S ′(R)∩Lploc(R), then Ps0,j = 〈D〉−(s−s0)Ps,j would be too. But the argument
above shows that Ps0,j /∈ L

p
loc(R).

• The one remaining case of the proposition is s = p−1 − j and s+ j ∈ Z. Since p ∈ [1,∞),
this can only hold if p = 1. If Ps,j were in S ′(R) ∩ L1

loc(R), then, for any Schwartz χ,
(F−1χ)Ps,j ∈ L1(R), which implies that

χ(σ) ∗ 〈σ〉sΘ(σ)σj−1 ∈ C0(R) (105)

and satisfies
lim
σ→∞

χ(σ) ∗ 〈σ〉sΘ(σ)σj−1 = 0. (106)

But, if
∫+∞
−∞ χ(σ) dσ 6= 0 then this is false, as limσ→∞ χ(σ) ∗ 〈σ〉sΘ(σ)σj−1 =

∫+∞
−∞ χ(σ) dσ.

�

We deduce:

Proposition 5.3. Suppose that f ∈ S ′(R) is a tempered distribution with singular support at a
single point T ∈ R, and suppose that

f(τ) =
∑
j∈J

αj
(τ − T ± i0)j mod C∞ (107)

in some neighborhood of T , for some finite subset J ⊂ [1,∞) and some αj ∈ C. Then, for s ∈ R
and p ∈ [1,∞), f ∈ 〈D〉−sLploc(R) if and only if maxJ < p−1 − s. ��

Proposition 5.4. Equation (16) holds, and the Fourier transform FN3;Λ,A(τ) ∈ S ′(Rτ ) of N3;Λ,A
is given by

F
(
N3;Λ,A(Σ)− 4π

3
Σ3

Covol(Λ)Θ(Σ)
)
(τ) = 8π

Covol(Λ)
∑

k∈Λ∗\{0}

cos(2πk ·A)
((τ − i0)2 − 4π2|k|2)2 , (108)

where the sum on the right-hand side is (unconditionally) convergent in S ′(Rτ ). �

Proof. Since F : S ′(R)→ S ′(R) is continuous, the Fourier transform of the sum on the right-hand
side of Proposition 3.3 is, up to a factor of 1/Covol(Λ),

F
∑

k∈Λ∗\{0}

2π
|k|1/2

cos(2πk ·A)Θ(Σ)Σ3/2J1/2(2π|k|Σ)

=
∑

k∈Λ∗\{0}

2π
|k|1/2

cos(2πk ·A)F [Θ(Σ)Σ3/2J1/2(2π|k|Σ)]. (109)

By Proposition 5.1, the right-hand side is Covol(Λ)−18πiτ
∑

k∈Λ∗\{0} cos(2πk · A)((τ − i0)2 −
4π2|k|2)−2.

Combining this with standard formula for F [Θ(Σ)Σ2] [GS64], we get eq. (16). On the other hand,
integrating, we get eq. (108), eq. (17). �
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Consider now the case Λ = Z3,A = 0. The series,
∞∑
n=1

r3(n)
((τ − i0)2 − 4π2n)2 , (110)

where r3(n) = {(n1, n2, n3) ∈ Z3 : n2
1 + n2

2 + n2
3 = n}, on the right-hand side of eq. (108) is

convergent in the topology of tempered distributions. Moreover, the series converges pointwise for
all τ /∈ 2π

√
N+. In fact, it converges uniformly on compact neighborhoods disjoint from 2π

√
N+

(and in fact the same holds for derivatives). At τ ∈ 2π
√
N+, only one term in eq. (110) is singular,

and the sum of the rest is uniformly convergent in some neighborhood. Consequently, the singularity
of the right-hand side of eq. (110) at τ = 2π

√
n is no worse than the singularity of the term

((τ − i0)2 − 4π2n)−2 at τ = 2π
√
n, and – assuming that r3(n) 6= 0 – it is precisely as bad. So, we

expect the local Sobolev regularity of F(N3(Σ) − (4/3)πΣ3Θ(Σ))(τ) to be explicitly analyzable
by expanding ((τ − i0)2 − 4π2n)−2 in Laurent series around τ = 2π

√
n. The global estimates will

require an additional argument.
When computing the Fourier transforms of N3,k;Λ,A for k ≥ 1, we multiply by a nonzero power of

1/τ . For τ 6= 0, the upshot of the previous paragraph remains unchanged, but this division produces
a singularity at τ = 0 in each term in eq. (110). Let τ2 = τ2. For r > 0,

∂k

∂τk2

1
(τ2 − 4π2r2)2

∣∣∣
τ2=0

= (k + 1)!
(4π2r2)k+2 = (k + 1)!

(2π)2k+4
1

r2k+4 . (111)

The Kth order Taylor series of (τ2 − 4π2r2)−2 in τ2 around τ2 = 0 is therefore
K∑
k=0

τk2
k!

∂k

∂τk2

1
(τ2 − 4π2r2)2

∣∣∣
τ2=0

=
K∑
k=0

k + 1
(2π)2k+4

τk2
r2k+4 , (112)

which we consider as an even polynomial of τ .
Consider, for each L ∈ N, K ∈ N ∪ {−1}, the tempered distribution

FL,K,r(τ) =
[ 1
(τ − i0)L

1
((τ − i0)2 − 4π2r2)2 −

K∑
k=0

k + 1
(2π)2k+4

1
r2k+4

1
(τ − i0)L−2k

]
, (113)

which we will estimate.
• Via Taylor’s theorem, FL,K,r is a function for τ in some punctured neighborhood of the
origin, of size O(τ2K+2−L) as τ → 0. We will choose K so that the singularity of FL,K,r(τ)
at τ = 0 is no greater than the singularity of (τ2 − 4π2r2)−2 at τ = ±2πr2, that is second
order. In other words, we should take 2K + 2− L ≥ −2, i.e. K ≥ dL/2e − 2.
• As τ → ±∞, on the other hand, FL,K,r(τ) = O(|τ |2K−L). In order for 〈τ〉2K−L to be
integrable, we should have 2K − L < −1, i.e. K < (L− 1)/2.

In particular, K = dL/2e − 2 satisfies our requirements.

Proposition 5.5. For any L ∈ N, ‖FFL,K,1‖〈Σ〉L∞(RΣ) <∞ if K = dL/2e − 2. �

Proof. We choose χ1, χ2 ∈ C∞c (R) and χ3 ∈ S(R) such that χ1 is supported in a neighborhood
of the origin away from 2π, χ2 is supported in a neighborhood of 2π away from the origin, χ3 is
identically zero in [−1, 8], and χ1 + χ2 + χ3 = 1. (Such functions exist.) Then

‖FFL,K,1‖〈Σ〉L∞(RΣ) ≤
3∑
j=1
‖FχjFL,K,1‖〈Σ〉L∞(RΣ). (114)

The function χ3FL,K,1 is smooth and absolutely integrable, so

‖Fχ3FL,K,1‖〈Σ〉L∞(RΣ) <∞. (115)
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On the other hand, χ1FL,K,1 = E(τ) + αχ1(τ)(τ − i0)−2 + βχ1(τ)(τ − i0)−1 for some smooth,
absolutely integrable E and some α, β ∈ C. Then FE is continuous and uniformly bounded, and
F(χ1(τ − i0)−2)(Σ) = Fχ1 ∗ F((τ − i0)−2)(Σ) is the convolution of a Schwartz function with an
element of 〈Σ〉L∞(RΣ) and is therefore in 〈Σ〉L∞(RΣ) as well. An analogous argument applies to
F(χ1(τ)(τ − i0)−1)(Σ). We conclude that

‖Fχ1FL,K,1‖〈Σ〉L∞(RΣ) <∞. (116)

A similar argument applies to the second term in eq. (114), so

‖Fχ2FL,K,1‖〈Σ〉L∞(RΣ) <∞. (117)

Combining the estimates eq. (115), eq. (116), and eq. (117) with eq. (114), we get the result
‖FFL,K,1‖〈Σ〉L∞(RΣ) <∞. �

Proposition 5.6. If L ∈ {2, 3, 4, · · · } and K = dL/2e − 2,∑
k∈Λ∗\{0}

‖FFL,K,|k|‖〈Σ〉L∞(RΣ) <∞. (118)

�

Proof. First note that FL,K,|k|(τ) = |k|−4−LFL,K,1(τ/|k|). (Indeed, we can replace the τ − i0
in eq. (113) with |k|(τ/|k| − i0) and then factor out the factor of |k|.) Second, note that
F [FL,K,1(τ/|k|)](σ) = |k|FFL,K,1(|k|σ). Third,

‖FFL,K,1(|k|σ)‖〈σ〉L∞(Rσ) = ‖〈σ〉−1FFL,K,1(|k|σ)‖L∞(Rσ) (119)
= ‖〈|k|−1σ〉−1FFL,K,1(σ)‖L∞(Rσ). (120)

Fourth, 〈|k|−1σ〉−1 ≤ |k|〈σ〉−1. Therefore, ‖FFL,K,|k|‖〈σ〉L∞(Rσ) ≤ |k|−2−L‖FFL,K,1‖〈σ〉L∞(Rσ). It
follows that

∞∑
k∈Λ∗\{0}

‖FFL,K,|k|‖〈σ〉L∞(Rσ) ≤ ‖FFL,K,1‖〈σ〉L∞(Rσ)
∑

k∈Λ∗\{0}

1
|k|2+L . (121)

This will be finite if (and only if) L > 1 (and since L is an integer, L ≥ 2) and ‖FFL,K,1‖〈σ〉L∞(Rσ) <
∞. By Proposition 5.5, this holds for the given K. �

Since
N ′3,k;Λ,A(σ) = N3,k−1;Λ,A(σ) (122)

holds as an identity of tempered distributions,

FN3,k−1;Λ,A(τ) = F [N ′3,k;Λ,A](τ) = iτFN3,k;Λ,A(τ). (123)

We inductively conclude (using Proposition A.4 repeatedly) that

FN3,k;Λ,A(τ) =
(
− i

τ − i0
)k
FN3,0;Λ,A(τ) =

(
− i

τ − i0
)k+1

F
∑
Σ∈Λ

δ(Σ− |Σ + A|)

=
(
− i

τ − i0
)k+1 1

Covol(Λ)F
[
4πΣ2Θ(Σ) + Σ3/2 ∑

k∈Λ∗\{0}

2π
|k|1/2

cos(2πk ·A)Θ(Σ)J1/2(2π|k|Σ)
]
.

(124)
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Consequently, letting N̄3,k;Λ,A(Σ) = N3,k;Λ,A(Σ)− 8πCovol(Λ)−1Σ3+kΘ(Σ)/(3 + k)!, we have

FN̄3,k;Λ,A(τ) =
(
− i

τ − i0
)k+1 1

Covol(Λ)F
[
Σ3/2 ∑

k∈Λ∗\{0}

2π
|k|1/2

cos(2πk ·A)Θ(Σ)J1/2(2π|k|Σ)
]

=
(
− i

τ − i0
)k+1 1

Covol(Λ)
[
8πiτ

∑
k∈Λ∗\{0}

cos(2πk ·A)
((τ − i0)2 − 4π2|k|2)2

]

=
(
− i

τ − i0
)k 8π

Covol(Λ)
[ ∑

k∈Λ∗\{0}

cos(2πk ·A)
((τ − i0)2 − 4π2|k|2)2

]
.

(125)

For any K ∈ N, we can rewrite eq. (125) as follows (replacing the dummy variable ‘k’ with m ∈ N
to avoid conflict):

FN̄3,m;Λ,A(τ) = 8π(−i)m

Covol(Λ)
∑

k∈Λ∗\{0}
cos(2πk ·A)

[
Fm,K,|k|(τ) + 1

(τ − i0)m
K∑
k=0

k + 1
(2π)2k+4

τk2
|k|2k+4

]
.

(126)
Rearranging,

FN̄3,m;Λ,A(τ) = 8π
Covol(Λ)(−i)m

[ ∑
k∈Λ∗\{0}

cos(2πk ·A)Fm,K,|k|(τ)
]

+ 8π
Covol(Λ)

(
− i

τ − i0
)m K∑

k=0

k + 1
(2π)2k+4 τ

k
2

∑
k∈Λ∗\{0}

cos(2πk ·A)
|k|2k+4 . (127)

(Note that
∑

k∈Λ∗\{0} |k|−2k−4 is absolutely convergent for each k ≥ 0.)
We now take m ≥ 2 and K = dm/2e − 2, so that

∑
k∈Λ∗\{0}‖F−1Fm,K,|k|‖〈Σ〉L∞(RΣ) < ∞, per

the conclusion of Proposition 5.6.
Recall the following computation — cf. [GS64, pg. 360]: for each ` ∈ R+,

F−1[(τ − i0)−`](σ) = (+i)`Θ(σ)σ`−1/(`− 1)!. (128)

Applying F−1 to eq. (127) and using the fact that
∑

k∈Λ∗\{0} cos(2πk ·A)Fm,K,|k|(τ) is (uncondi-
tionally) convergent in S ′(Rτ ),

N̄3,m;Λ,A(Σ) = O(Σ) + 8π(−i)m

Covol(Λ)

K∑
k=0

k + 1
(2π)2k+4

( ∑
k∈Λ∗\{0}

cos(2πk ·A)
|k|2k+4

)
F−1[(τ − i0)2k−m](Σ)

(129)

= O(Σ) + 8π
Covol(Λ)

K∑
k=0

k + 1
(2π)2k+4 (−1)k

( ∑
k∈Λ∗\{0}

cos(2πk ·A)
|k|2k+4

) Σm−2k−1

(m− 2k − 1)! . (130)

We conclude – independently of §3,4 – that eq. (22) holds, with Cj;Λ,A = 0 if j ∈ N is odd and with

Cj;Λ,A = (2j + 4)
Covol(Λ)(2π)j+3 (−1)j/2

∑
k∈Λ∗\{0}

1
|k|4+j cos(2πk ·A) (131)

if j is even.

Proposition 5.7. For all k ∈ N, there does not exist an ε > 0 such that, for some polynomial
Z(σ) = ZΛ,A(σ) ∈ C[σ], we have N3,k;Λ,A(Σ)− Z(Σ) = O(Σ1−ε) as Σ→∞. �
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Proof. If N3,k;Λ,A(Σ)− Z(Σ) = O(Σ1−ε) as Σ→∞, then N3,k;Λ,A(Σ)−Θ(Σ)Z(Σ) ∈ 〈Σ〉3/2L2(RΣ).
Taking the Fourier transform (and using the fact that F [ΘZ](τ) is singular only at τ = 0), we
deduce that

FN3;Λ,A(τ) ∈ 〈D〉3/2(S ′(R) ∩ L2
loc(Rτ\{0})). (132)

Via Proposition 5.4, expanding the kth term in eq. (108) in Taylor series around τ = 2π|k|
and checking that the sum of the rest is smooth in a neighborhood of this point, and applying
Proposition 5.3 with j = 2, s = −3/2, p = 2, this is not the case. �

This completes the proof of Theorem 1.5.

Appendix A. Integration in Ṡ ′(R≥0)

Recall Schwartz’s definition of differentiation of distributions, ∂ : S ′(R) → S ′(R) (restricting
attention to tempered distributions, for simplicity), defined by

(∂u)(χ) = −u(∂χ), (133)
for any u ∈ S ′(R), where χ ∈ S(R). Recall or observe that kerS′(R)(∂) = {u ∈ S ′(R) : ∂u = 0}
consists precisely of constant functions.

Restricting ∂ to the (topological and linear) subspace Ṡ ′(R≥0) ⊂ S ′(R), we get a continuous and
linear map

∂ : Ṡ ′(R≥0)→ Ṡ ′(R≥0), (134)
and, since the only constant function in Ṡ ′(R≥0) is identically zero, this is injective, unlike ∂ :
S ′(R)→ S ′(R). Likewise, since ∂C[∂]δ ⊂ C[∂]δ, ∂ induces a continuous linear map

∂ : Ṡ ′(R≥0)/C[∂]δ → Ṡ ′(R≥0)/C[∂]δ (135)
on the quotient LCTVS Ṡ ′(R≥0)/C[∂]δ. This LCTVS is (per our conventions) canonically identified
with S ′(R≥0), so we can consider the map as a continuous, linear map ∂ : S ′(R≥0)→ S ′(R≥0).

Proposition A.1. kerS′(R≥0)(∂) = {u ∈ S ′(R≥0) : ∂u = 0} = {cΘ mod C[∂]δ : c ∈ C}. ��

The significance is that an extendable distribution on R≥0 is only determined by its derivative up
to a scalar multiple of Θ.

Proposition A.2. Given any u ∈ Ṡ ′(R≥0), there exists some v ∈ Ṡ ′(R≥0) such ∂v = u. �

Proof. First, given u ∈ Ṡ ′(R≥0), we define a map Iu : ∂S(R)→ C by

Iu(χ) = −
∫ +∞

−∞
u(Σ)

[ ∫ Σ

−∞
χ(σ) dσ

]
dΣ = −u

( ∫ •
−∞

χ(σ) dσ
)
. (136)

Note that Iu is continuous with respect to the subspace topology on ∂S(R) ⊂ S(R). Choose any
χ0 ∈ C∞c (R) supported in R+ with

∫+∞
−∞ χ0(σ) dσ = 1. Then, any element χ ∈ S(R) can be written

as
χ(Σ) =

(
χ(Σ)− χ0(Σ)

∫ +∞

−∞
χ(σ) dσ

)
+ χ0(Σ)

∫ +∞

−∞
χ(σ) dσ, (137)

and the first summand on the right-hand side is in ∂S(R). The map Π : S(R) → ∂S(R) ⊂ S(R)
given by χ 7→ χ− χ0

∫+∞
−∞ χ(σ) dσ is continuous, so

χ0

∫
u : S(R)→ C,

[
χ0

∫
u
]
(χ) = Iu(Πχ), (138)

where χ ∈ S(R), defines a continuous map, hence a tempered distribution. By construction,
χ0
∫
u(∂χ) = Iu(∂χ) = −u(χ), so ∂(χ0

∫
)u = u.

Depending on the choice of χ0, χ0
∫
u ∈ S ′(R) is not necessarily in Ṡ ′(R≥0). However, ∂χ0

∫
u is

zero in (−∞, 0), which implies that there exists some constant c ∈ C such that v = −c+ χ0
∫
u is in

Ṡ ′(R≥0), and v satisfies ∂v = u. �
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Consequently:

Proposition A.3. The operator eq. (134) is an automorphism in the category of TVSs. �

Proof. By the previous proposition, ∂ : Ṡ ′(R≥0)→ Ṡ ′(R≥0) is a bijective linear map, hence a linear
automorphism, and it is continuous (since it is continuous on S ′(R)). It remains to show that the
set-theoretic inverse ∫

= ∂−1 : Ṡ ′(R≥0)→ Ṡ ′(R≥0), (139)

which is linear, is continuous. Since Ṡ ′(R≥0) ⊂ S ′(R) is endowed with the subspace topology and
S ′(R) is endowed with the usual weak-∗ topology, this means showing that evalχ : Ṡ ′(R≥0) 3 u 7→
∂−1u(χ) ∈ C is continuous for each χ ∈ S(R).

Letting c, χ0 be as in the proof of the previous proposition,

∂−1u(χ) = −c− u
( ∫ •
−∞

[
χ(σ)− χ0(σ)

∫ +∞

−∞
χ(s) ds

]
dσ
)

(140)

for any u ∈ Ṡ ′(R≥0). Fixing χ, the Schwartz function in the parentheses above is fixed, so the
continuity of eq. (140) in u is immediate from the definition of the weak-∗ topology. �

Proposition A.4. If u, v are as in Proposition A.2, then Fv = −i(τ − i0)−1Fu, where the
multiplication on the right-hand side is well-defined (in the sense of Hörmander [Hör90, Definition
2.1, Proposition 2.2]). �

Proof. Assuming that −i(τ − i0)−1Fu ∈ D′(R) is defined via [Hör68b, Definition 2.1], then, since
u = ∂v,

− i(τ − i0)−1Fu = τ(τ − i0)−1Fv = Fv (141)
as an element of D′(R). Since a tempered distribution is uniquely determined by its restriction
to elements of C∞c (R), we can deduce from eq. (141) that −i(τ − i0)−1Fu = Fv as tempered
distributions.

So, it only needs to be checked that the product (τ − i0)−1Fu is well-defined in the sense of
Hörmander, which means that

R2 = T ∗R ⊃ W̃F[(τ − i0)−1] ∩WF[Fu] = ∅, (142)
where the tilde denotes (co)fiberwise reflection across the zero section. This follows from the
observation that the Fourier transform of any element of Ṡ ′(R≥0) has one-sided wavefront set;
likewise, (τ − i0)−1 has a one-sided wavefront set, and our conventions regarding signs in the Fourier
transform are such that the two sides agree, so that eq. (142) holds. �
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