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Abstract. Consider a Schrödinger operator on an asymptotically Euclidean manifold X of dimen-
sion at least two, and suppose that the potential is of attractive Coulomb-like type. Using Vasy’s
second 2nd-microlocal approach, “the Lagrangian approach,” we analyze – uniformly, all the way
down to E = 0 – the output of the limiting resolvent R(E ± i0) = limε→0+ R(E ± iε). The Coulomb
potential causes the output of the low-energy resolvent to possess oscillatory asymptotics which
differ substantially from the sorts of asymptotics observed in the short-range case by Guillarmou,
Hassell, Sikora, and (more recently) Hintz and Vasy. Specifically, the compound asymptotics at low
energy and large spatial scales are more delicate, and the resolvent output is smooth all the way
down to E = 0. In fact, we will construct a compactification of (0, 1]E ×X on which the resolvent
output is given by a specified (and relatively complicated) function that oscillates as r →∞ times
something polyhomogeneous. As a corollary, we get complete and compatible asymptotic expansions
for solutions to the scattering problem as functions of both position and energy, with a transitional
regime.
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1. Introduction

In [Mel94], Melrose introduced the programme of understanding the limiting absorption principle
on asymptotically conic (a.k.a. asymptotically Euclidean) manifolds (denoted X below) from the
microlocal point of view, initially for the Laplacian and then for Schrödinger operators more generally
[Mel94, §16]. The case of fixed energy E > 0 was dealt with first by Melrose [Mel94], then by
Hassell & Vasy [HV99] and – using a more modern approach – Vasy [Vas21a] again, while uniform
estimates in the high energy (a.k.a. “semiclassical,” E →∞) limit have been established by Vasy
& Zworski [VZ00] and Vasy [Vas21a, §5]. More recently, the low energy E → 0+ behavior has
been understood to a highly satisfactory degree in the works of Guillarmou, Hassell, and Sikora
[GHS13] and Vasy [Vas21b][Vas21c] — see also Hintz [Hin21, §2]. (Complementarily, Guillarmou
and Hassell [GH08][GH09] consider the E → 0− limit of the resolvent kernel.) While the previous
results applied to all Schrödinger operators (with the semiclassical results holding under standard
dynamical assumptions), the low energy results proven so far in this level of generality apply only
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to Schrödinger operators without Coulomb-like (a.k.a. long range) terms. Indeed, a Coulomb-like
potential has a serious effect on the asymptotics of formal Schrödinger eigenfunctions in the low
energy limit — this is true in the context of Euclidean potential scattering, and the general case
inherits that complexity.

In this paper, we study the case of an attractive Coulomb-like potential using the framework
of [Vas21a][Vas21c], Vasy’s 2nd second microlocal approach (the “Lagrangian approach”). This
is in contrast to his 1st second microlocal approach to the low energy limit, pursued in [Vas21b],
which utilized variable order Sobolev spaces (as previously used in e.g. [Vas18, Proposition 5.28]
for the E > 0 case). The use of the term “Lagrangian” belies the fact that the framework of
Lagrangian (more properly Legendrian) distributions does not appear explicitly in this approach
— in fact this is precisely the point: instead of “module regularity [HMV04, §6][Gel+20] for a
Lagrangian submanifold” – which implies extra regularity outside of that submanifold via some
elliptic estimates – we need only consider b-Sobolev regularity. We use a conjugation to move
what would otherwise have been the energy-dependent Legendrian submanifold for which module
regularity (in this case essentially the Sommerfeld radiation condition) is established to the zero
section of the scattering cotangent bundle (which can be blown up to the fibers of the b-cotangent
bundle over the boundary). The upshot is that the Sommerfeld radiation condition, in one of its
forms, is replaced by a condition regarding b-Sobolev regularity. This is convenient for getting
estimates which are uniform in E because, unlike the relevant notion of module regularity prior
to conjugation (see e.g. [HMV04][Gel+20]), in which the relevant test module depends on E, the
relevant notion of b-regularity (as stated in [Vas21a, Theorem 1.1]) does not depend so much on E.
(The sharpest form of [Vas21a, Theorem 1.1] is phrased using sc,b-Sobolev regularity, which is a
form of module regularity — the key point here is that the relevant test module is E-independent.)

We will apply similar considerations to the study of the E → 0+ limit of the limiting resolvents
“P ((E ± i0)1/2)−1 = (P (0)− E ∓ i0)−1” of the Schrödinger operator

P (0) = 4g − Zx+ V, (1)

where V is short-range and Z > 0, so the total potential W = −Zx+ V is of attractive Coulomb-
like type. Here x ∈ C∞(X;R≥0) is a boundary defining function (bdf), e.g. 1/〈r〉 when X
is asymptotically Euclidean, r denoting the Euclidean radial coordinate. (Note: we follow the
convention of parametrizing the spectral family {P (0)− E}E≥0 of P (0) in terms of σ = E1/2, so we
write P (σ) = P (0)− σ2.) Singular versions of the operator eq. (1) first appeared in Schrödinger’s
model of atomic hydrogen – or more generally hydrogenic ions – hence the operators we consider
could also be called “hydrogen-like.” In eq. (1), 4g ≥ 0 is the positive semidefinite Laplacian
associated with an asymptotically conic metric. The conjugated perspective complicates the family
of operators under consideration (see §3) – more so than in the case Z = 0, when the total potential
is short-range – but it greatly facilitates the derivation of low energy asymptotics. See below for a
heuristic discussion (and §6 for details). It should be noted that although we work with general
asymptotically conic manifolds, our results are new even on exact Euclidean space. The existing
literature on low energy asymptotics in the presence of a Coulomb-like term is quite sparse — the only
previous treatments the author is aware of are [Yaf82][Nak94][FS04][DS09b][DS09a][Bou11][Ski13].
In comparison to these earlier works, we require more of our potential, but the payoff is a complete
understanding of asymptotics at spatial infinity.

We comment briefly on our focus on the case E > 0 and Z > 0. Considering the spectral family
of a not-necessarily-attractive Coulomb-like Schrödinger operator at energy E ∈ R\{0} and with
attractivity strength Z ∈ R\{0} (the atomic number for the case of an electron orbiting an atomic
nucleus, using appropriately natural units): out of the four cases (I) E > 0,Z > 0 (attractive,
scattering near zero energy), (II) E < 0,Z > 0 (attractive, ellipticity near zero energy), (III)
E > 0,Z < 0 (repulsive, scattering near zero energy), (IV) E < 0,Z < 0 (repulsive, ellipticity near
zero energy), the first and fourth are the most tractable, as evidenced by the state of the literature
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on similar problems in exact Euclidean space — see [Yaf82][Nak94] for work on cases (I) and (III)
and [FS04][Ski13] for case (I). In the more difficult case (II), for example, one can encounter an
infinite sequence of bound states, as in the hydrogen atom — see [Ivr19, Theorem 11.6.7]. Case
(III), which has been studied partially in [Yaf82], is expected to be intermediate between (II) and (I)
in terms of difficulty. While our focus is on (I), the pseudodifferential technology developed yields
an easy treatment of case (IV).

The jumping off point for our analysis is the proof of a symbolic estimate, Theorem 5.12,
of u ∈ S ′(X) in terms of f = P (E1/2)u that is uniform down to E = 0. The estimate is
structurally similar to the combined radial point and propagation estimates proven for E > 0 in
[Mel94, §8]. We will formulate the estimate in a “second microlocal” framework akin to that in
[Vas21a], as this dovetails with the conjugated perspective, but a similar estimate can be articulated
using function spaces analogous to the somewhat more standard variable order sc-Sobolev spaces
[Vas13][Vas18][Gel+20]. To illustrate the idea, we rewrite the operator P (σ) in terms of the
coordinate x̂ = x/σ2, which is appropriate for homogenizing the spectral parameter and Coulomb
potential. To the relevant order, σ−2P (σ) is given in terms of x̂, σ > 0, the latter of which we
suggestively rename ‘h,’ by

P̂ (h) = −h2(x̂2∂x̂)2 + h2x̂24∂X − 1− Zx̂, (2)

which we consider as a 1-parameter family of operators on the exact cone [0,∞)x̂ × ∂X. Note that
σ = h appears on the right-hand side of eq. (2) as an effective semiclassical parameter (somewhat
surprisingly, since semiclassical problems typically arise in the study of the high energy regime rather
than the low energy regime of interest here), and so P̂ can be studied as a semiclassical operator on
an exact cone, an approach that seems to have first been undertaken by Nakamura [Nak94]. This
conic problem differs from the conic problem arising in [Wan06][GH08][GHS13][Vas21c], which has
no semiclassical parameter. The qualitative features of the semiclassical family defined by eq. (2)
are as follows:

• At the “large” end of the cone, {x̂ = 0}, P̂ (h) is of real principal type for each h > 0. This
holds regardless of the sign of Z and reflects the dynamical structure of P (σ) for σ > 0.
• At {x̂ = ∞}, we use x̂−1/2 as a bdf, and then P̂ (h) is of real principal type there too for
each h > 0. This behavior depends on the sign of Z.
• At h = 0, one has real principal type propagation from x̂ = 0 to x̂ =∞ (at finite frequencies).

The last of these is of secondary importance below. The situation changes completely if Z < 0 or if
E < 0. Then, eq. (2) is to be replaced by

P̂ (h) = −h2(x̂2∂x̂)2 + h2x̂24∂X ± 1± Zx̂, (3)

where the first sign is that of −E and the second sign is that of −Z, each possible pair of signs
corresponding to one of the four cases (I), (II), (III), (IV) above. If E < 0, then eq. (3) is elliptic
at the large end of the cone, and if Z < 0 then eq. (3) is elliptic at the small end of the cone.
Even for the case when X is one-dimensional, one subtlety of the cases (II) E < 0,Z > 0 and (III)
E > 0,Z < 0 is understanding precisely the transition from ellipticity to nonellipticity that occurs
at h = 0 and x̂ = 1/|Z|. This subtlety arises, for example, in physicists’ treatment of the WKB
approximation, where Airy functions are used to patch quasimodes in the classically allowed and
classically forbidden regions — see [SN17] for a standard treatment at a physicist’s level of rigor. In
case (II), the full partial differential operator eq. (3) has an additional subtlety: its Hamiltonian
flow has closed loops corresponding to classical Keplerian orbits. See [Ivr19, §11.6] for a discussion
of the effects of this on eigenvalue counting.

We do not use semiclassical terminology in the rest of this paper, but it is worth mentioning
that the ODE ansatz employed below is essentially just the WKB ansatz for the corresponding
semiclassical problem.
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Figure 1. The mwc Xsp
res = [[0,∞)E×X; {0}×∂X; 1/2], with bdfs %bf00 = Zx/(σ2 +

Zx), %tf00 = (σ2 + Zx)1/2, and %zf00 = σ2/(σ2 + Zx) in terms of E1/2 = σ. This is
Xsp

res,0 = [[0,∞)E ×X; {0} × ∂X] with the smooth structure at the front face of the
blow-up modified. The interior of the mwc is to the upper-left of the drawn boundary.
(Degrees of freedom associated with ∂X omitted from the diagram.)

Zooming back from the boundary, we will analyze P (σ) on a mwc (“mwc” standing for “manifold-
with-corners,” in the sense of Melrose’s school [Mel92]) which we will denote Xsp

res = [[0,∞)E ×
X; {0} × ∂X; 1

2 ], depicted in Figure 1. This is the result of modifying the smooth structure of
Xsp

res,0 = [[0,∞)E ×X; {0} × ∂X] (4)

at the front face of the blow-up so that (E + x)1/2 becomes a bdf. One can analyze P (σ) by
quantizing the Lie algebra Vsc,leC(X) of smooth vector fields on Xsp

res that
(I) are tangent to the level sets of E,
(II) lie in %bf00%tf00C

∞(Xsp
res)⊗ Vb(X) ⊂ VE(Xsp

res),
where %bf00 , %tf00 are as in Figure 1 and VE(Xsp

res) is the Lie algebra of smooth vector fields on Xsp
res.

The quotient algebra Vsc,leC(X)/%bf00%tf00Vsc,leC(X) is commutative, so the corresponding ΨDO
calculus (which is closely related to the leC-calculus discussed below) is under symbolic control.
This allows us to prove a half-Fredholm estimate involving variable order “sc,leC”-Sobolev spaces
that is uniform down to zero energy. The second-microlocal estimate Theorem 5.12 is a sharper
version of this.

Although it is not our most general result (as the main propositions of §5, §6 require less
classicality), we will prove the following “main” theorem. We state it using some standard or
semistandard terminology, which, if not standard, is recalled in §1.1 below. The special case of
Euclidean potential scattering off of an attractive asymptotically Coulomb-like potential is partially
stated in Corollary 1.3, Corollary 1.4, and Corollary 1.5.

Theorem 1.1. Suppose that (X, ι, g0) is an exactly conic manifold of dimension dimX = n ≥ 2,
and let x ∈ C∞(X), x : X → [0,∞), denote a compatible boundary-defining-function (bdf), so that,
near ∂X,

g0 = dx2

x4 + g∂X
x2 (5)

for some Riemannian metric g∂X on ∂X. Let g denote a fully classical asymptotically conic metric
on X, which in this context means a Riemannian metric on X◦ = X\∂X which near ∂X has the
form

g = g0 + a00
dx2

x3 + Γ1,∂X � dx
x2 + h1,∂X

x
+ x2C∞(X; scSym2T ∗X) (6)

for some a00 ∈ R, Γ1,∂X ∈ Ω1(∂X), and h1,∂X ∈ C∞(∂X; Sym2 T ∗∂X). Given Z > 0 and
V ∈ x2C∞(X;R), consider the Schrödinger operator

P (0) = 4g − Zx+ V : S ′(X)→ S ′(X), (7)
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where 4g is the (positive semidefinite) Laplacian. For each E > 0, let

R(E ± i0) = R(E ± i0; Z) : S(X)→ S ′(X) (8)

denote the limiting resolvent from above or below the spectrum — cf. Melrose [Mel94, §14]. (That
is, for any f ∈ S(X), u± = R(E ± i0)f is the unique solution to P (0)u = Eu + f satisfying the
weak Sommerfeld radiation condition [Mel94, §11].) Set

Φ(x;σ) = 1
x

√
σ2 + Zx− σ2a00x+ 1

σ
(Z− σ2a00) arcsinh

( σ

x1/2
1

(Z− σ2a00)1/2

)
(9)

for all σ > 0 such that σ2a00 < Z.
Then, for any Schwartz function f ∈ S(X), the function u0,± on Xsp

res ∩ {Z > Ea00} defined by

u± = e±iΦ(x;E1/2)x(n−1)/2(E + Zx)−1/4u0,± (10)

(for E such that Z > Ea00) is polyhomogeneous on Xsp
res ∩ {Z > Ea00}, conormal of order zero, and

smooth at zf◦ ∪ bf◦.
Moreover, R(E = 0; Z ± i0) : S(X) → S ′(X) is well-defined (e.g. as a strong limit of R(E =

0; Z± iε) as ε→ 0+), and we can write u±(−; 0) = R(E = 0; Z± i0)f as

u±(−; 0) = e±iΦ(x;0)x(n−1)/2(Zx)−1/4u0,±(−; 0) (11)

(Φ(−; 0) being defined by removing the removable singularity of eq. (9) at σ = 0), where

u0,±(−; 0) ∈ C∞(X1/2) (12)

is the restriction of u0,± to zf = cl{σ = 0, x > 0} ⊂ Xsp
res. Thus, defining u±(−;E1/2) either as

R(E ± i0)f for E > 0 or R(E = 0; Z ± i0)f for E = 0, the formula eq. (10) holds for all E ≥ 0
sufficiently small.

�

For z > 0, by arcsinh(z) we mean log(z + (1 + z2)1/2).

Remark 1. Theorem 1.1 applies equally well for σ-dependent forcing f ∈ C∞([0,∞)σ2 ;S(X)) as
can be proven using the argument in §6. �

Remark 2. In terms of the notation for spaces of polyhomogeneous functions used below, u0,± ∈
A(0,0),E,(0,0)(Xsp

res) for some index set1 E ⊂ {z ∈ C : <z ≥ 0} at tf. In fact, we can take

E = {(k, κ) ∈ N× N : κ ≤ bk/2c}. (13)

See §6.3.
One can be even more precise than this: as the proof of Proposition 6.18 shows, the terms in the

polyhomogeneous expansion of u0,± at tf having many logs are proportional to many powers of E.
Specifically, the coefficient a ∈ C∞(tf) of %ktf logκ(%tf00) for (k, κ) ∈ E is actually in %κzf00

C∞(tf). In
order for (k, κ) ∈ E to hold, 2κ ≤ k, so any logarithm logκ(%tf00) in the asymptotic expansion at tf
is suppressed by a factor of Eκ. This is why u0,±(−; 0) can be smooth on X1/2 = zf even though
u0,±(−;−) is not necessarily (claimed to be) smooth at zf ∩ bf. The statement of the theorem
above is therefore slightly nonoptimal, and we will not introduce the terminology needed to state an
optimal version. �

In a standard manner – cf. [Mel94, §15] – we can deduce from the conjunction of (1) an asymptotic
summation argument, (2) Theorem 1.1 (strengthened slightly by the first remark), and (3) the other
results in the body of the paper below the following:

1We will only consider index sets with the property that (k, κ) ∈ E ⇒ (k + 1, κ) ∈ E .
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Corollary 1.2. Consider the setup of Theorem 1.1, and fix E0 > 0 such that E0a00 < Z. If
α ∈ C∞(∂X), then there exist

A,B ∈ A(0,0),E,(0,0)
loc (Xsp

res) (14)
such that A|tf∪bf = α◦π (where π : tf ∪bf → ∂X denotes the restriction to tf ∪bf of the composition
of the blowdown map Xsp

res → [0,∞)σ ×X and the projection [0,∞)σ ×X → X) and

u = e−iΦ(x;E1/2)x(n−1)/2(E + Zx)−1/4A+ e+iΦ(x;E1/2)(E + Zx)−1/4x(n−1)/2B (15)

solves the Schrödinger-Helmholtz equation 4gu− Zxu+ V u = Eu for all E ∈ [0, E0]. Moreover, u
is the unique solution in {E ≤ E0} with this property. ��

This shows that exp(±iΦ(x;E1/2))x(n−1)/2(E+ Zx)−1/4 serves as a notion of “incoming/outgoing
spherical wave” in the presence of an attractive Coulomb-like potential that makes sense all the
way down to E = 0. In Corollary 1.2, α serves as a notion of “incoming data.” The proof
actually constructs the asymptotic expansion of A at tf ∪ bf. A natural question, which we do
not investigate here, is whether or not B|tf∪bf = β ◦ bdn for some β ∈ C∞([0,∞)σ × ∂X), where
bdn : Xsp

res → [0,∞)σ ×X is the blowdown map. Physically, Corollary 1.2 describes the scattering of
nonrelativistic electrons off of a hydrogenic nucleus, or alternatively nonrelativistic Bhaba scattering.

Compare the following corollary of Theorem 1.1 (strengthened slightly by Remark 2) with [Nak94,
Cor. 1.5][FS04, Eq. 1.2]:

Corollary 1.3 (Asymptotics at zf). For each l ∈ R, let Sl(Rn) = Sl1,0(Rn) denote the space of
symbols of order l. Fix n ≥ 2. Suppose that W ∈ C∞(Rn) is a classical symbol of order −1, so that
there exist (unique) W0,W1,W2,W3, · · · ∈ C∞(Sn−1) such that

W (x)− (1− χ(r))
K∑
k=0

Wk(x/r)
rk+1 ∈ S−K−2(Rn), (16)

for each K ∈ N, where r = ‖x‖ and χ ∈ C∞c (R) is identically equal to one in some neighborhood of
the origin. Suppose further that W is attractive and Coulomb-like, meaning that W0 = −Z for some
constant Z > 0. Consider the Schrödinger-Helmholtz operator

P (σ) = 4− σ2 +W (17)

for σ ≥ 0, where 4 = −(∂2
x1 + · · ·+ ∂2

xn) is the positive semidefinite Laplacian. Given f ∈ S(Rn)
(where S(Rn) denotes the set of Schwartz functions) let

u±(x;σ) = R(σ2 ± i0)f(x) (18)

denote the output of the limiting resolvent R(σ2 ± i0) = slimε→0+ R(σ2 ± iε) applied to f for σ > 0.
Then, there exist functions w±,0, w±,1, w±,2, · · · ∈ C∞(Rn) such that, for each K ∈ N and x ∈ Rn,

u±(x;σ) =
K∑
k=0

w±,k(x)σ2k +Ox,f,K(σ2K+2) (19)

as σ → 0+, where the Ox,f,K(σ2K+2) term is uniformly bounded (i.e. by CK,f,Kσ2K+2) in compact
subsets K b Rn worth of x ∈ Rn.

In fact, we can take w±,k ∈ 〈r〉kAEk(zf), and then the error term in eq. (19) is an Of,K(σ2K+2)
family of elements of 〈r〉K+1AEK+1(zf), where Ek is the index set

Ek = {(κ,κ) ∈ N× N : κ ≤ min{k, bκ/2c}}. (20)

Moreover, w±,0 solves the PDE P (0)w±,0 = f . ��
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(Of course, the Ox,f,K(σ2k+2) error also depends on W , though we do not write this dependence
explicitly. The same applies to the other errors in Corollary 1.4, Corollary 1.5 below.) Corollary 1.3
applies in particular to any W ∈ C∞(Rn) which is equal, outside of some compact set, to

− Z/r +
J∑
j=2

r−jWj(x/r) +W∞, (21)

for Wj ∈ C∞(Sn−1), J ∈ N, and W∞ ∈ S(Rn). Thus, while we impose significant restrictions on
the radial behavior of the potential (and the potential’s regularity) in order to get full asymptotic
expansions, there are no symmetry requirements on W1,W2, · · · . We do, however, require that
W0 = −Z is constant, so the Coulomb-like part of W is required to be spherically symmetric. We
remark that Proposition 6.3 (see also Remark 5) allows us to study more general symbolic W , but
then instead of full asymptotic expansions we get only partial asymptotic expansions together with
symbolic estimates for the remainders. We also remark that the classical symbols of order −2 on Rn
are precisely those of the form V = 〈r〉−2U for U a smooth function on the radial compactification
Bn = Rn of Rn, this being diffeomorphic to a closed ball, so Corollary 1.3 applies to many potentials
that are not of the form eq. (21), e.g. W = −〈r〉−1.

In a sense made precise by Theorem 1.1, the asymptotic expansion eq. (19) can be refined into
an asymptotic expansion in powers of Ê = σ2/(σ2 + 1/r) (with a complicated oscillatory prefactor)
whose error terms are uniformly bounded without a loss of decay as K increases. The non-uniform
expansion eq. (19) already stands in stark contrast with the situation when W is short range, where
instead one only has e.g. in the case n = 3 (according to [Hin21, Theorem 3.1])

u±(x;σ) = w±,0(x) + w±,1(x)σ +Ox,f (σ2 log σ). (22)

This is sharp — the singular σ2 log σ term is the source of the main term in Price’s law.
Given the setup of Corollary 1.3, the known large-r asymptotic expansion of u±(x;σ) = R(σ2±i0)f

is [Mel94]:
• there exist functions t±,0, t±,1, t±,2, · · · ∈ C∞(Sn−1 × R+) such that, for each σ > 0 and
nonzero x ∈ Rn,

u±(x;σ) = r−(n−1)/2e±iσrr±iZ/2σ
[ K∑
k=0

t±,k(x/r, σ)r−k +Oσ,f,K(r−(K+1))
]

(23)

for each K ∈ N, where the Oσ,f,K(r−(K+1)) term is uniformly bounded in compact subsets
K b R+ worth of σ.

See §A for the Whittaker case, where the t±(σ) are written down explicitly. Note that the existence
of the expansion eq. (23) is contained in Theorem 1.1 (from the asymptotic expansion at bf◦ ⊂ Bsp

res).
Note that the r±iZ/2σ term in eq. (23) is singular as σ → 0+, which renders eq. (23) unsuitable
to study the low energy limit. The situation is ameliorated in the following way — according to
Theorem 1.1, eq. (23) admits a repackaging that is uniform down to σ = 0:

Corollary 1.4 (Asymptotics at bf). Consider the setup of Corollary 1.3. Let % = (σ2r + 1)−1, so
that r = (1− %)%−1σ−2. There exist functions τ±,0, τ±,1, τ±,2, · · · ∈ AE(Sn−1 × [0, 1)) such that for
any K ∈ N and σ > 0,

u±(θ(1− %)%−1σ−2;σ) = %(n−1)/2σ(2n−3)/2 exp
(
± i
(1− %
σ%

)(
1 + Z%

1− %
)1/2)

×
((1− %

Z%
)1/2

+
(
1 + 1− %

Z%
)1/2)±iZ/σ[ K∑

k=0
τ±,k(θ, σ)%k +Of,K(%K+1)

]
(24)
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holds for every θ ∈ Sn−1 as %→ 0+, where
Of,K(%K+1)|σ≤σ̄ ∈ %K+1L∞(Rnx\Bn;AEloc[0, σ̄)σ) (25)

for every σ̄ > 0. ��

Note that, for σ bounded away from zero, % ∈ C∞([0, 1]1/r) and

exp
(
± i 1

σ%
(1− %)

(
1 + Z%

1− %
)1/2)((1− %

Z%
)1/2

+
(
1 + 1− %

Z%
)1/2)±iZ/σ

∈ e±iσrr±iZ/2σC∞([0, 1]1/r)
(26)

uniformly, so Corollary 1.4 does imply eq. (23).
Finally, we have the following result regarding joint asymptotics as r → ∞, σ2 → 0 together,

with the product ς2 = rσ2 fixed:

Corollary 1.5 (Asymptotics at tf). Consider the setup of Corollary 1.3. There exist functions

v±,k,κ ∈ ÊκC∞(Sn−1; [0,∞)Ê) (27)
such that, for every K ∈ N and ς > 0,

u±(x; ς/r1/2) = r−(2n−3)/4e±ir
1/2√ς2+Z

(
ς

Z1/2 +

√
1 + ς2

Z

)±iZr1/2/ς

[ K∑
k=0

bk/2c∑
κ=0

v±,k,κ(x/r, ς2)
rk/2

logκ(r) +Oς,f,K
( logb(K+1)/2c(r)

r(K+1)/2

)]
, (28)

as r →∞, where Oς,f,K(r−(K+1)/2 logb(K+1)/2c(r)) is uniformly bounded by r−(K+1)/2 logb(K+1)/2c(r)
in compact subsets worth of ς ∈ [0,∞).

Moreover, ρk/2v±,k,κ(θ, 1/ρ) is smooth in ρ ∈ [0,∞), for each θ ∈ Sn−1. Thus, for ς ≥ 1,
v±,k,κ(θ, ς2) = Of,k,κ(ςk).

��

We emphasize that these compound asymptotics are in a different regime than the one relevant to
the short-range case (this being the regime of r →∞ for rσ fixed, not rσ2 fixed) — see Remark 6.

Statements analogous to Corollary 1.3, Corollary 1.4, and Corollary 1.5 apply to the A,B in
Corollary 1.2.

A few remarks regarding Theorem 1.1:

Remark 3. The apparent singularity of u± in Theorem 1.1 when Z = σ2a00 is fictitious — we can
write

u± = e±iσ/xx(n−1)/2∓iZ/2σv0,± (29)
for v0,± : (0,∞)σ×X → C smooth. In terms of v0,±, u0,± = e∓iΦ(E+Zx)1/4e±iσ/xx(n−1)/2∓iZ/2σv0,±.
Thus, u0,± is singular when Z = σ2a00. The left-hand side of eq. (10) is smooth for all σ > 0, but
we have written it as a product of two functions which both have singularities when Z = σ2a00.
The particular form of Φ in Theorem 1.1 is needed to get uniform estimates down to σ = 0, but it
introduces a fictitious singularity at some positive σ when a00 > 0. �

Remark 4. Some explicit bounds for u0,± in the b-Sobolev spaces

Hm,l
b (X) = {u ∈ S ′(X) : Lu ∈ L2(X, g) for all L ∈ Ψm,l

b (X)} (30)

will be found in §6. We are indexing the b-Sobolev spaces such that H0,0
b (X) is equal to L2(X, g)

rather than L2(X, gb) for some b-metric gb. This is the (somewhat nonstandard) convention
followed in [Vas21a][Vas21c], and it is convenient here for the same reasons. See [Mel93][Vas18] for
a pedagogical introduction to the b-calculus.
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We write X1/2 to denote the mwc canonically diffeomorphic to X over the interior, with the
smooth structure at the boundary modified so that x1/2 = 2−1/2x1/2 becomes a bdf (the factor of
2−1/2 being a convenient choice). (Note that, in terms of the mwb X, the mwb X1/2 is canonically
defined without needing to fix a choice of bdf for X, unlike the case for what Wunsch calls Xq in
[Wun99, §4]. However, since we are fixing a boundary-collar once and for all, this is not a crucial
point.) The b-Sobolev spaces are convenient to work with in part because (except for indexing)
they do not depend on whether we use x1/2 or x as a bdf — that is, at the level of sets

Hm,l
b (X) = Hm,2l

b (X1/2), (31)

with an equivalence at the level of Banach spaces. A refined estimate of u0,± in terms of the
“leC-Sobolev spaces”

Hm,s,ς,l,`
leC (X) = {Hm,s,ς,l,`

leC (X)(σ)}σ≥0 (32)
is given in Proposition 6.9. The leC-Sobolev spaces play the same role here as the sc,b,res-
Sobolev spaces in [Vas21c, Theorem 1.1].2 Although it may be natural to develop doubly- second-
microlocalized Sobolev spaces Hm,s,ς,l

sc,sc1/2,b(X), refining both Hm,s,l
scb (X) and Hm,ς,2l

scb (X1/2), we will not
do so here, since the leC-Sobolev spaces suffice for the proof of Theorem 1.1. �

Remark 5. We also have analogues of Theorem 1.1 dropping the classicality assumptions regarding
the metric and the potential. If g is a symbolically asymptotically conic metric in the sense below
(precisely the sort of metric considered in [Vas21a]) and V ∈ S−3/2−δ(X) = x3/2+δS0(X) for δ > 0,
the conclusion of the theorem holds except that “u0,± ∈ A(0,0),E,(0,0)(Xsp

res)” is replaced by the weaker

u0,± ∈ A(0,0),0,(0,0)(Xsp
res),

χu0,± ∈ C∞([0,∞)E ×X) for all χ ∈ C∞c (X◦).
(33)

Moreover, if g is classical to α1st order, α1 > 1, and V is classical to α2 > 3/2 order (so, for instance,
V ∈ x2C∞(X) + S−3/2−δ2(X) is classical to 3/2 + δ2th order, and any sc-metric in the sense of
[Mel94] is classical to all orders, while the metrics considered by Vasy in [Vas21a] are classical to
> 1 order), then, setting δ1 = min{α1 − 1, α2 − 1} and δ0 = min{α1 − 1, α2 − 3/2}, we have

u0,± ∈ A(0,0),E,(0,0)(Xsp
res) +A((0,0),δ1),2δ0−,(0,0)

loc (Xsp
res) ⊂ A

((0,0),δ1),(E,2δ0−),(0,0)
loc (Xsp

res) (34)

(assuming, for simplicity, that δ0 /∈ N) where A((0,0),δ1),(E,2δ0−),(0,0)
loc (Xsp

res) is the Fréchet space of
conormal distributions on Xsp

res that have partial polyhomogenous expansions at each of bf, tf, zf,
with merely conormal remainders at order δ1 at bf and at order 2δ0 − ε at tf for every ε > 0, with a
full expansion at zf. Elements of this space are smooth at zf in the sense of defining an element

C∞([0,∞)%zf00
;A(E,2δ0−)(X1/2)) = C∞([0,∞)%zf00

;AE(X1/2))+C∞([0,∞)%zf00
;A2δ0−(X1/2)) (35)

via restriction to a small neighborhood of zf ⊂ Xsp
res. This implies smoothness at zf◦.3

We refer to [Mel92, Eq. 22][Hin21, Def. 2.13] for the definition of the spaces of conormal
distributions with partial polyhomogeneous expansions. We follow the notational conventions in
[Hin21], mutatis mutandis.

�

Remark 6. Note that polyhomogeneity on the mwc Xsp
res with index set E at tf and smoothness

elsewhere is equivalent to polyhomogeneity on

Xsp
res,0 = [[0,∞)E ×X; {0} × ∂X] (36)

2We will omit the comma between “sc,b.’
3In this paper, we use ‘◦’ and the term “interior” in the mwc-theoretic sense; for instance, for any boundary

hypersurface f, f◦ is the collection of points in f that are not in any other boundary hypersurface.



10 ETHAN SUSSMAN

with index set {(k/2, κ) : (k, κ) ∈ E} at the front face tf of the blow-up and index set N at the faces
bf and zf. So, we have a Taylor series in powers of x for σ > 0 and a Taylor series in powers of x1/2

at σ = 0, with a Taylor series in powers of E = σ2 for fixed x > 0 (with some logs in the expansion
at tf, except exactly at zf). We remark that the case of nonconstant a00 involves a more general
polyhomogeneity statement on Xsp

res,0; for fixed E > 0, this is discussed already in [Mel94, §14].
(The use of (E + Zx)1/2 = (σ2 + Zx)1/2 as a bdf for the front face tf of Xsp

res is a convenient
but otherwise arbitrary convention. The function (E + x)1/2 = (σ2 + x)1/2 would also work, as
already utilized in Corollary 1.3, Corollary 1.4, Corollary 1.5, but it is less convenient.) Although
Xsp

res,0 is diffeomorphic to the mwc used in [Vas21c][Hin21] to study the low energy resolvent in the
short-range case, it differs from their mwc as a compactification of (0, 1]σ × X. Indeed, besides
having a different smooth structure at {0} ×X◦, our blow-up resolves the ratio E/x rather than
σ/x, the latter being the ratio parametrizing the front face of the blow-up in [Vas21c][Hin21]. �

Remark 7. When
• g = g0 is an exactly conic metric and
• f, V ∈ C∞c (X◦),

the radial dependence of u± near infinity can be solved for (up to a multiplicative constant) exactly
via separation of variables. When separating variables, we need only solve the “radial ODE,” which
ends up being a Whittaker ODE for σ > 0 and a Bessel ODE for σ = 0. This motivating example
is discussed in Appendix §A, where the consequences of Theorem 1.1 for solutions to Whittaker’s
ODE are discussed. The necessity of the factor of (σ2 + Zx)−1/4 in eq. (10) can be read off of the
asymptotics of the Bessel functions (or can alternatively be deduced from the structure of the radial
ODE, with slightly more work). See eq. (714). Even in this exactly conic case, which was studied in
[Yaf82], Theorem 1.1 (or at least the part specifying the existence of a full asymptotic expansion)
seems to be novel. �

Remark 8. At first, it may seem somewhat paradoxical that at zero energy an attractive (rather
than repulsive) Coulomb-like Schrödinger operator has scattering behavior. The paradox is resolved
if we realize that, if a classical particle traveling in an attractive Coulomb force field has zero energy,
then it must have more kinetic energy than if the force field were absent (the point being that “zero
energy” refers to energy as measured with the potential present, not without).

It may also seem somewhat surprising that the presence of the attractive Coulomb potential
allows us to avoid the b-analysis of the Laplacian in [Vas21c], but such considerations are expected
to be necessary in order to understand the E → 0− limit. Roughly speaking, the presence of an
attractive Coulomb potential has moved the locus of b-analysis infinitesimally negativewards – more
specifically negativewards on the front face of [RE ×X; {0} × ∂X], to its intersection with the lift
of {E = −Zx} – where it is irrelevant to the E → 0+ limit studied here. �

The proof of Theorem 1.1, which is a special case of Proposition 6.3, is spread throughout §6,
with a key estimate proven in §5 (and other lemmas appearing in §2 and §3). The conormality
component of the theorem and smoothness at zf◦ are deduced in Proposition 6.15. From there,
classicality is deduced via an inductive argument using an explicit parametrix for the “b,leC-normal
operator” of the conjugated spectral family — see Proposition 6.16. Under only partial classicality
assumptions, the inductive step of the argument can only be carried out finitely many times, and
the upshot is Proposition 6.3. The analysis in §6 is essentially the analysis of a family of ODEs and
applies equally well in the n = 1 case. The analysis in §5 is a uniform version of the sc-analysis
of the Laplacian carried out in [Mel94][Vas21a], where we rely on the presence of the attractive
Coulomb potential to prevent a full degeneration (from the perspective of the b-calculus) of the
spectral family to the Laplacian at zero energy.

We note four deficiencies of our treatment, which can form the basis for further work:
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(1) while we discuss the output and mapping properties of the low energy resolvent, we do not
discuss its Schwartz kernel (as Guillarmou, Hassell, and Sikora [GHS13] do in the case of a
short-range potential),

(2) we only treat the case when the Coulomb-like potential has the form Zx for constant Z > 0,
while more general Z ∈ C∞(∂X;R+) (and a00 ∈ C∞(∂X;R)) may be of interest [Mel94,
§14] (if Z ∈ C∞(∂X;R+), a change of coordinates from x to x0 = Zx does not necessarily
preserve the form of the metric we require, so we cannot just reduce the case of nonconstant
Z to the constant case via a change of bdf),

(3) it should be possible to study the resolvent for σ in a cone {σ ∈ C : arg(σ) ∈ [0, θ)} for
θ ∈ (0, π/2), in accordance with the work of Skibsted and Fournais [FS04][Ski13] in the
Euclidean case – see [Ski13, Theorem 1.2] in particular – thus giving a version of the limiting
absorption principle that is uniform down to zero energy (as opposed to the ad hoc use of
Z± i0 in Theorem 1.1 to describe the zero energy limit), and

(4) it should be possible to extend Theorem 1.1 to the case where the Coulomb potential and
manifold possess conic singularities, so as to handle an exact Coulomb potential on [Rd; {0}]
as a special case. (Indeed, blowing up the origin of Euclidean space and using r as a bdf,
the Coulomb potential Z/r and spectral term σ2 are both lower order than the Euclidean
Laplacian with respect to the b-calculus at r = 0 in terms of both decay and regularity.)
The exact 1D model problem discussed in §A is an example of this.

Along with some analysis of the E < 0 case, the present work can serve as input to the study of
the Klein–Gordon equation on (not necessarily axially symmetric) asymptotically Schwarzschild
spacetimes (away from the event horizon) in the spirit of Hintz’s recent treatment of Price’s law
[Hin21] on asymptotically subextremal Kerr spacetimes. This problem was the original motivation
for the present work. Some heuristic investigations in this direction have been undertaken by
physicists [Det80][HP98][KT01][KT02][BK04][KZM07][Bar+12][Bar+14], usually in the case of a
spherically or axially symmetric black hole spacetime (e.g. Schwarzschild, Reissner–Nordström, Kerr,
etc.). Indeed, [KT01] treat their problem (pointwise temporal decay rates) using an uncontrolled
approximation of the radial part of their PDE as a Whittaker ODE, this being equivalent to the
radial part of the time-independent Schrödinger equation in an attractive Coulomb potential. This
problem can be solved exactly in terms of special functions (see §A), but we do not need to do so in
order to understand the asymptotics.

Moreover, while the asymptotics for fixed E > 0 can be read off of the exact solution (using the
large argument expansions of Whittaker functions), the exact solution does not even help much in
understanding the E → 0 limit. Instead of relying on the Whittaker approximation, it is possible to
exactly solve the Klein–Gordon equation on the Schwarzschild exterior (at the level of individual
spherical harmonics) using confluent Heun functions [Bar+14, §IV]. When this paper was first
written, it was an open problem to rigorously establish temporal decay at a polynomial rate (as
this involves knowing the asymptotics of the confluent Heun functions in some regime where the
argument and a parameter are both taken to infinity). Since then, [PSV23] proved the required
result. However, it is still an open problem to control the sum over spherical harmonics to handle
the case where the initial data is not spherically symmetric. So, even in the few cases where special
functions yield an exact solution to the PDE (with radially symmetric initial data) via separation of
variables, the problem of understanding temporal decay rates remains. And, for more complicated
spacetimes, no exact solution is possible. A more robust analysis is therefore necessary.

For other mathematical work on Price’s law and similar problems, see Donninger–Schlag–Soffer
[DSS11][DSS12], Metcalfe–Tataru–Tohaneanu [MTT12][Tat13], Morgan–Wunsch [Mor19][MW21],
and Looi [Loo21]. The Klein–Gordon equation on Kerr-like spacetimes is subtle — for instance, on
subextremal Kerr, Shlapentokh-Rothman [Shl14] has constructed finite energy solutions that grow
exponentially in time by exploiting superradiant instability.
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We remark finally that there does not appear to be much overlap between the present work and
similarly titled physics papers, e.g. [BOW67][BT67][BTO67][MB67][Mac67].

1.1. Preliminaries and Outline. Recall that an exactly conic manifold X (according to one
of several essentially equivalent definitions) consists of the following data: an arbitrary (smooth,
connected) compact manifold-with-boundary X0, a Riemannian metric g∂X ∈ C∞(X; Sym2 T ∗∂X0)
on the closed manifold ∂X0, and an embedding

ι : X̂ = [0, x̄)x × ∂X0 → X0 (37)

(the “boundary-collar”) which is a diffeomorphism between the cylinder [0, x̄)x×∂X0 for some x̄ > 0
and a neighborhood of ∂X0. Note that ι satisfies id|∂X0 = ι(0,−). We notationally conflate X with
X0. We also conflate the image of ι with [0, x̄)x × ∂X0. (This is an alternative, if a somewhat crude
one, to Melrose’s use in [Mel94] of the inward pointing normal bundle of ∂X0.) Given an exactly
conic manifold X, a Riemannian metric g0 on X◦ is called an exactly conic metric (this notion
being defined relative to ι) if

g0 ∈ C∞(X; scSym2T ∗X), g0 = x−4dx2 + x−2g∂X near ∂X. (38)

Below, we write x : X → [0,∞) to denote a globally defined boundary-defining function, compatible
with the boundary-collar ι in the sense that x(ι(x0, y)) = x0 for all x0 ∈ [0, x̄). (Euclidean space
fits into this framework, where by “Euclidean space” we mean the radial compactification of Rd,
endowed with the induced metric. Here x = 1/〈r〉, r being the Euclidean radial coordinate. See
[Mel94, §1].) We will also consider (symbolically) asymptotically conic metrics, which – according
to our use of the term “asymptotically” – are Riemannian metrics g on X◦ of the form

g − g0 ∈ xC∞(X; scSym2T ∗X) + S−1−δ(X; scSym2T ∗X) (39)

for some δ > 0. Hence, g is conic up to a classical subleading term – decaying faster than g0 by
one order of x – and a merely symbolic error decaying slightly faster than that. More generally, for
α1 > 1, we will say that the asymptotically conic metric g is “classical to α1th order” if eq. (39) can
be strengthened to

g − g0 ∈ xC∞(X; scSym2T ∗X) + S−α1(X; scSym2T ∗X). (40)

We will call g “(fully) classical” if the symbolic term in eq. (39) can be dropped entirely, i.e. if
eq. (40) holds for all α1 > 1. (Any sc-metric in the sense of [Mel94] is fully classical in this sense.)
The term asymptotically conic manifold will be used to refer to a conic manifold equipped with
an asymptotically conic metric, so a triple (X, ι, g). This is a more general notion than that of an
“sc-manifold” [Mel94][Mel95][JS99][HW05], which are also sometimes called asymptotically conic —
besides allowing a symbolic term in eq. (39), we also allow a classical O(x−3)dx2 term (see a00 in
Theorem 1.1). (Rewriting the metric in terms of the tortoise coordinate x∗, the O(x−3) dx2 term
can be removed, but x∗ is not a smooth function of x and so x∗ is not a bdf on the mwb X.) We will
assume that this term is constant on ∂X. Thus, the metrics we consider are Riemannian metrics on
X◦ of the form

g = g0 + a00
dx2

x3 + Γ1,∂X � dx
x2 + h1,∂X

x
+ x2C∞(X; scSym2T ∗X) + S−α1(X; scSym2T ∗X) (41)

for some a00 ∈ R, 1-form Γ1,∂X ∈ Ω1(∂X), and symmetric 2-cotensor h1,∂X ∈ C∞(∂X; Sym2 T ∗∂X).
A fully classical g is then of the form

g = g0 + a00
dx2

x3 + Γ1,∂X � dx
x2 + h1,∂X

x
+ x2C∞(X; scSym2T ∗X) (42)

near ∂X.
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Before we specialize to the case of spectral families of Schrödinger operators for the proof of
Theorem 1.1, we study in §3, §5 smooth families {P (σ)}σ≥0 ⊂ Diff2(X◦) of elliptic 2nd-order
differential operators on X◦ of the form

P (σ) = P0(σ) + P1(σ) + P2(σ), (43)
where, for each i = 1, 2, 3, Pi = {Pi(σ)}σ≥0 ⊂ Diff2(X◦) is a family of differential operators
(depending smoothly on σ2 ≥ 0, all the way down to σ = 0), which near ∂X can be written as

•
P0(σ) = −(1 + xa00(σ))(x2∂x)2 + x24∂X + x3[a(σ) + n− 1]∂x − Zx− σ2 (44)

for
– a00 ∈ C∞([0,∞)σ2 ;R), Z > 0 satisfying the attractivity condition

Z− σ2a00(σ) > 0 (45)
for each σ ≥ 0,

– a ∈ C∞([0,∞)σ2),
•

P1(σ) =
∑J
j=1(x4P⊥,j(σ)bj(x;σ)∂x + x3b′j(x;σ)P∂X,j(σ) + x2b′′j (x;σ)Q∂X,j(σ)) (46)

for some J ∈ N, where
– bj(−;σ), b′j(−;σ), b′′j (−;σ) ∈ S0(X), more specifically

bj , b
′
j , b
′′
j ∈ C∞([0,∞)σ2 ;S0(X)), (47)

– P⊥,j(σ), Q∂X,j(σ) ∈ Diff1(∂X) and P∂X,j(σ) ∈ Diff2(∂X) for each σ ≥ 0, so that

P⊥,j , Q∂X,j ∈ C∞([0,∞)σ2 ; Diff1(∂X)), (48)
P∂X,j ∈ C∞([0,∞)σ2 ; Diff2(∂X)), (49)

for each j = 1, . . . , J ,
• P2 ∈ C∞([0,∞)σ2 ;SDiff2,−1−δ,−3/2−δ

scb (X)) for some δ > 0,
Here Diffm,s,lscb (X) = Diffm,lb (X) ∩Diffm,ssc (X) and SDiffm,s,lscb (X) = SDiffm,lb (X) ∩ SDiffm,ssc (X). We
may take δ < 1/2, as this will be useful in reducing casework later on. Note that we are requiring
smoothness with respect to E = σ2, rather than with respect to σ, in compact subsets of X◦. This
is not strictly necessary for the analysis in §5, for which even smoothness with respect to σ is mostly
unnecessary, but since we use smoothness in E in §6 we will work with it from the outset and
develop ΨDO calculi accordingly in §2. We will say that P1 is “classical to β1th order” for β1 > 0 if
we can replace eq. (47) by

bj , b
′
j , b
′′
j ∈ C∞([0,∞)σ2 ;C∞(X)) + C∞([0,∞)σ2 ;xβ1S0(X)). (50)

Similarly, we say that P2 is “classical to (β2, β3)th order” for β2 > β3 > 0 if

P2 ∈ C∞([0,∞)σ2 ; Diff2,−2,−2
scb (X) + SDiff2,−1−β2,−3/2−β2

scb (X) + x3/2+β3S0(X))

= C∞([0,∞)σ2 ; Diff2,−2
sc (X) + SDiff2,−1−β2,−3/2−β2

scb (X) + x3/2+β3S0(X))
(51)

(note that Diff2,−2,−2
scb (X) = Diff2,−2

sc (X)). We could work with even finer measures of classicality, but
for the proof of Theorem 1.1 (and eventually Proposition 6.3) it suffices to keep track of β1, β2, β3.

We restrict attention to the case of constant Z, though the case of variable Z may also be of
interest. (The x3(n−1)∂x term in eq. (46) is merely conventional and can be parametrized away upon
redefining a, but it is convenient because x2∂x−x(n− 1)/2 is formally anti- self-adjoint with respect
to the L2 = L2([0, x̄)× ∂X, g0) = L2

sc([0, x̄)× ∂X) inner product.) The “main” and “subleading”
terms of P are collected in P0, with the classical components being collected in P0 ∈ Diffsc(X).
Although subleading by only one order, the terms in P1 are all negligible in the analysis of §5, as
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are the terms in P2 (which is why they are allowed to be symbolic). (The key point here is that
the principal symbol of P1 vanishes to one additional order at the radial sets of P ’s Hamiltonian
flow because of the tangential derivatives. On the other hand, P2 is just lower order.) Note that
we are only requiring P (σ), P0(σ) to be elliptic in the traditional sense; the operators above can
be considered as sc-operators, but they will be nonelliptic in the sc-calculus. The ‘S’ in front of
SDiff indicates that the differential operators therein have coefficients which are required only to
be conormal functions on X, hence are “symbolic.” We do not concern ourselves with uniformity as
σ →∞, this already being handled in [Vas21a, §5] for a suitably large class of operators.

By “attractive Coulomb-like Schrödinger operator (on X),” we mean an operator of the form
P (0) = 4g − Zx+ V (x) (52)

for some asymptotically conic metric g on X, Z > 0, and real-valued V ∈ S−3/2−δ(X) for δ > 0.
The spectral family of P (0) is the family {P (σ) = P (0)−σ2}σ≥0. The spectral families of attractive
Coulomb-like Schrödinger operators are therefore included in the class of families we study here if
we restrict attention to sufficiently small σ such that the attractivity condition eq. (45) is satisfied.
See Proposition 6.2. From the explicit formula for the Laplacian in local coordinates, we see that a00
is the restriction to ∂X of −x3(δg)00, where δg = g− g0. Although it is only obvious upon changing
coordinates from x to x/(1 + xa00) – see §A – a nonzero value of a00 has essentially the same effect
as a nonzero Coulomb potential on the asymptotics of solutions to Helmholtz’s equation for positive
σ, and it turns out that eq. (45) – taking into account both the actual Coulomb potential and
the effective Coulomb potential from a00 – is the correct notion of “attractivity” in this generality.
Note that if P is the spectral family of a Coulomb-like Schrödinger operator with Z > 0 on an
asymptotically conic manifold, then we can modify P by cutting off a00 outside of some sufficiently
small neighborhood of σ = 0 such that the resulting family of operators satisfies the attractivity
condition. We only care about behavior in a neighborhood of σ = 0, so this does not restrict
applicability.

For σ � 0, attractive Coulomb-like operators do not need to be distinguished from non-attractive
Coulomb-like operators as far as the limiting absorption principle is concerned, except with regards
to the precise logarithmic corrections to spherical waves. The difference matters only in the σ → 0
limit. That this limit is delicate can be seen already in the case when X = [0, 1]x, equipped with
an exactly conic metric (‘x’ now only denoting a bdf for one end). Then, when the potential is an
exact Coulomb potential near the x = 0 boundary, P (σ)u = 0 is an ODE,

− (x2∂x)2u− σ2u− Zxu = 0 (53)
for x sufficiently close to zero. This is a form of Whittaker’s ODE for σ > 0, degenerating to a
Bessel ODE

− (x2∂x)2u− Zxu = 0 (54)
at σ = 0. Hence, smooth families {u(−;σ)}σ≥0 of solutions u = u(−;σ) to P (σ)u(−;σ) = f for
f ∈ C∞c (X◦) are near x = 0 linear combinations of Whittaker functions (evaluated along the
imaginary axis) for σ > 0 degenerating smoothly to linear combinations of Bessel functions as
σ → 0+. See Proposition A.3 for a precise statement. An analysis of the low-energy limit of
attractive Coulomb-like Schrödinger operators must therefore – at the very least – describe in
appropriate asymptotic regimes the degeneration of Whittaker functions to Bessel functions (a
classical topic, but nonetheless delicate). The former oscillate like

exp
(
± iσ

x

)
x∓iZ/2σ = exp

(
± i
(σ
x
− Z

2σ log x
))

(55)

as x→ 0+, while the latter oscillate like exp(±2iZ1/2/x1/2). While the leading order term of the
phase in eq. (55) is suppressed as σ → 0+, the logarithmic correction ∓i(Z/σ) log x blows up as
σ → 0+. This, along with Oσ(1), Oσ(x), etc. contributions which were omitted from eq. (55) (and
include terms like 1/σ, 1/σ2, · · · ), end up contributing as σ → 0+ to the phase ±2iZ/x1/2 relevant at
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zero energy. Clearly, eq. (55) paints an incomplete picture of the oscillations of solutions to eq. (53)
in the σ → 0+ limit. This is the first indication that the analysis of the low energy limit will need
to be done on a resolution of [0,∞)σ ×X. We refer the reader to §A for a further discussion of the
ODE case.

The “conjugated perspective” involves studying the conjugated spectral family P̃ = {P̃ (σ)}σ≥0 ⊂
Diff2(X◦),

P̃ (σ) = exp(−iΦ)P (σ) exp(+iΦ) : S ′(X) 3 u 7→ exp(−iΦ)(P (σ)(exp(+iΦ)u)), (56)
where the “phase” Φ = Φ(−;σ) is an appropriate function on [0,∞)σ × X such that exp(+iΦ)
captures the asymptotics of outgoing solutions u to the PDE Pu = f to some desired level of
precision. (Thus, we deal with the ‘+’ case of Theorem 1.1, the ‘−’ case being analogous.) At the
level of the phase space of the sc-calculus, this conjugation corresponds to a symplectomorphism
moving one of the two sets of radial points (the “selected radial set”) to the zero section of the
sc-fibers, which upon second microlocalization gets blown up to the fibers of bT

∗
∂XX, the phase

space of the b-calculus over ∂X (see [Vas21a]). The following choice of Φ is sufficiently detailed:

Φ(x;σ) = 1
x

√
σ2 + Zx− σ2a00x+ 1

σ
(Z− σ2a00) arcsinh

( σ

x1/2
1

(Z− σ2a00)1/2

)
− i

2a log x, (57)

(extended from σ > 0 to σ = 0 by continuity), hence the appearance of Φ in Theorem 1.1 (for which
we have a = 0). The square roots in eq. (57) are well-defined by the attractivity condition eq. (45).
See the beginning of §3 for a motivation of eq. (57). Given compact K ⊂ (0,∞), we can write, for
σ ∈ K,

Φ = σx−1 − Z− σ2a00
2σ log x− i

2a log x+OK(1) (58)

as x → 0+. This is in accordance with eq. (55), [Vas21a, Theorem 1.1]; Φ differs from Vasy’s
phase modulo a logarithmic plus smooth correction for each individual σ > 0. The OK term in
eq. (58), when formally expanded around σ = 0+, contains terms proportional to σ−2N for all
N ∈ N+. The estimate eq. (58) is therefore not uniform as σ → 0. Similarly, while we can write
(σ2 + Zx)1/2 = Z1/2x1/2(1 + σ2/2Zx+O(σ4/Z2x2)) for x bounded away from zero, this obviously
cannot be used to understand the asymptotics of outgoing solutions to Pu = f for any σ > 0. Hence,
the precise form of (σ2 + Zx)1/2 in eq. (57) (and the precise form of the other terms appearing
in eq. (57)) is important (at least modulo functions which are well-behaved on Xsp

res). This is the
second indication that we will need to resolve the x, σ → 0+ regime, and apparently in doing so we
had ought to resolve the ratio x/σ2.

This is accomplished by the mwc Xsp
res. While, as already remarked upon in Remark 6, this

resolution is reminiscent of that used in [Vas21c][Hin21] in order to resolve the low energy behavior of
interest there, it performs a somewhat different role here; theirs was used to study the degeneration
of 4g − σ2 as σ → 0+ to an elliptic element

4g ∈ Diff2,−2
b (X) (59)

of the b-calculus, but
4g − Zx ∈ Diff2,−1

b (X) (60)
is not elliptic in the b-calculus, hence the oscillating solutions to the ODE eq. (54) noted above.
Instead, we use the resolution to interpolate between Vasy’s analysis in [Vas21a] of 4g − σ2 − Zx
performed in Ψscb(X) for σ > 0 and the analysis of the “zero-energy operator” 4g − Zx performed
in Ψscb(X1/2) along similar lines (see §4). According to the previous paragraph, what makes the Φ
in Theorem 1.1 the “right” choice is the asymptotics of Φ near the boundary ∂Xsp

res of this resolution
(or more accurately near ∂Xsp

res\zf◦ = bf ∪ tf). Indeed, for σ = 0, we can write

Φ = 2

√
Z
x
− i

2a log x. (61)
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Hence, eq. (57) interpolates between the oscillations eq. (58) seen in solutions of the ODE eq. (53)
at positive energy and the oscillations eq. (61) seen in solutions of the ODE eq. (54) at zero energy.

We refer to §3 for a further discussion of the conjugated operator family and §4 for a discussion
of the situation at zero energy.

As our main technical tool, we situate the family P̃ = {P̃ (σ)}σ≥0 in a pseudodifferential calculus,

ΨleC(X) =
⋃

m,s,ς,l,`∈R
Ψm,s,ς,l,`

leC (X), (62)

which we will call the “leC-calculus” (“low energy Coulomb”-calculus, for lack of a better name) the
elements of which can be interpreted as particular families of b-ΨDOs on X. The calculus comes
with a refined symbol calculus tailored to the problem at hand. Compared to the calculus of b-ΨDOs
with parameters (i.e. Ψb(X)-valued symbols on some parameter space), the symbol calculus here is
refined in the sense of being second-microlocalized à la Vasy (so as to keep track both of b-decay and
sc-decay orders) and “resolved at the corner” (so as to keep track of the asymptotic regime when
both σ2 → 0 and x→ 0 at compatible rates). The corresponding symbols are conormal functions
on the “leC-phase space,” an iterated blow-up of [0,∞)σ × bT

∗
X. This mwc has six boundary faces

– df, sf, ff, bf, tf, zf – and is described in the next section. In eq. (62), m is the “differential order”
(order at fiber infinity, df), s is the sc-decay order at positive energy (order at sf), ς is the sc-decay
order at zero energy (order at ff), l is the b-decay order at positive energy (order at bf), and ` is
the b-decay order at zero energy (order at tf). We remark that the scattering calculus with respect
to x2 (rather than x1/2) has been used by Wunsch [Wun99][HW05], who called it the “quadratic
scattering calculus.” The leC-calculus is discussed in §2.

We now say a word about our usage of the symbol ‘�’ (the usage of ‘�’ being analogous).
When stating a proposition involving an estimate, we will be explicit about the dependence of the
constants involved on parameters. In order to avoid a proliferation of symbols denoting different
but unimportant constants, when proving a proposition of the form

• for all p1 ∈ P2, · · · , pM ∈ PM , there exists a constant C(p1, . . . , pM ) > 0 such that
r1(p1, · · · , pN ) ≤ C(p1, · · · , pM )r2(p1, · · · , pN ) for all pM+1 ∈ PM+1, · · · , pN ∈ PN ,

(where M,N ∈ N, N ≥M , P2, · · · ,PN are some sets, ri : P2 × · · · × PN → R for i = 1, 2) we will
write an intermediate estimate of the form

r3(p1, . . . , pN ) ≤ C ′(p1, · · · , pM )r4(p1, . . . , pN ) (63)
as r3 � r4, with the key point being that, according to eq. (63), C ′ depends only on the parameters
that C depends on (so that the estimate eq. (63) is “uniform” in pM+1, · · · , pN ). All constants
below depend on the geometric data in the setup of Theorem 1.1, so we will not be explicit about
that dependence.

2. The leC-calculus

We now turn to our discussion of the leC-calculus. This calculus is, in many ways, similar to
Vasy’s second microlocalized calculi Ψscb(X) = ∪m,s,l∈RΨm,s,l

scb (X) [Vas21a, §2] and Ψscb,res(X) =
∪m,s,l,`∈RΨm,s,l,`

scb,res(X) [Vas21c, §3], with the main novel feature of the leC-calculus (besides the
relatively unimportant alteration of the smooth structure at σ = 0) being another resolution of the
phase space (which we actually carry out before resolving the scattering face for σ > 0). This can
be seen at a glance, comparing Figure 3 to Figure 4, [Vas21c, Figure 4]. The zero face zf of the
leC-phase space is identifiable with the phase space scbT

∗
X1/2 of the calculus Ψscb(X1/2), while for

σ0 > 0 the {σ = σ0} cross-section of the leC-phase space is identifiable with the phase space scbT
∗
X

of the scb-calculus. Thus, the leC-calculus interpolates between these two calculi as σ → 0+, as
Ψscb,res(X) interpolates between Ψscb(X) and Ψb(X) in the same limit.

The leC-phase space leCT
∗
X is introduced in §2.1, along with corresponding algebras of symbols.

Calculi are discussed in §2.2, and the corresponding leC-Sobolev spaces (which are really families
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of scb-Sobolev spaces) are discussed in §2.3. As many of the results in this section are either
consequences of standard results for the b-calculus or derivable via similar arguments, some details
are omitted. Still, we’ve made an effort to give a relatively complete list of the results needed later,
and in the process we give the leC analogues of some standard arguments. In this section we mainly
write λ = σ2 in place of the parameter E used in the introduction.

When we write ‘Ψb(X),’ and more generally when we refer to “b-ΨDOs,” we mean the conormal
(a.k.a. “symbolic”) b-algebra [Vas18, Definition 5.15], rather than the closely related, slightly
smaller calculus defined in [Mel93, Definition 4.22]. The latter calculus has symbols that have some
additional classicality at the boundary. Our convention follows [Vas21a]. In [Vas21b], the notation
‘Ψbc(X)’ is used instead.

2.1. Phase Spaces and Symbols. Recall that we can identify bT ∗X over the boundary collar
with [0, x̄)x × Rξb × (T ∗∂X)ηb via the map

(0, x̄)x × Rξb × (T ∗∂X)ηb 3 (x, ξb, ηb) 7→ ξb
dx
x

+ plr∗(ηb), (64)

where plr = πR ◦ ι−1 : ι(X̂)→ ∂X. This defines a diffeomorphism between [0, x̄)x×Rξb × (T ∗∂X)ηb

and bT ∗
ι(X̂)X.

Let
b,spT

∗
X = [[0,∞)λ × bT

∗
X; {λ = x = 0}]

= [[0,∞)λ × bT
∗
X; {0} × bT

∗
∂XX]

(65)

denote the phase space of the resolved calculus of 1-parameter families of b-ΨDOs ([Vas21c, Figure
4]), and letting β : b,spT

∗
X → [0,∞)λ × bT

∗
X denote the blowdown map, let

zf00 = cl β−1({λ = 0, x > 0}),
tf00 = β−1({λ = 0 = x}),
bf00 = cl β−1({λ > 0, x = 0}),

(66)

and

df00 = cl((∂ sp,bT
∗
X)\(zf00 ∪ tf00 ∪ bf00)) (67)

denote its (closed) boundary faces. For each f ∈ {zf00, tf00,bf00,df00}, let %0,f ∈ C∞(b,spT
∗
X; [0,∞))

denote a bdf of the respective face, which we can take to be equal near {x = 0} to

%0,zf00 = λ

λ+ x
, %0,tf00 = λ+ Zx, %0,bf00 = x

λ+ Zx, %0,df00 = (1 + ξ2
b + η2

b)−1/2 (68)

(defined initially in the interior of b,spT
∗
X, these then extending to smooth functions on b,spT

∗
X).

(Below, we conflate smooth functions on mwc with their restrictions to the interior when such a
conflation does not cause trouble.) In eq. (68) and below, we write ξb for the b-cofiber coordinate
dual to x, and η2

b = g−1
∂X(ηb, ηb) for ηb ∈ T ∗∂X.

There exists a unique mwc b,leCT
∗
X = [[0,∞)λ × bT

∗
X; {0} × bT

∗
∂XX; 1

2 ] = [b,spT ∗X; tf00; 1
2 ],

depicted in Figure 2, with the following properties:
(1) as a set, b,leCT

∗
X is equal to b,spT

∗
X (a convenient convention),

(2) b,leCT
∗
X has the same smooth structure as b,spT

∗
X away from tf00, so that if ϕ ∈

C∞(b,spT
∗
X) is supported away from tf00, then ϕ ∈ C∞(b,leCT

∗
X); moreover,

(3) b,leCT
∗
X has four faces, equal as sets to zf00, tf00,bf00,df00, for which %0,zf00 , %

1/2
0,tf00

, %0,bf00 ,
%0,df00 serve as bdfs (respectively).
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We will refer to b,leCT
∗
X as the b,leC- phase space. See Figure 2.

We will refer to the bdfs of b,leCT
∗
X as %zf00 = %0,zf00 , %tf00 = %

1/2
0,tf00

, %bf00 = %0,bf00 , and %df00 =
%0,df00 . Thus, in terms of σ = λ1/2,

%tf00 =
√
σ2 + Zx, %bf00 = x

σ2 + Zx, %zf00 = σ2

σ2 + Zx. (69)

Note that the notions of zeroth order conormality on b,leCT
∗
X and b,spT

∗
X agree, as does the

notion of smoothness at zf◦00. For each m, l, ` ∈ R, we let

Sm,l,`b,leC(X) = A−m,−l,−`/2,(0,0)
loc (sp,bT

∗
X) = A−m,−l,−`,(0,0)

loc (b,leCT
∗
X), (70)

Sb,leC(X) = ∪m,l,`∈RSm,l,`b,leC(X), (71)

where we are enumerating the faces of the b,leC-phase space in the order df00,bf00, tf00, zf00. Thus,
m is the order at df00, l is the order at bf00, ` is the order at tf00, and the order at zf00 is just zero
(and we have a full Taylor series there, with the terms in the Taylor series elements of A−m,−`/2(zf00)).
(The ‘loc’ subscript in “Aloc” refers to the fact that we do not require L∞ bounds in the σ →∞
direction. That is, we only have bounds in compact subsets (which can include boundary points) of
the mwc b,leCT

∗
X, which is only noncompact because of the σ →∞ direction.) We also define

Sm,l,`cl,b,leC(X) = %−mdf00
%−lbf00

%−`tf00
C∞(b,spT

∗
X) ⊂ Sm,l,`b,leC(X). (72)

Given a ∈ Sm,l,`b,leC(X), we may restrict a to zf00, giving an element a(−; 0) ∈ Sm,`/2b (X) = Sm,`b (X1/2).
Note that the elements of Sb,leC(X) are all symbols on [0,∞)λ × bT

∗
X, i.e. elements of⋃

m,l,ν∈R
x−lλ−ν%−mdf00

A0([0,∞)λ × bT
∗
X). (73)

Specifically, for all m, l, ` ∈ R,

Sm,l,`b,leC(X) ⊂ x−l0λ−ν%−mdf00
A0([0,∞)λ × bT

∗
X) (74)

whenever l0 ≥ l and 2ν + 2l0 ≥ `. Consequently, if l0 ≥ l, `/2,

Sm,l,`b,leC(X) ⊆ A0([0,∞)λ;Sm,l0b (X)). (75)

Lemma 2.1. For any ` ∈ R, (σ2 + Zx)−`/2 ∈ C0([0,∞)σ;S0,max{0,`/2+ε}
b (X)) for any ε > 0. �

Proof. Continuity at σ > 0 is clear. Let l = max{0, `/2 + ε}. It suffices to restrict attention to
x < x̄, so we have to prove that, for each k ∈ N, xl(x∂x)k(σ2 + Zx)−`/2 → xl(x∂x)k(σ2 + Zx)−`/2|σ=0
in L∞[0, x̄]. We compute

xl(x∂x)k(σ2 + Zx)−`/2 = xl
k∑
j=0

cj,kx
j(σ2 + Zx)−`/2−j (76)

for some cj,k(Z) ∈ R. Observe that xmax{0,`/2}xj(σ2 + Zx)−`/2−j ∈ L∞([0, x̄]x × [0, 1]σ) for every
j ∈ N. Consequently, if ` > 0, the extra factor of xε in eq. (76) in conjunction with the uniform
convergence as σ → 0+ of xj+`/2(σ2 + Zx)−`/2−j → Z−`−j in compact subsets of (0, x̄]x implies that

xl
k∑
j=0

cj,kx
j(σ2 + Zx)−`/2−j → xε

k∑
j=0

cj,kZ−`/2−j (77)

uniformly in all of [0, x̄] as σ → 0+. If ` ≤ 0, then we can write l = `/2 + ∆ for some ∆ > 0, so the
same analysis applies.

�
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df00

bf00

zf00

tf00

df0

bf0

zf0

tf0

ff0

Figure 2. The phase spaces b,leCT
∗
X (left, cf. [Vas21c, Fig. 1]) and

[b,leCT
∗
X; df00 ∩ tf00] (right), with the degrees of freedom associated with T ∗∂X

omitted. (In other words, if we were to consider the case dimX = 1, then the figures
above would depict the phases spaces.) For simplicity, we only depict the ξb > 0 half
of phase space.

Proposition 2.2. If a ∈ Sm,l,`b,leC(X) and l0 ∈ R satisfies l0 ≥ l and l0 > `/2, then {a(−;σ)}σ≥0 ∈
C0([0,∞)σ;Sm,l0b (X)). �

Proof. We first reduce to the case m, l, ` = 0:
• For any m, l, ` ∈ R,

x−l(σ2 + Zx)l−`/2%−mdf00
∈ C0([0,∞)σ;Sm,l1b (X)) (78)

if l1 ≥ l, l1 > `/2 by the previous lemma.
Any a ∈ Sm,l,`b,leC(X) can be written as a = x−l(σ2 + Zx)l−`/2%−mdf00

a0 for a0 ∈ S0,0,0
b,leC(X), so

if we know that a0 ∈ C0([0,∞)σ;S0,ε
b (X)) for ε ≥ 0 then we can conclude that

a ∈ C0([0,∞)σ;Sm,l1b (X))C0([0,∞)σ;S0,ε
b (X)) = C0([0,∞)σ;Sm,l1+ε

b (X)). (79)

Taking l1 < l0 and ε ∈ (0, l0 − l1), we get a ∈ C0([0,∞)σ;Sm,l0b (X)).
To prove the proposition in the case m, l, ` = 0:

• Continuity at σ > 0 is clear, so we only need to check that, for a ∈ S0,0,0
b,leC(X), a(−;σ) →

a(−; 0) in S0,ε
b (X) for every ε > 0. Note that La ∈ L∞([0, 1]σ × [0, x̄]x × ∂X) for any

L ∈ Diffb(X). Since, as σ → 0+, La→ La|σ=0 uniformly in compact subsets of (0, x̄]x×∂X,
we can conclude that

xεLa→ xεLa|σ=0 (80)

uniformly in all of [0, x̄]× ∂X. Thus, a(−;σ)→ a(−; 0) in S0,ε
b (X). �

We now introduce the full leC- phase space leCT
∗
X. This is the mwc gotten from b,leCT

∗
X by first

blowing up the edge df00 ∩ tf00, resulting in a mwc with five faces – df0,ff0, bf0, tf0, zf0 (Figure 2,
right), where ff0 is the front face of the blow up – with bdfs

%df0 = %df00

%df00 + %tf00

, %ff0 = %df00 + %tf00 , %tf0 = %tf00

%df00 + %tf00

, (81)
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df

bf

zf

tf

ffsf

Figure 3. The leC-phase space leCT
∗
X, with the degrees of freedom associated

with T ∗∂X omitted. The edge ff ∩ bf has been highlighted in red.

%zf0 = %zf00 , %bf0 = %bf00 , and then performing a polar blowup of the edge df0 ∩ bf0, resulting in a
mwc with six faces – df, sf,ff,bf, tf, zf, where sf is front face of the second blowup – with bdfs

%df = %df0

%df0 + %bf0

= %df00

%df00 + %bf00(%df00 + %tf00) ,

%sf = %df0 + %bf0 = %df00

%df00 + %tf00

+ %bf00 ,

%bf = %bf0

%df0 + %bf0

= %bf00(%df00 + %tf00)
%df00 + %bf00(%df00 + %tf00) ,

(82)

%tf = %tf0 , %ff = %ff0 , %zf = %zf0 . See Figure 3. Now let, for each m, s, ς, l, ` ∈ R,

Sm,s,ς,l,`leC (X) = A−m,−s,−ς,−l,−`,(0,0)(leCT
∗
X) = %−mdf %−ssf %

−ς
ff %−lbf %

−`
tf S

0,0,0
b,leC(X),

SleC(X) = ∪m,s,ς,l,`∈RSm,s,ς,l,`leC (X),

Sm,s,ς,l,`cl,leC (X) = %−mdf %−ssf %
−ς
ff %−lbf %

−`
tf C

∞(leCT
∗
X) ⊂ Sm,s,ς,l,`leC (X),

Scl,leC(X) = ∪m,s,ς,l,`∈RSm,s,ς,l,`cl,leC (X).

(83)

At the level of sets (and at the level of C-algebras), SleC(X) is equal to Sb,leC(X) = ∪m,l,`∈RSm,l,`b,leC(X),
but the filtration above presents SleC(X) as a multigraded C-algebra. The isomorphism

× %−mdf %−ssf %
−ς
ff %−lbf %

−`
tf : S0,0,0

b,leC(X)→ Sm,s,ς,l,`leC (X) (84)

of vector spaces allows us to consider each Sm,s,ς,l,`leC (X) as a Fréchet space, and likewise for
Sm,s,ς,l,`cl,leC (X). The C-algebras SleC(X) and Scl,leC(X) are then multigraded Fréchet algebras, as
pointwise multiplication of symbols is jointly continuous with respect to the relevant topologies.

Observe that if a ∈ Sm,s,ς,l,`leC (X) then a(−; 0) ∈ Sm,ς,`scb (X1/2). For σ > 0, a(−;σ) ∈ Sm,s,lscb (X).

2.2. Calculi. After recalling some preliminary notions in §2.2.1, we discuss the b,leC-calculus in
§2.2.2 and the full leC-calculus in §2.2.3. Since the b,leC-calculus is essentially Ψb,sp,res(X), except
that we enforce classicality at zf00 (which introduces no complications), and since all references to
the b,leC-calculus in the rest of the paper (i.e. §3, §5, §6) could be replaced by references to the leC-
calculus with only notational complications, we will only sketch the arguments in §2.2.2. (However,
it is important to understand the residual operators Ψ−∞,l,`b,leC (X), as these are the “non-symbolic”
parts of leC-operators. But – once again – this is essentially Ψ−∞,l,`b,sp,res(X) except for additional
classicality at the “zero face” of Vasy’s double space.)
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df

bf

zf

tf

sf

Figure 4. The phase space of Vasy’s resolved calculus. Cf. [Vas21c, Figure 4] (which
also depicts the ξ < 0 half of this phase space).

2.2.1. Ψb,sp,res(X). We now recall the notion of the b-calculus with conormal dependence on
parameters: for any (compact) mwb X and a (connected) mwc M (the “parameter space”), we have
a multigraded C-algebra

Ψb;M (X) =
⋃

m,l∈R
Ψm,l

b;M (X), (85)

Ψm,l
b;M (X) = A0

loc(M ; Ψm,l
b (X)), (86)

the members of which are the families {Aλ}λ∈M◦ of b-ΨDOs on X depending conormally on a
parameter λ ∈ M◦ (as above, the ‘loc’ refers to the fact that we only require uniform bounds in
compact subsets of M). So, letting C∞ ∩ L∞loc(M ; Ψm,l

b (X)) denote the Fréchet space of smooth
maps M◦ → Ψm,l

b (X) that are (but whose derivatives are not necessarily) uniformly bounded with
respect to each Fréchet seminorm of Ψm,l

b (X) in every compact subset of M ,

Ψm,l
b;M (X) = {A• ∈ C∞ ∩ L∞loc(M ; Ψm,l

b (X)) : [LA•]a.e. ∈ L∞loc(M ; Ψm,l
b (X)) ∀L ∈ Diffb(M)}. (87)

Note that each Ψm,l
b;M (X) is a Fréchet space, and Ψb;M (X) can be regarded as a multigraded Fréchet

algebra. Relevant to the study of spectral families of operators is the case M = [0,∞)λ. In this
case, we write “, sp” in place of “;M” in the notation.

In [Vas21c, §3], Vasy (using slightly different notation) defines a particular “refinement” of
Ψb,sp(X) = Ψb;M (X),

Ψb,sp,res(X) = Ψb,sp(X), Ψb,sp,res(X) =
⋃

m,l,`∈R
Ψm,l,`

b,sp,res(X), (88)

a multigraded C-algebra which is equal, at the level of C-algebras, to Ψb,sp(X), but with a 3-
parameter multigrading (and associated symbol calculus) such that

• Ψm,l,`
b,sp,res(X) ⊂ Ψm,max{l,`}

b,sp (X)
• and (λ+ x)−l, considered as a multiplication operator, is in Ψ0,0,l

b,sp,res(X).
The three indices m, l, ` in Ψm,l,`

b,sp,res(X) keep track of three notions of order, roughly the “differential
order” m, the b-decay order away from zero energy l – that is at bf00 – and the b-decay order ` at
tf00 (with respect to %0,tf00). In [Vas21c], Vasy keeps track of an additional order, the order at zf00,
which for our purposes can be set to zero throughout (as in eq. (70)).

Define σm,l,`b,sp,res : Ψm,l,`
b,sp,res(X)→ A−m,−l,−`,0loc (b,spT

∗
X)/A−m+1,−l,−`,0

loc (b,spT
∗
X) by

σm,l,`b,sp,res(a) = (λ+ x)l−`σm,lb,sp((λ+ x)`−la) (89)



22 ETHAN SUSSMAN

for a ∈ Sm,l,`b,sp,res(X), where σb,sp(a) denotes the b-principal symbol map applied λ-wise to a considered
as an element of the family b-algebra Ψb,sp(X). Then, for all m, l, ` ∈ R,

0→ Ψm−1,l,`
b,sp,res (X) ↪→ Ψm,l,`

b,sp,res(X)
σb,sp,res−→ A−m,−l,−`,0loc (sp,bT

∗
X)/A−m+1,−l,−`,0

loc (sp,bT
∗
X)→ 0 (90)

is a short exact sequence and, for all m′, l′, `′ ∈ R,

σm,l,`b,sp,res(A)σm
′,l′,`′

b,sp,res(B) = σm+m′,l+l′,`+`′
b,sp,res (AB) (91)

{σm,l,`b,sp,res(A), σm
′,l′,`′

b,sp,res(B)} = −iσm+m′−1,l+l′,`+`′
b,sp,res ([A,B]). (92)

for all A ∈ Ψm,l,`
b,sp,res, B ∈ Ψm′,l′,`′

b,sp,res. We will compute Poisson brackets using the convention that
momentum derivatives of the first entry have positive sign. (The sign in eq. (92) depends on the
choice of sign used in the Fourier transform used in defining the calculus.) The bdfs (σ2 + Zx)1/2

and x/(σ2 + Zx) of Xsp
res, considered as multiplication operators, are representatives of their own

principal symbols:

σ0,l,0
b,sp,res(x

−l(σ2 + Zx)l) = x−l(σ2 + Zx)l mod S−1,l,0
b,sp,res(X) (93)

σ0,0,`
b,sp,res((σ

2 + Zx)−`) = (σ2 + Zx)−` mod S−1,0,`
b,sp,res(X). (94)

More generally, if a ∈ Sm,l,`b,sp,res(X), then a ∈ σm,l,`b,sp,res(a).
It is very convenient to make use of a “(left) quantization” map (right quantization working

equally well):
Op : Sb(X)→ Ψb(X) (95)

: Sm,lb (X)→ Ψm,l
b (X), (96)

discussed e.g. in [Vas18] among other places, given by the left quantization of symbols in local
coordinates. This will be noncanonical, depending on a choice of atlas on X, among other things.
While not surjective (missing out on the remainder term R′ in [Vas18, Definition 5.15]), it will be
modulo Ψ−∞,lb (X).

Applied λ-wise to an element of A0([0,∞)λ;Sm,lb (X)), the result is an element of Ψm,l
b,sp(X) =

A0([0,∞)λ; Ψm,l
b (X)). Some elementary properties of Op which we can arrange are:

• for any f ∈ ∪l∈RAl(X),
Op(f) = f (97)

(this property distinguishing left quantization from right), where the f on the right-hand
side denotes the multiplication operator u 7→ fu,
• Op is C-linear,
• eq. (96) is continuous for any m, l ∈ R,
• σm,lb (Op(a)) = a mod Sm−1,l

b (X) for all a ∈ Sm,lb (X).
(Equation (97) holds for the calculus Ψ∞ under left quantization. Since the Schwartz kernel of the
multiplication operator u 7→ fu is supported on the diagonal, it is unaltered by the cutoff ψ(t− t′)
in [Vas18, Definition 5.15]. As a consequence, eq. (97) holds also for Ψb.)

2.2.2. Ψb,leC(X). Let Ψ−∞,l,`b,leC (X) denote the elements of Ψ−∞,l,`/2b,sp,res (X) whose Schwartz kernels are
smooth at the face cl{σ = 0, x′ > 0, x > 0} of the double space X2b,sp,res [Vas21c, Figure 2] (with
the terms in the Taylor series being elements of Ψ−∞,`b (X1/2)):

SK Ψ−∞,l,`b,leC (X) = A−l,−`/2,−∞,−∞,(0,0)
loc (X2b,sp,res), (98)

where we are listing the boundary faces of X2b,sp,res in the order bf = cl{x, x′ = 0, σ > 0},
tf = {x, x′ = 0, σ = 0}, lb = cl{x = 0, x′ > 0, σ > 0}, rb = cl{x′ = 0, x > 0, σ > 0}, and
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zf = cl{σ = 0, x > 0, x′ > 0}. Thus, Ψ−∞,l,`b,leC (X) inherits from eq. (98) a Fréchet space structure,
and it can be shown that

Ψ−∞,∞,∞b,leC (X) = ∪l,`∈RΨ−∞,l,`b,leC (X) (99)
is then a multigraded Fréchet algebra. (So operator composition defines a jointly continuous map
Ψ−∞,l,`b,leC (X)×Ψ−∞,l

′,`′

b,leC (X)→ Ψ−∞,l+l
′,`+`′

b,leC (X) for all l, `, l′, `′ ∈ R.)
An argument similar to that used to prove Proposition 2.2 yields:

Proposition 2.3. Given an element K ∈ SK Ψ−∞,l,`b,leC (X), if l0 ≥ l and l0 > `/2, then it is the case
that {K(−;σ)}σ≥0 ∈ C0([0,∞)σ; SK Ψm,l0

b (X)) for any m ∈ R. ��

Consequently, elements of Ψ−∞,∞,∞b,leC (X) can be considered as continuous families of b-ΨDOs
indexed either by R+

σ or by [0,∞)σ. We now define, for each m, l, ` ∈ R,

Ψm,l,`
b,leC(X) = Op(Sm,l,`b,leC(X)) + Ψ−∞,l,`b,leC (X). (100)

Thus, by eq. (75), if l0 ≥ l, `/2, then Ψm,l,`
b,leC(X) ⊆ Ψm,l0

b,sp (X). In addition:

Proposition 2.4. If a = {a(−;σ)}σ≥0 ∈ Sm,l,`b,leC(X), then, if l0 ≥ l and l0 > `/2,

{Op(a(−;σ))}σ≥0 ∈ C0([0,∞)σ; Ψm,l0
b ). (101)

Consequently, if A = {A(σ)}σ>0 ∈ Ψm,l,`
b,leC(X), then there exists some A(0) ∈ Ψm,l0

b (X) such that
{A(σ)}σ≥0 ∈ C0([0,∞)σ; Ψm,l0

b ). �

Proof. Using the continuity of Op : Sm,l0b (X)→ Ψm,l0
b (X), the first statement follows from Proposi-

tion 2.2. The second statement follows from the first in conjunction with Proposition 2.3.
�

Since Op is linear, Ψm,l,`
b,leC(X) is a vector space, and it inherits a Fréchet space structure from

Sm,l,`b,leC(X) and Ψ−∞,l,`b,leC (X), more specifically the quotient topology associated to the definitional
surjection

Sm,l,`b,leC(X)×Ψ−∞,l,`b,leC (X)→ Ψm,l,`
b,leC(X). (102)

From the definition of Ψm,l,`/2
b,sp,res(X) given in [Vas21c, §3], Ψm,l,`

b,leC(X) ⊂ Ψm,l,`/2
b,sp,res(X). Just as the set

of classical Kohn-Nirenberg ΨDOs is a subalgebra of the calculus of all Kohn-Nirenberg ΨDOs,

Ψb,leC(X) =
⋃

m,l,`∈R
Ψm,l,`

b,leC(X) (103)

is a subalgebra of Ψb,sp,res(X), with composition of ΨDOs defining jointly continuous products

Ψm,l,`
b,leC(X)×Ψm′,l′,`′

b,leC (X)→ Ψm+m′,l+l′,`+`′
b,leC (X) (104)

for all m, l, `,m′, l′, `′ ∈ R. The key observation here, in addition to the continuity of Ψm,l,`
b,leC(X)×

Ψ−∞,l
′,`′

b,leC (X) → Ψ−∞,l+l
′,`+`′

b,leC (X) for all m, l, `, l′, `′ ∈ R, is that the reduction formula for full
symbols in local coordinates respects classicality at zf00.

From σb,sp,res, we get a set {σm,l,`b,leC}m,l,`∈R of maps σm,l,`b,leC : Ψm,l,`
b,sp,res → Sm,l,`b,leC(X)/Sm−1,l,`

b,leC (X) such
that

0→ Ψm−1,l,`
b,leC (X) ↪→ Ψm,l,`

b,leC(X)
σb,leC−→ Sm,l,`b,leC(X)/Sm−1,l,`

b,leC (X)→ 0 (105)
is a short exact sequence and such that

σm,l,`b,leC(A)σm
′,l′,`′

b,sp,res(B) = σm+m′,l+l′,`+`′
b,leC (AB) (106)

{σm,l,`b,leC(A), σm
′,l′,`′

b,leC (B)} = −iσm+m′−1,l+l′,`+`′
b,leC ([A,B]). (107)
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for all A ∈ Ψm,l,`
b,leC, B ∈ Ψm′,l′,`′

b,leC , with each of eq. (105), eq. (106), eq. (107) following from each of
eq. (90), eq. (91), eq. (92) respectively.

Let A0,0,(0,0)(Xsp
res) denote the set of distributions on Xsp

res which are conormal to all boundaries
and smooth at zf (in particular smooth everywhere except possibly at tf,bf).

Proposition 2.5. For any f ∈ A0,0,(0,0)(Xsp
res) and l, ` ∈ R, the multiplication operator given by

multiplication by x−l(σ2 + Zx)l−`/2f(x;σ) defines an element of Ψ0,l,`
b,leC(X). ��

Proof. The given multiplication operator M = {M(σ)}σ>0 is given by M(σ) = Op(x−l(σ2 +
Zx)l−`/2f(x;σ)) (using eq. (97) for each individual σ > 0), so the proposition follows from f ∈
S0,0,0

b,leC(X). �

2.2.3. ΨleC(X). In order to define the full leC-calculus, we will use the following properties of Op:
• Op(a) ∈ Ψm,l,`

b,leC(X) (if and) only if a ∈ Sm,l,`b,leC(X).
•

σm,l,`b,leC(Op(a)) = a mod Sm−1,l,`
b,leC (X) (108)

whenever Op(a) ∈ Ψm,l,`
b,leC(X),

• there exists a function ] : Sb,leC(X)2 → Sb,leC(X) (given by the “reduction formula” for Ψ∞,
related to Ψb via [Vas18, §6]) such that, for anym,m′, s, s′, ς, ς ′, l, l′, `, `′ ∈ R, a ∈ Sm,s,ς,l,`leC (X)
and b ∈ Sm

′,s′,ς′,l′,`′

leC (X),

a]b ∈ Sm+m′,s+s′,ς+ς′,l+l′,`+`′
leC (X), (109)

esssuppleC(a]b) ⊆ esssuppleC(a) ∩ esssuppleC(b), (110)
Op(a) Op(b) = Op(a]b) + E, (111)

for some E ∈ Ψ−∞,l+l
′,`+`′

b,leC (X) which depends continuously on a, b. Moreover,

a]b = ab mod Sm+m′−1,s+s′−1,ς+ς′−1,l+l′,`+`′
leC (X), (112)

a]b− b]a = i{a, b} mod Sm+m′−2,s+s′−2,ς+ς′−2,l+l′,`+`′
leC (X) (113)

for all such a, b,
• there exists another continuous (C-antilinear) function [ : Sb,leC(X) → Sb,leC(X) (which
can also be written in local coordinates in terms of the reduction formula) such that for all
a ∈ Sm,s,ς,l,`leC (X),

Op([a) = Op(a)∗ + E (114)

for some E ∈ Ψ−∞,l,`b,leC (X) which depends continuously on a, where the asterisk denotes an
L2(X, g0)-based adjoint (for arbitrary exactly conic g0), and

[a = a∗ mod Sm−1,s−1,ς−1,l,`
leC (X) (115)

esssuppleC([a) = esssuppleC(a). (116)

Here, for s ∈ Sb,leC(X), esssuppleC(s) consists of those points in df ∪ sf ∪ tf failing to possess a
neighborhood in which s vanishes to infinite order at the boundary of the leC- phase space.

As in [Vas21a][Vas21c], these properties follow from the relation between Ψb(X) and Ψ∞(Rn), as
explained in [Vas18, §6], and the basic properties of Ψ∞(Rn) (in particular the reduction formula),
for which the standard reference is [Hör07]. It is crucial for us that ] satisfies the equations eq. (110),
eq. (112), eq. (113) above and not just the weaker b,leC- analogues. This fundamental fact can be
read off of the reduction formula for full symbols in local coordinates, in terms of which ] can be
written.
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We can now define, for each m, s, ς, l, ` ∈ R,
Ψm,s,ς,l,`

leC (X) = Op(Sm,s,ς,l,`leC (X)) + Ψ−∞,l,`b,leC ⊆ Ψ∞,l,`b,leC. (117)

Evidently, eq. (117) endows Ψm,s,ς,l,`
b,leC (X) with a topology, so that it becomes a Fréchet space.

Consider the graded vector space
ΨleC(X) =

⋃
m,s,ς,l,`∈R

Ψm,s,ς,l,`
leC (X). (118)

At the level of vector spaces, this is just Ψb,leC(X).
Moreover, since Sm,m+l,m+`,l,`

leC (X) = Sm,l,`leC (X) at the level of sets, Ψm,m+l,m+`,l,`
leC (X) = Ψm,l,`

b,leC(X)
for all m, l, ` ∈ R.
Proposition 2.6. ΨleC(X) is a multigraded C-algebra: for any m,m′, s, s′, ς, ς ′, l, l′, `, `′ ∈ R,
A ∈ Ψm,s,ς,l,`

leC (X) and B ∈ Ψm′,s′,ς′,l′,`′

leC (X),

AB ∈ Ψm+m′,s+s′,ς+ς′,l+l′,`+`′
leC (X). (119)

�

Proof. We can write A = Op(a) + E and B = Op(b) + F for a ∈ Sm,s,ς,l,`leC , b ∈ Sm
′,s′,ς′,l′,`′

leC ,
E ∈ Ψ−∞,l,`b,leC , F ∈ Ψ−∞,l

′,`′

b,leC . Thus,
AB = Op(a) Op(b) + EOp(b) + Op(a)F + EF (120)

= Op(a]b) + EOp(b) + Op(a)F + EF +G (121)

for some G ∈ Ψ−∞,l+l
′,`+`′

b,leC . Since a ∈ SM,l,`
b,leC , b ∈ SM

′,l′,`′

b,leC for M = max{m, s − l, ς − `} and
M ′ = max{m′, s′ − l′, ς ′ − `′},

Op(a) ∈ ΨM,l,`
b,leC(X), Op(b) ∈ ΨM ′,l′,`′

b,leC (X), (122)

which implies that EOp(b),Op(a)F ∈ Ψ−∞,l+l
′,`+`′

b,leC , and likewise EF ∈ Ψ−∞,l+l
′,`+`′

b,leC .
Since a]b ∈ Sm+m′,s+s′,ς+ς′,l+l′,`+`′

leC , we deduce that eq. (119) holds. �

In fact (as can be proven using finite order truncations of the reduction formula), operator
composition defines a jointly continuous map

Ψm,s,ς,l,`
leC (X)×Ψm′,s′,ς′,l′,`′

leC (X)→ Ψm+m′,s+s′,ς+ς′,l+l′,`+`′
leC (X), (123)

so we can say that the leC-calculus is a multigraded Fréchet algebra.
Lemma 2.7. Suppose that A ∈ Ψm,s,ς,l,`

leC (X) can be written either as A = Op(a1) + E1 or A =
Op(a2) + E2 for some symbols a1, a2 ∈ Sm,s,ς,l,`leC (X) and E1, E2 ∈ Ψ−∞,l,`b,leC .

Then a1 − a2 ∈ S−∞,l,`b,leC (X). �

Proof. By the linearity of Op, Op(a1−a2) ∈ Ψ−∞,l,`b,leC (X). Then, using the σb,leC-short exact sequence
and the property eq. (108) of Op: for all N ∈ N,

0 = σ−N,l,`b,leC (Op(a1 − a2)) = a1 − a2 mod S−N−1,l,`
b,leC (X), (124)

which means that a1 − a2 ∈ S−N−1,l,`
b,leC (X). �

Thus, for any A ∈ Ψm,s,ς,l,`
leC (X), we get notions

Ellm,s,ς,l,`leC (A) = ellm,s,ς,l,`leC (a) ⊂ df ∪ sf ∪ ff, (125)

Charm,s,ς,l,`leC (A) = charm,s,ς,l,`leC (a) = df ∪ sf ∪ ff\ ellm,s,ς,l,`leC (a), (126)

WF′l,`leC(A) = esssuppleC(a), (127)
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for any a ∈ Sm,s,ς,l,`leC with A = Op(a) + E for E ∈ Ψ−∞,l,`b,leC (X). All three are subsets of df ∪ sf ∪ tf.
Another useful notion, which we will only apply to A ∈ ∩l,`∈RΨm,s,ς,l,`

leC (X) = Ψm,s,ς,−∞,−∞
leC (X) is

WF′leC(A) = ∩l,`∈R WF′l,`leC(A). (128)

Observe that if a ∈ Sm,s,ς,−∞,−∞leC (X), then Op(A) ∈ Ψm,s,ς,−∞,−∞
leC (X) (tautologically) and

WF′leC(A) = esssuppleC(a), (129)
which is disjoint from bf ∪ tf.

In addition, we get the leC- principal symbol maps

{σm,s,ς,l,`leC }m,s,ς,l,`∈R, σm,s,ς,l,`leC : Ψm,s,ς,l,`
leC (X)→ Sm,s,ς,l,`leC (X)/Sm−1,s−1,ς−1,l,`

leC (X),

σm,s,ς,l,`leC (A) = a mod Sm−1,s−1,ς−1,l,`
leC for any a ∈ Sm,s,ς,l,`leC with A = Op(a) + E for E ∈ Ψ−∞,l,`b,leC .

Unlike Op, which is not canonical and depends on a particular choice of local coordinate charts,
these notions are all canonical.

Proposition 2.8. For every m, s, ς, l, ` ∈ R, we have a short exact sequence

0→ Ψm−1,s−1,ς−1,l,`
leC (X) ↪→ Ψm,s,ς,l,`

leC (X)→ Sm,s,ς,l,`leC (X)/Sm−1,s−1,ς−1,l,`
leC (X)→ 0, (130)

where the second-to-last map is σm,s,ς,l,`leC . �

Proof. The surjectivity of σm,s,ς,l,`leC follows from the properties of Op listed above.
If, on the other hand, A ∈ Ψm,s,ς,l,`

leC (X) satisfies σm,s,ς,l,`leC (A) = 0, then A = Op(a) + E

for a ∈ Sm−1,s−1,ς−1,l,`
leC and E ∈ Ψ−∞,l,`b,leC . Then, by the definition of Ψm−1,s−1,ς−1,l,`

leC (X), A ∈
Ψm−1,s−1,ς−1,l,`

leC (X). �

Proposition 2.9. For every m, s, ς, l, `,m′, s′, ς ′, l′, `′ ∈ R and pair of A ∈ Ψm,s,ς,l,`
leC (X) and B ∈

Ψm′,s′,ς′,l′,`′

leC (X),
σm,s,ς,l,`leC (A)σm

′,s′,ς′,l′,`′

leC (B) = σm+m′,s+s′,ς+ς′,l+l′,`+`′
leC (AB). (131)

Moreover, σm+m′−1,s+s′−1,ς+ς′−1,l+`′,`+`′
leC ([A,B]) is equal to

i{a, b} mod Sm+m′−2,s+s′−2,ς+ς′−2,l+`′,`+`′
leC (X), (132)

where a, b are any representatives of σm,s,ς,l,`leC (A) and σm
′,s′,ς′,l′,`′

leC (B). �

Proof. Write A = Op(a) + E and B = Op(b) + F for a ∈ Sm,s,ς,l,`leC (X), b ∈ Sm
′,s′,ς′,l′,`′

leC (X),
E ∈ Ψ−∞,l,`leC (X), F ∈ Ψ−∞,l

′,`′

leC . Then

σm+m′,s+s′,ς+ς′,l+`′,`+`′
leC (AB) = σm+m′,s+s′,ς+ς′,l+`′,`+`′

leC (Op(a) Op(b))

= σm+m′,s+s′,ς+ς′,l+`′,`+`′
leC (Op(a]b))

= a]b mod Sm+m′−1,s+s′−1,ς+ς′−1,l+l′,`+`′
leC (X)

= ab mod Sm+m′−1,s+s′−1,ς+ς′−1,l+l′,`+`′
leC (X)

= σm,s,ς,l,`leC (A)σm
′,s′,ς′,l′,`′

leC (B).

(133)

The proof of eq. (132) is similar. �

Proposition 2.10. Suppose that L ∈ SDiffm,s,lscb (X), m ∈ N, s, l,∈ R. Then, the constant family
{L(σ)}σ>0, L(σ) = L, (which we conflate with L) defines an element of Ψm,s,s+l,l,2l

leC (X).
Given any f ∈ A0,0,(0,0)(Xsp

res) and l0, `0 ∈ R, (x/(σ2 + Zx))l0(σ2 + Zx)`0/2fL defines an element
of Ψm,s−l0,s+l−`0,l−l0,2l−`0

leC (X). �
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Proof. First consider the case when s = m+ l, so that L ∈ SDiffm,lb (X). Then,

L ∈ Ψm,l,2l
b,leC (X) = Ψm,m+l,m+2l,l,2l

leC (X) = Ψm,s,s+l,l,2l
leC (X). (134)

To handle the general case, we note that we may write any L ∈ SDiffm,s,lscb (X) – where now
m, s, l ∈ R are arbitrary – as

L =
m∑
j=0

Lj (135)

for Lj ∈ SDiffj,min{s−j,l}
b (X) ⊂ SDiffj,min{s,l+j},min{s−j,l}

scb (X) ⊂ SDiffm,s,lscb (X). (Indeed, it suffices
to construct such a decomposition on [0, x̄)x × ∂X, where Lj can be written as a linear combination
of elements of S(X)∂j1x Diffj2(∂X) for j1 + j2 = j, j1, j2 ∈ N.) Since

Lj ∈ Ψj,min{s−j,l},2 min{s−j,l}
b,leC (X)

= Ψj,min{s,l+j},min{2s−j,j+2l},min{s−j,l},2 min{s−j,l}
leC (X)

(136)

we deduce that

L ∈ Ψm,min{s,l+m},s+l,min{s,l},min{2s,2l}
leC (X) ⊂ Ψm,s,s+l,l,2l

leC (X). (137)

From Proposition 2.5, for any f ∈ A0,0,(0,0)(Xsp
res)(Xsp

res) and l0, `0 ∈ R, the multiplication operator
xl0(σ2 + Zx)−l0+`0/2f(x;σ) defines an element of Ψ0,−l0,−`0

b,leC (X) = Ψ0,−l0,−`0,−l0,−`0
leC (X). The second

statement of the proposition therefore follows from the first via an application of Proposition 2.6. �

For each m, s, ς, l, ` ∈ R, we let SDiffm,s,ς,l,`leC (X) denote the set of elements of Ψm,s,ς,l,`
leC (X) which

are families of differential operators (all of which arise from the construction in Proposition 2.10).
Likewise, we let

Diffm,s,ς,l,`leC (X) ⊂ SDiffm,s,ς,l,`leC (X) (138)
denote the subset of families of differential operators which can be written as a linear combination
of elements of Diffb(X) times classical symbols on Xsp

res.
The elliptic parametrix construction, applied to the leC-calculus, yields the following: for any

m, s, ς, l, ` ∈ R and (totally) elliptic A ∈ Ψm,s,ς,l,`
leC (X) – that is A with

Ellm,s,ς,`leC (A) = df ∪ sf ∪ tf (139)

– there exists, for each N ∈ N, some B ∈ Ψ−m,−s,−ς,−l,−`leC (X) such that AB−1, BA−1 ∈ Ψ−N,0,0b,leC (X).
(To elaborate, the leC-symbol calculus analogue of the construction of left and right parametrices
via Neumann series yields BL, BR such that ABR − 1, BLA − 1 ∈ Ψ−N,0,0b,leC (X). Then, setting
EL = BLA− 1 and ER = ABR − 1,

BL = BL(ABR − ER) = (EL + 1)BR −BLER = BR + (ELBR −BLER), (140)

so taking either B = BL or B = BR, both of AB − 1, BA− 1 ∈ Ψ−N,0,0b,leC (X) hold. Hence we do not
need to distinguish left vs. right parametrices.)

Lemma 2.11. Given any m, s, ς, l, ` ∈ R, A ∈ Ψm,s,ς,l,`
leC (X) and α ∈ df ∪ sf ∪ ff, α /∈WF′l,`leC only if

there exists some B ∈ Ψ0,0,0,0,0
leC (X) that is elliptic at α and satisfies AB,BA ∈ Ψ−∞,−∞,−∞,l,`leC (X).

The same statement applies if we replace α with the intersection of a finite union of closed balls
with df ∪ sf ∪ ff. �

Proof. We write A = Op(a) for a ∈ S∞,∞,∞,l,`leC (X), so that WF′l,`leC(A) = esssuppleC(a).
Given B ∈ Ψ0,0,0,0,0

leC (X), B = Op(b), b ∈ S0,0,0,0,0
leC (X), define E ∈ Ψ−∞,−∞,−∞,l,`leC (X) by

AB = Op(a]b) + E. (141)
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If α /∈ esssuppleC(a), then (since essential supports are closed) we can choose b ∈ S0,0,0,0,0
cl,leC (X) that

is identically equal to one in a neighborhood of α but supported away from esssuppleC(a), so that
esssuppleC(a) ∩ esssuppleC(b) = ∅.

Then, by eq. (110), a]b has empty essential support, which implies that AB ∈ Ψ−∞,−∞,−∞,l,`leC (X).
That handles AB, and BA is analogous. If we replace α in the previous argument with the

intersection of a finite union of closed balls with df ∪ sf ∪ff, the argument goes through the same. �

We briefly discuss uniform families of leC-ΨDOs (i.e. one-parameter families of b-ΨDOs which are
uniformly bounded in a sense appropriate for the leC-calculus). For each m, s, ς, l, ` ∈ R ∪ {−∞},

Ψm,s,ς,l,`
leC (X) =

⋂
m′≥m,··· ,`′≥`
m′,··· ,`′∈R

Ψm′,s′,ς′,l′,`′

leC (X) (142)

is a Fréchet space, so for any nonempty interval I ⊂ R, we have a Fréchet space L∞(I; Ψm,s,ς,l,`
leC (X))

whose elements are a.e. equivalence classes of measurable functions I → Ψm,s,ς,l,`
leC (X) which are

uniformly bounded with respect to each of our countably many Fréchet seminorms on the codomain.
For I closed, we can safely conflate an element of A0(I; Ψm,s,ς,l,`

leC (X)), which we can consider as a
smooth family {At}t∈I◦ , with the corresponding element of L∞(I; Ψm,s,ς,l,`

leC (X)).
For A = {At}t∈I ∈ L∞(I; Ψm,s,ς,l,`

leC (X)), we define subsets WF′L∞,leC(A),WF′l,`L∞,leC(A) ⊂ df ∪
sf ∪ ff by stipulating that a point α ∈ df ∪ sf ∪ ff does not lie in

• WF′L∞,leC(A) if and only if there exists some B ∈ Ψ0,0,0,0,0
leC (X) that is elliptic at α and

satisfies {BAt}t∈I ∈ L∞(I; Ψ−∞,−∞,−∞,−∞,−∞leC (X)),
• WF′l,`L∞,leC(A) if and only if there exists some B ∈ Ψ0,0,0,0,0

leC (X) that is elliptic at α and
satisfies {BAt}t∈I ∈ L∞(I; Ψ−∞,−∞,−∞,l,`leC (X)).

A uniform version of the elliptic parametrix construction goes through. We likewise have a notion
of esssuppL∞,leC(a) for a ∈ L∞(I;Sm,s,ς,l,`leC (X)). One definition is that α ∈ df ∪ sf ∪ ff is not in
esssuppL∞,leC(a) if and only if there exists some b ∈ S0,0,0,0,0

leC (X) that is elliptic at α and satisfies
ab ∈ S−∞,−∞,−∞,−∞leC (X). Quantizing: for any interval I ⊂ R and any m, s, ς, l, ` ∈ R, given
a ∈ L∞(I;Sm,s,ς,l,`leC (X)), letting A = {Op(At)}t∈I ,

WF′l,`L∞,leC(A) = esssuppL∞,leC(a). (143)

2.3. Sobolev Spaces. For each m, s, l ∈ R, let Hm,s,l
scb (X) denote the Sobolev space of differential

order m, sc-decay order s, and b-decay order l associated to the scb-calculus in [Vas21a]. Associated
to the leC-calculus is a five-parameter family

{Hm,s,ς,l,`
leC (X)}m,s,ς,l,`∈R

of families
Hm,s,ς,l,`

leC (X) = {Hm,s,ς,l,`
leC (X)(σ)}σ≥0 (144)

of “leC-based Sobolev spaces,” where
• for each σ > 0, Hm,s,ς,l,`

leC (X)(σ) is a Hilbertizable Banach space equal to Hm,s,l
scb (X) ⊂ S ′(X)

at the level of TVSs (i.e. equivalent at the level of Banach spaces),
• Hm,s,ς,l,`

leC (X)(0) = H
m,ς+n/2,`+n/2
scb (X1/2) (at the level of TVSs).

The family Hm,s,ς,l,`
leC (X) had ought to be thought of as interpolating between the Sobolev spaces

Hm,s,l
scb (X) and Hm,ς+n/2,`+n/2

scb (X1/2) as σ → 0+.
Besides using the leC-Sobolev spaces to relate H•,•,•scb (X) and H•,•,•scb (X1/2) we can, more crudely,

observe that
Hm,m+l,l

scb (X) = Hm,l
b (X) = H

m,2l+n/2
b (X1/2) = H

m,m+2l+n/2,2l+n/2
scb (X). (145)
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The spaces H•,•,•scb (X) are more refined than H•,•b (X) in that the decay rate of terms like exp(i/x)
need not be treated the same as the decay rate of the constant function as measured by the former.
Similarly, the spaces H•,•,•scb (X1/2) are more refined than H•,•b (X1/2) in that the decay rate of terms
like exp(i/x1/2) need not be the same as the decay rate of the constant function as measured by the
former. As shown in [Vas21a], the scb-Sobolev spaces are well-suited for formulating a conjugated
version of the Sommerfeld radiation condition, and for similar reasons the leC-Sobolev spaces are
well-suited to the study of attractive Coulomb-like Schrödinger operators down to zero energy.

In order to define the σ-dependent norm on Hm,s,ς,l,`
leC (X)(σ), we first note:

Lemma 2.12. For any two elliptic A,B ∈ Ψm,s,ς,l,`
leC and N,M ∈ Z with N,M ≥ −min{m, s −

l, ς − `}, and for any Σ > 0, there exist c, C > 0 such that
c(‖B(σ)u‖L2(X) + ‖u‖

H−M,l,`b,leC (σ)) ≤ ‖A(σ)u‖L2 + ‖u‖
H−N,l,`b,leC (σ) ≤ C(‖B(σ)u‖L2 + ‖u‖

H−M,l,`b,leC (σ))
(146)

holds for all u ∈ S ′(X) and σ ∈ [0,Σ]. �

Proof. It suffices to prove ‖A(σ)u‖L2 + ‖u‖
H−N,l,`b,leC (σ) ≤ C(‖B(σ)u‖L2 + ‖u‖

H−M,l,`b,leC (σ)), the other
inequality following by symmetry.

By the elliptic parametrix construction, for arbitrary N0 ∈ N, we can find Λ ∈ Ψ−m,−s,−ς,−l,−`leC
and R ∈ Ψ−N0,0,0

b,leC with ΛB = 1 +R. Now, setting m0 = min{m, s− l, ς − `},

‖u‖
H−N,l,`b,leC (σ) = ‖(Λ(σ)B(σ)−R(σ))u‖

H−N,l,`b,leC (σ)

≤ ‖Λ(σ)B(σ)u‖
H−N,l,`b,leC (σ) + ‖R(σ)u‖

H−N,l,`b,leC (σ)

� ‖Λ(σ)B(σ)u‖
H−N,l,`b,leC (σ) + ‖u‖

H−M,l,`b,leC (σ)

� ‖B(σ)u‖
H
−N−m0,0,0
b,leC (σ) + ‖u‖

H−M,l,`b,leC (σ) � ‖B(σ)u‖L2 + ‖u‖
H−M,l,`b,leC (σ)

(147)

for sufficiently large N0, where we used that Λ ∈ Ψ−m0,−l,−`
b,leC .

Similarly, for sufficiently large N0,
‖A(σ)u‖L2 = ‖A(σ)(Λ(σ)B(σ)−R(σ))u‖L2 ≤ ‖A(σ)Λ(σ)B(σ)u‖L2 + ‖A(σ)R(σ)u‖L2

� ‖A(σ)Λ(σ)B(σ)u‖L2 + ‖u‖
H−M,l,`b,leC (σ)

� ‖B(σ)u‖L2 + ‖u‖
H−M,l,`b,leC (σ).

(148)

Combining eq. (147) with eq. (148) yields the desired inequality. �

We can now define a Hilbertizable norm on Hm,s,ς,l,`
leC (X)(σ), for each σ ≥ 0, by writing

‖u‖
Hm,s,ς,l,`

leC (X)(σ) = ‖Λ(σ)u‖L2 + ‖u‖
H−N,l,`b,leC (σ) (149)

for N ∈ N with N ≥ −min{m, s− l, ς − `} and arbitrary elliptic Λ ∈ Ψm,s,ς,l,`
leC (X). (Such Λ can be

constructed by the symbol calculus.) The previous lemma suffices to guarantee that the estimates
we prove do not depend on the particular choice of Λ and N used in defining the norm eq. (149)
except with regards to the particular constants involved (which we do not keep track of anyways).
However, it will be convenient to fix

Λm,s,ς,l,` = (1/2)(Op(%−mdf %−ssf %
−ς
ff %−lbf %

−`
tf ) + Op(%−mdf %−ssf %

−ς
ff %−lbf %

−`
tf )∗), (150)

which is certainly an elliptic element of Ψm,s,ς,l,`
leC (X). Since Λm,s,ς,l,`(σ) is an elliptic element of

Ψm,s,l
scb (X) for σ > 0 and Ψm,ς,`

scb (X1/2) for σ = 0, we see that Hm,s,ς,l,`
leC (X)(σ) is indeed equivalent to

• Hm,s,l
scb (X) for σ > 0 and

• Hm,ς,`
scb (X1/2) for σ = 0.
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On the other hand:

Lemma 2.13. If m, s, ς, l, ` ∈ R satisfy ς = m + ` and s = m + l, for each Σ > 0 there exist
constants c(m, s, ς, l, `,Σ), C(m, s, ς, l, `,Σ) > 0 such that

c‖u‖
Hm,s,ς,l,`

leC (X)(σ) ≤ ‖u‖Hm,l,`
b,leC(X)(σ) ≤ C‖u‖Hm,s,ς,l,`

leC (X)(σ) (151)

for all u ∈ S ′(X) and σ ∈ [0,Σ]. In particular, if ` = 2l, c′‖u‖
Hm,s,ς,l,`

leC (X)(σ) ≤ ‖u‖Hm,l
b (X) ≤

C ′‖u‖
Hm,s,ς,l,`

leC (X)(σ) for some other constants constants c′(m, s, ς, l, `,Σ), C ′(m, s, ς, l, `,Σ) > 0. �

Proof. We have that Λm,s,ς,l,` ∈ Ψm,l,`
b,leC(X), so

‖u‖
Hm,m+l,m+`,l,`

leC (X)(σ) = ‖Λm,m+l,m+`,l,`(σ)u‖L2 + ‖u‖
H−N,l,`b,leC (σ) � ‖u‖Hm,l,`

b,leC(X)(σ) (152)

for sufficiently large N (by the boundedness of the elements of the resolved family b-calculus).
The reverse inequality follows from the ellipticity of Λm,m+l,m+`,l,` as an element of Ψm,l,`

b,leC(X). �

We now check the boundedness of leC-ΨDOs acting on leC-Sobolev spaces (from the L2-
boundedness of zeroth order b-ΨDOs):

Proposition 2.14. For any m, s, ς, l, `,m0, s0, ς0, l0, `0 ∈ R, A ∈ Ψm,s,ς,l,`
leC (X), and Σ > 0, there

exists some constant C = C(m, s, ς, l, `,m0, s0, ς0, l0, `0, A,Σ) > 0 such that

‖A(σ)u‖
H
m0,s0,ς0,l0,`0
leC (X)(σ) ≤ C‖u‖Hm+m0,s+s0,ς+ς0,l+l0,`+`0

leC (X)(σ) (153)

for all u ∈ S ′(X) and σ ∈ [0,Σ]. �

Proof. Pick arbitrary elliptic Λ0 ∈ Ψm0,s0,ς0,l0,`0
leC (X). Then

‖A(σ)u‖
H
m0,s0,ς0,l0,`0
leC (X)(σ) � ‖Λ0(σ)A(σ)u‖L2 + ‖A(σ)u‖

H
−N,l0,`0
b,leC (X)(σ) (154)

‖u‖
H
m+m0,s+s0,ς+ς0,l+l0,`+`0
leC (X)(σ) � ‖Λ1(σ)u‖L2 + ‖u‖

H
−M,l+l0,`+`0
b,leC (X)(σ) (155)

for N,M not too negative and arbitrary elliptic Λ1 ∈ Ψm+m0,s+s0,ς+ς0,l+l0,`+`0
leC (X).

For N sufficiently large compared to M (dependent on m, · · · , `0), ‖A(σ)u‖
H
−N,l0,`0
b,leC (X)(σ) �

‖u‖
H
−M,l+l0,`+`0
b,leC (X)(σ).

For each M ′ ∈ R, an elliptic parametrix for Λ1 can be used to construct A0 ∈ Ψ0,0,0
b,leC(X) ⊂

L∞([0,∞); Ψ0
b(X)) and R ∈ Ψ−M

′,l+l0,`+`0
b,leC (X) such that Λ0A = A0Λ1+R. Then, ifM ′ is sufficiently

large,
‖Λ0A(σ)u‖L2 ≤ ‖A0Λ1u‖L2 + ‖Ru‖L2 � ‖Λ1u‖L2 + ‖u‖

H
−M,l+l0,`+`0
b,leC (X)(σ), (156)

where we have used the uniform L2-boundedness of A0. Combining the estimates above, we deduce
eq. (153). �

In the rest of the paper, we will abbreviate

Hm,s,ς,l,`
leC (X)(σ) = Hm,s,ς,l,`

leC (X) = Hm,s,ς,l,`
leC , (157)

leaving the dependence on σ implicit (and likewise for other σ-dependent notions). In particular,
what we call “estimates” will really be 1-parameter families of estimates with multiplicative constants
that – for any fixed Σ > 0 – are uniform for σ ∈ [0,Σ].

The following two lemmas will be used mostly without comment in §5:
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Lemma 2.15. For any m, s, ς, l, ` ∈ R, there exists a constant C = C(m, s, ς, l, `) such that, for all
u, v ∈ S ′(X) and δ > 0,

|〈u, v〉L2 | ≤ C · (δ−1‖u‖2
Hm,s,ς,l,`

leC
+ δ‖v‖2

H−m,−s,−ς,−l,−`leC
) (158)

for all σ ≥ 0 for which the right-hand side is finite (in the strong sense that if the right-hand side is
finite, then the left-hand side makes sense using the duality pairing for scb-Sobolev spaces and obeys
the stated inequality). �

Proof. By the parametrix construction, we can find, for each N0 ∈ N, elliptic V = VN0 ∈
Ψ−m,−s,−ς,−l,−`leC (X) such that V ∗Λm,s,ς,l,` = 1 + Y for Y = YN0 ∈ Ψ−N0,−N0,−N0,0,0

leC (X). Then,
2|〈u, v〉L2 | ≤ 2|〈Λm,s,ς,l,`u, V v〉L2 |+ 2|〈Y u, v〉L2 |

≤ δ−1‖Λm,s,ς,l,`u‖2L2 + δ‖V v‖2L2 + 2|〈Y u, v〉L2 |

� δ−1‖u‖2
Hm,s,ς,l,`

leC
+ δ‖v‖2

H−m,−s,−ς,−l,−`leC
+ 2|〈Y u, v〉L2 |.

(159)

On the other hand, for any N1 ∈ N,

2|〈Y u, v〉L2 | = 2|〈x−l(σ2 + Zx)−`/2+lY u, xl(σ2 + Zx)`/2−lv〉L2 |

≤ δ−1‖x−l(σ2 + Zx)−`/2+lY u‖2
H
N1,0
b

+ δ‖xl(σ2 + Zx)`/2−lv‖2
H
−N1,0
b

� δ−1‖x−l(σ2 + Zx)−`/2+lY u‖2
H
N1,0,0
b,leC

+ δ‖xl(σ2 + Zx)`/2−lv‖2
H
−N1,0,0
b,leC

� δ−1‖Y u‖2
H
N1,l,`
b,leC

+ δ‖v‖2
H
N1,−l,−`
b,leC

� δ−1‖Y u‖2
H
N1,N1+l,N1+`,l,`
leC

+ δ‖v‖2
H
−N1,−N1−l,−N1−`,−l,−`
leC

� δ−1‖u‖2
H
N1−N0,N1+l−N0,N1+`−N0,l,`
leC

+ δ‖v‖2
H
−N1,−N1−l,−N1−`,−l,−`
leC

.

(160)

TakingN1 sufficiently large, and then takingN0 sufficiently large relative to that, we get |〈Y u, v〉L2 | �
δ
−1‖u‖2

Hm,s,ς,l,`
leC

+ δ‖v‖2
H−m,−s,−ς,−l,−`leC

. Combining this with eq. (159), we get eq. (158). �

Lemma 2.16. Let m, s, ς, l, `,m0, s0, ς0, l0, `0 ∈ R. Suppose that A ∈ Ψm,s,ς,l,`
leC (X) and that we have

some J ∈ N and G1, . . . , GJ ∈ Ψ0,0,0,0,0
leC (X) such that

WF′l,`leC(A) ⊆
J⋃
j=1

Ell0,0,0,0,0leC (Gj). (161)

Then, for each Σ > 0 and N ∈ N, there exists some C = C(A,G1, . . . , GJ ,Σ, N) > 0 such that

‖Au‖
H
m0,s0,ς0,l0,`0
leC

≤ C
[
‖u‖

H
−N,−N,−N,l+l0,`+`0
leC

+
J∑
j=1
‖Gju‖Hm+m0,··· ,`+`0

leC

]
(162)

for all σ ∈ [0,Σ] and u ∈ S ′(X). �

Proof. It suffices to consider the case of u ∈ S(X), the general estimate eq. (162) following from
this case via continuity.

Via quantizing some explicit symbols, there exist some Ḡ1, . . . , ḠJ ∈ Ψ0,0,0,0,0
leC (X) such that

WF′0,0(Ḡj) ⊂ Ell0,0,0,0,0leC (Gj) and

WF′l,`leC(A) ⊆
J⋃
j=1

Ell0,0,0,0,0leC (Ḡj). (163)
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We now apply the leC-analogue of the Gårding’s inequality- type argument. We can choose
E ∈ Ψ0,0,0,0,0

leC (X) such that

Ell0,0,0,0,0leC (E) ∪
J⋃
j=1

Ell0,0,0,0,0leC (Gj) = df ∪ sf ∪ ff (164)

WF′leC(E) ∩WF′l,`leC(A) = ∅. (165)

Thus, every representative of σ0,0,0,0,0
leC (E∗E + Ḡ∗1Ḡ1 + · · ·+ Ḡ∗JḠJ) is nonvanishing on df ∪ sf ∪ ff.

We may assume without loss of generality that E, Ḡ1, . . . , ḠJ are constant for σ ≥ 2Σ, in which
case (since (df ∪ sf ∪ ff) ∩ {σ ≤ 2Σ} is compact) there exists some c > 0 such that σ0,0,0,0,0

leC (E∗E +
Ḡ∗1Ḡ1 + · · ·+ Ḡ∗JḠJ) ≥ 2c in some neighborhood of df ∪ sf ∪ff (in the sense that every representative
of the principal symbol has this property, for different neighborhoods). Via an iterative symbolic
construction: for each N0 ∈ N there exists some elliptic B = BN0,c ∈ Ψ0,0,0,0,0

leC (X) such that

E∗E + Ḡ∗1Ḡ1 + · · ·+ Ḡ∗JḠJ − c−B∗B ∈ Ψ−N0,−N0,−N0,0,0
leC (X). (166)

Then, for X = Hm0,s0,ς0,l0,`0
leC (X),

c‖Au‖2X ≤ −‖BAu‖2X + ‖EAu‖2X +
J∑
j=1
‖ḠjAu‖2X ≤ ‖EAu‖2X +

J∑
j=1
‖ḠjAu‖2X (167)

� ‖u‖2
H
−N,−N,−N,l+l0,`+`0
leC

+
J∑
j=1
‖Gju‖2

H
m+m0,··· ,`+`0
leC

(168)

for N0 sufficiently large, from which eq. (162) follows. �

Lemma 2.17. If m, s, ς, l, `,m0, s0, ς0, l0, `0,m1, s1, ς1, l1, `1 ∈ R satisfy m1 > m > m0, · · · , `1 >
` > `0, then, for each ε > 0 and Σ > 0, there exists a C(ε) = C(ε,m, · · · , `1,Σ) > 0 such that

‖u‖
Hm,s,ς,l,`

leC
≤ ε‖u‖

H
m1,s1,ς1,l1,`1
leC

+ C(ε)‖u‖
H
m0,s0,ς0,l0,`0
leC

(169)

for all u ∈ S ′(X) and σ ∈ [0,Σ]. �

Proof. Fix Σ > 0. Suppose, to the contrary, that there exists some ε > 0, {σk}k∈N ⊂ [0,Σ], and
{uk}k∈N ⊂ S ′(X) such that

1 = ‖uk‖Hm,s,ς,l,`
leC (X)(σk) ≥ ε‖uk‖Hm1,s1,ς1,l1,`1

leC (X)(σk) + k‖uk‖Hm0,s0,ς0,l0,`0
leC (X)(σk), (170)

i.e., for sufficiently large N,M ∈ N,

1 = ‖Λm,s,ς,l,`(σk)uk‖L2 + ‖x−l(σ2
k + Zx)l−`/2uk‖H−Mb

≥ ε‖Λm1,s1,ς1,l1,`1(σk)uk‖L2 + ε‖x−l1(σ2
k + Zx)l1−`1/2uk‖H−Nb

+ k‖Λm0,s0,ς0,l0,`0(σk)uk‖L2 + k‖x−l0(σ2
k + Zx)l0−`0/2uk‖H−Mb

. (171)

Passing to a subsequence if necessary, we may assume without loss of generality that σk → σ∞ for
some σ∞ ∈ [0,Σ].

By the Banach-Alaoglu theorem, by passing to a further subsequence if necessary, we can arrange
that Λmi,si,ςi,li,`i(σk)uk → vi weakly in L2 for some v0, v1 ∈ L2(X) and that

x−li(σ2
k + Zx)li−`i/2uk → wi (172)

weakly in H−Mb (X), H−Nb (X) for some w0, w1 ∈ H−Mb (X), H−Nb (X), respectively. Since

Λm−m1,s−s1,ς−ς1,l−l1,`−`1Λm1,s1,ς1,l1,`1 ∈ Ψm,s,ς,l,`
leC (X) (173)
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is elliptic, Lemma 2.12 yields

1 = ‖uk‖Hm,s,ς,l,`
leC (X)(σk) �

‖Λm−m1,s−s1,ς−ς1,l−l1,`−`1(σk)Λm1,s1,ς1,l1,`1(σk)uk‖L2 + ‖x−l(σ2
k + Zx)l−`/2uk‖H−Mb

. (174)

Taking M > N , we will produce a contradiction by showing that both terms on the right-hand side
of eq. (174) converge to zero as k →∞.

(1) For M > N ,

x−l0(σ2
k + Zx)l0−`0/2uk − xl1−l0(σ2

k + Zx)l0−l1+`1/2−`0/2w1

= xl1−l0(σ2
k + Zx)l0−l1+`1/2−`0/2(x−l1(σ2

k + Zx)l1−`1/2uk − w1)→ 0 (175)

strongly in H−Mb (X). It follows that xl1−l0(σ2
k + Zx)l0−l1+`1/2−`0/2w1 → w0 weakly in

H−Mb (X), and thus in S ′(X). But, it is also the case that

xl1−l0(σ2
k + Zx)l0−l1+`1/2−`0/2w1 → xl1−l0(σ2

∞ + Zx)l0−l1+`1/2−`0/2w1 (176)

in S ′(X). So, in fact,

w0 = xl1−l0(σ2
∞ + Zx)`0−l1+`1/2−`0/2w1, (177)

and
x−l0(σ2

k + Zx)l0−`0/2uk → w0 (178)
strongly in H−Mb (X). We can therefore deduce from the family of inequalities eq. (171) that
‖w0‖H−Mb

= 0, i.e. w0 = 0, from which and eq. (177) it follows that w1 = 0.
But then, by the joint continuity of the multiplication operator

xl0(σ2 + Zx)`0/2−l0 : [0,Σ]σ × S ′(X)→ S ′(X), (179)

uk → xl0(σ2
∞ + Zx)`0/2−l0w0 = 0 in S ′(X). Now applying Proposition 2.2, we conclude that

v0, v1 = 0.
Via the same initial argument, we deduce that x−l(σ2

k + Zx)l−`/2uk converges strongly
in H−Mb to xl1−l(σ2

∞ + Zx)l−l1+`1/2−`/2w1 = 0. Thus, ‖x−l(σ2
k + Zx)l−`/2uk‖H−Mb

→ 0 as
k →∞.

(2) We now consider

Λ = Λm−m1,s−s1,ς−ς1,l−l1,`−`1 ∈ C0([0,∞)σ; Ψ−ε,−εb (X)), (180)

where ε > 0 is sufficiently small. Thus, we can write Λ as the composition of a fixed compact
operator on L2(X) and a continuous family of bounded operators on L2(X). It follows
(since Λm1,s1,ς1,l1,`1(σk)uk → v1 weakly in L2) that

Λ(σk)Λm1,s1,ς1,l1,`1(σk)uk − Λ(σk)v1 → 0 (181)

strongly in L2(X). But v1 = 0, as proven above, so

‖Λm−m1,s−s1,ς−ς1,l−l1,`−`1(σk)Λm1,s1,ς1,l1,`1(σk)uk‖L2 → 0 (182)

as k →∞.
�

Lemma 2.18. The L2
sc(X), L2

sc(X1/2)-based b-Sobolev spaces on X and X1/2 are related by

Hm,l
b (X) = H

m,2l+n/2
b (X1/2). (183)

�
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Proof. For f, g ∈ L2
sc([0, x̄)x × ∂X),

〈f, g〉L2
sc([0,x̄)x×∂X) =

�
∂X

(� x̄

0
f∗(x)g(x) dx

xn+1

)
dVolg∂X (y)

= 2
�
∂X

(� x̄1/2

0
f∗(ρ2)g(ρ2) dρ

ρ2n+1

)
dVolg∂X (y)

= 2
�
∂X

(� x̄1/2

0

f∗(ρ2)
ρn/2

g(ρ2)
ρn/2

dρ
ρn+1

)
dVolg∂X (y).

(184)

Thus, L2
sc([0, x̄)x × ∂X) 3 f(x) 7→

√
2f(ρ2) ∈ ρn/2L2

sc([0, x̄1/2)ρ × ∂X) defines an isomorphism of
Hilbert spaces.

This implies that
L2

sc(X) = xn/4L2
sc(X1/2). (185)

As follows from the definition [Vas18, Definition 5.15] (see also [Mel93, Definition 4.22] for the case
of classicality at the front face of the b-double space), Ψm,l

b (X) = Ψm,2l
b (X1/2) for all m, l ∈ R. In

conjunction with eq. (185), this implies that

Hm,l
b (X) = Ψ−m,−lb (X)L2(X) = Ψ−m,−2l−n/2

b (X1/2)L2(X1/2) = H
m,2l+n/2
b (X1/2). (186)

�

For use in §6, we briefly recall the connection between spaces of conormal distributions on Xsp
res,

which are defined L∞-based spaces, and the b-Sobolev spaces, which are defined using L2. We have

Aα,β,0loc (Xsp
res) = xα(σ2 + Zx)−α+β/2A0,0

loc([0,∞)×X), (187)

and

A0,0,(0,0)
loc (Xsp

res) = {u ∈ A0(Xsp
res) : [Ê 7→ u|E/x=Ê ] ∈ C∞([0,∞)Ê ;A0(X1/2))},

Aα,β,(0,0)
loc (Xsp

res) = xα(σ2 + Zx)−α+β/2A0,0,(0,0)
loc (Xsp

res),
(188)

where Ê = E/x and we are identifying level sets of Ê with zf ∼= X1/2. Note that greater indices
α, β means greater decay, the convention opposite of that used for symbols and ΨDOs. We also use

Aα−,β−,0loc (Xsp
res) = ∩α′<α,β′<βAα

′,β′,0
loc (Xsp

res) (189)

Aα−,β−,(0,0)
loc (Xsp

res) = ∩α′<α,β′<βA
α′,β′,(0,0)
loc (Xsp

res). (190)

for α, β ∈ R. These are all Fréchet spaces of (locally) conormal distributions on Xsp
res that are smooth

at zf◦ (where, to reiterate, “local” just means that we do not require uniformity as σ →∞, only as
σ → 0+). Via Sobolev embedding,

H∞,lb (X) ⊆ Al+n/2(X) ⊆ H∞,l−b (X) = ∩l′<lH∞,l
′

b (X), (191)

and each seminorm of Al+n/2(X) can be controlled using only finitely many of the norms in the
family {‖−‖

Hm,l′
b
}m∈R,l′<l.

Since, for each α ≥ 0, A0
loc([0,∞)σ;Aα−(X)) ⊆ Aα−,2α−,0loc (Xsp

res), the preceding observation
implies that

Proposition 2.19. For any function m0 : R→ R,⋂
l<−1/2

⋂
m>m0(l)

A0
loc([0,∞)σ;Hm,l+α

b (X)) ⊆ A(α+(n−1)/2)−,(2α+(n−1))−,0
loc (Xsp

res) (192)

holds for each α ∈ R. ��
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Remark. Implicit in the statements above is the identification of elements of A0
loc([0,∞)σ;Aα−(X))

with extendable distributions on Xsp
res, which occurs via

A0
loc([0,∞)σ;Aα−(X)) 3 {u(−;σ)}σ>0 7→[

Ċ∞(Xsp
res) 3 χ 7→

� ∞
0
〈u(−;σ), χ(−;σ)〉 dσ

]
∈ D′(Xsp

res). (193)

We defer to [Mel92][Mel93] for more about conormal distributions. See also [Hin21] for the particular
case of Xsp

res,0 (where the notation X+
res is used instead).

Proposition 2.20. Fix χ ∈ C∞c (Xsp
res) supported away from bf and nonvanishing near zf. Then, if

(χx∂E)ku ∈ A0−,0−,0
loc (Xsp

res) for all k ∈ N, then u ∈ A0−,0−,(0,0)
loc (Xsp

res). �

Proof. We want to show that [Ê 7→ u|E/x=Ê ] ∈ C∞([0,∞)Ê ;A0(X1/2)). Observe that x∂E = ∂Ê
away from bf, where the partial derivative on the right-hand side is taken with x held constant.

Consequently, the k = 0, . . . ,K + 1 cases of (χx∂E)ku ∈ A0−,0−,0
loc (Xsp

res) together show that
[Ê 7→ u|Ê ] ∈ CK([0,∞)Ê ;A0−(X1/2)). Here we are using that, given v ∈ A0−,0−,0

loc (Xsp
res),

[Ê 7→ v|E/x=Ê ] ∈ A0([0, 1)Ê ;A0−(X1/2)) = A0([0, 1)Ê ;A0−(X)). (194)

Since K can be taken arbitrarily large, we conclude the claim. �

Remark. As the argument shows, each Fréchet seminorm of u ∈ A0−,0−,(0,0)
loc (Xsp

res) is controlled by
finitely many Fréchet seminorms of (χx∂E)ku ∈ A0−,0−,0

loc (Xsp
res) for finitely many k. In other words,

the map
∞∏
k=0
A0−,0−,0

loc (Xsp
res) ∩ {{(χx∂E)ku}∞k=0 : u ∈ A0−,0−,0

loc (Xsp
res)} 3 {(χx∂E)ku}∞k=0

7→ u ∈ A0−,0−,(0,0)
loc (Xsp

res) (195)

is continuous when we endow the domain with the topology of
∏∞
k=0A

0−,0−,0
loc (Xsp

res).

3. The conjugated perspective

We now construct the “conjugated” operator P̃ = {P̃ (σ)}σ≥0. Given some
{f(−;σ)}σ≥0, {g(−;σ)}σ≥0 ⊂ C∞(X◦)

and a family of differential operators {D(σ)}σ≥0 ⊂ Diff(X◦), we use the somewhat abusive notation
fDg = {f(−;σ)D(σ)g(−;σ)}σ≥0 ⊂ Diff(X◦) to denote the family of differential operators

MfDMg = {Mf(−;σ)D(σ)Mg(−;σ)}σ≥0, (196)
where for h ∈ C∞(X◦), Mh : C∞c (X◦)→ C∞c (X◦) denotes the multiplication operator C∞c (X◦) 3
ϕ 7→ hϕ. For us, f, g will be of the form f(−;σ) = exp(−iΦ(−;σ)) and g(−;σ) = exp(+iΦ(−;σ))
for some Φ = {Φ(−;σ)}σ≥0 ⊂ C∞(X◦). The conjugated operator P̃ is defined by

P̃ = Mexp(−iΦ)PMexp(+iΦ) = e−iΦPe+iΦ (197)
for our eventual choice of Φ.

As discussed in the introduction, Φ had ought to be determined to an order or two (including
logarithmic terms) on Xsp

res by the actual asymptotics of solutions of P (σ)u = f for f ∈ S(X).
Rather than determine what Φ should be in this manner (that is by solving the PDE, or a model
thereof, to a sufficient degree of accuracy), it is actually easier to work backwards, meaning to find
the asymptotics of solutions to the given PDE by first finding a choice of Φ for which P̃ has a
workable form, where “workable” roughly means qualitatively similar to the conjugated operator
in [Vas21a]. (We will then have to actually show that this choice describes the asymptotics of
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solutions to the PDE.) Such a choice has already been stated in the introduction, §1, eq. (57), and
the resultant conjugated operator is computed below. We now motivate that choice. Consider the
model operator PModel ∈ Diff2

sc([0,∞)x) given by

PModel(σ) = −(1 + xa00)(x2∂x)2 + (a(σ) + n− 1)x3∂x − σ2 − Zx, (198)

where a00,Z ∈ R, Z > 0, and where we require a00 < 0 for simplicity. This captures the leading and
subleading terms of P (σ) in Ψscb(X), modulo the terms involving nonradial derivatives (which can
be expected to be unimportant – i.e. under symbolic control – based on considerations similar to
those in [Vas21a]). For Φ(−;σ) ∈ C∞(R+

x × R+
σ ), let

P̃Model = Mexp(−iΦ)PModelMexp(+iΦ) = exp(−iΦ)PModel exp(+iΦ). (199)

This will be qualitatively similar (at least with regards to the sc-calculus) to Vasy’s conjugated
operator family (with =α± = 0) if P̃Model is equal to

PGoal = −(1 + xa00)
(
x2∂x −

x(n− 1)
2

)2
+ 2i(1 + xa00)

√
σ2 + Zx− σ2a00x(x2∂x)

+ 2i(1 + xa00)
(
− (n− 1)

2 x
√
σ2 + Zx+ Zx2

4
1√

σ2 + Zx

)
(200)

modulo terms which are two sc-decay orders subleading at sf and ff (in particular in x2 Diff∗,0sc (X)
for σ > 0 and x2 Diff∗,0sc (X1/2) for σ = 0, where X = [0,∞)x). The specific form of the lower order
terms in eq. (200) bears comment: the operators x2∂x − x(n− 1)/2 and

(σ2 + Zx)1/2x2∂x − x(σ2 + Zx)1/2 (n− 1)
2 + Zx2

4
1

(σ2 + Zx)1/2 (201)

are both formally anti- self-adjoint with respect to the L2([0, 1), x−(n+1) dx) = L2
sc[0, 1) inner product.

Indeed, for any f, g ∈ Ṡ([0,∞)),� ∞
0

f∗(x)∂xg(x)x−(n+1) dx = −
� ∞

0
(∂xf)∗g(x)x−(n+1) dx+ (n+ 1)

� ∞
0

(f(x)
x

)∗
g(x)x−(n+1) dx,

(202)
so, as bilinear forms Ṡ([0,∞))2 → C,

∂∗x = −∂x + (n+ 1)/x, (203)
(x2∂x)∗ = x2∂∗x + [∂∗x, x2] = −x2∂x + x(n− 1) (204)

and

(
√
σ2 + Zxx2∂x)∗ =

√
σ2 + Zx(x2∂x)∗ + [(x2∂x)∗,

√
σ2 + Zx]

= −
√
σ2 + Zxx2∂x + x(n− 1)

√
σ2 + Zx− Zx2

2
1√

σ2 + Zx
,

(205)

which implies the claimed anti- self-adjointness. The (1 + xa00) terms in eq. (200), along with the
−σ2a00x under the square root, spoil anti- self-adjointness or self-adjointness, but only negligibly.
Thus, the terms in eq. (200) have definite adjointness modulo negligible errors.

As a preliminary step towards PGoal, we can conjugate away the (a+n− 1)x2∂x term in eq. (198),
getting

x−(a+n−1)/2PModelx
(a+n−1)/2 = −(1 + xa00)(x2∂x)2 − σ2 − Zx mod x2 Diff1,0

sc (X). (206)

The x(n − 1)/2 terms in eq. (200) can be conjugated back in at the end (and the last term in
eq. (200) will be included automatically for self-adjointness reasons). Conjugating eq. (206) by
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exp(+iϕ) for a to-be-decided ϕ(x;σ) ∈ C∞(R+
x × R+

σ ), we get

e−iϕx−(a+n−1)/2PModelx
(a+n−1)/2e+iϕ = −(1 + xa00)(x2∂x + ix2ϕ′)2 − σ2 − Zx mod x2 Diff1,0

sc (X),
(207)

assuming the contribution from the first order term in the remainder in eq. (206) is negligible. It is
not unreasonable to expect (perhaps based on the Z = 0 case) that, for our eventual choice of ϕ,
the leading order new contribution to eq. (207) is x4(ϕ′)2.

Since the Coulomb term in eq. (207) is subleading order relative to σ2, we should really be keeping
track of the new contributions to one subleading order. To this order, the new contribution to
the effective potential is x4(1 + xa00)(ϕ′)2 (assuming the terms with second derivatives of ϕ are
negligible). Thus, we seek to arrange

x4(1 + xa00)(ϕ′)2 = σ2 + Zx mod x2C∞(X). (208)

Multiplying through by (1 + xa00)−1 = 1 − xa00 mod x2C∞(X), this suggests setting x4(ϕ′)2 =
σ2 + Zx − σ2a00x, the solution of which (up to an arbitrary additive constant and conventional
choice of sign) is

ϕ(x;σ) = 1
x

√
σ2 + Zx− σ2a00x+ 1

σ
(Z− σ2a00) arcsinh

( σ

x1/2
1

(Z− σ2a00)1/2

)
. (209)

Recall that arcsinh(z) = log(z + (1 + z2)1/2) for all z ≥ 0. Expanding arcsinh(z) in Taylor series
around z = 0, we see that the apparent singularity in Equation (209) at σ = 0 is removable (to all
orders), and hence ϕ(x;σ) defines a smooth function on R+

x × Rσ, and it is even in σ. We observe
that, given eq. (208), the x4ϕ′′ term in eq. (207) is indeed negligible except at the ff, where there is
one non-negligible contribution, and it is precisely the final term in eq. (200) (modulo negligible
terms).

Given this definition of ϕ, e−iϕx−(a+n−1)/2PModelx
(a+n−1)/2e+iϕ is given, modulo x2 Diff1,0

sc (X),
by

− (1 + xa00)((x2∂x)2 + 2ix4ϕ′∂x − x4ϕ′ϕ′ + i(x2∂x)2ϕ)− σ2 − Zx = −(1 + xa00)((x2∂x)2

− 2ix2√σ2 + Zx− σ2a00x∂x + i(x2∂x)2ϕ) mod C∞(Rσ2 ;x2C∞(X)) (210)

(plus the term in Diff0,−2,−5,−2,−5
leC that results from applying the first order operator in the

x2 Diff1,0
sc (X) remainder in eq. (207) to ϕ). We can now add back in the x(n− 1)/2 terms:

e−iϕx−a/2PModele
+iϕxa/2 = PGoal mod Diff1,−2,−4,−2,−4

leC . (211)

So, at least in this model case, conjugation by e+iΦ = exp(+iϕ − (i/2)a log x)) has the required
properties.

Returning to the full problem, we consider the family Φ = {Φ(−;σ)}σ≥0 of Φ(−;σ) ∈ C∞(X◦×R+
σ )

given by

Φ(x;σ) = 1
x

√
σ2 + Zx− σ2a00x+ 1

σ
(Z− σ2a00) arcsinh

( σ

x1/2
1

(Z− σ2a00)1/2

)
− i

2a log x. (212)

Observe that (after removing the removable singularity at σ = 0) eq. (61) holds. We then define,
for each σ ≥ 0,

P̃ (σ) = Me−iΦ(−;σ)P (σ)Me+iΦ(−;σ) , (213)
i.e. P̃ = exp(−iΦ)P exp(+iΦ). Thus, P̃ (σ) ∈ SDiffsc(X) for each σ ≥ 0, and the coefficients all
depend smoothly on σ all the way down to σ = 0 in compact subsets of X◦. Of course, this does
not mean that [0,∞)σ 3 σ 7→ P̃ (σ) ∈ SDiff2,0

sc (X) is smooth all the way down to σ = 0. This map
is continuous for σ > 0 but discontinuous at σ = 0, as can be verified by computing sc-principal
symbols.
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Let P̃0 = e−iΦP0e
+iΦ, P̃1 = e−iΦP1e

+iΦ, and P̃2 = e−iΦP2e
+iΦ, where P0, P1, P2 are as in §1. We

have:

Proposition 3.1. For each σ ≥ 0, P̃0(σ) is given with respect to the boundary-collar ι by
P̃0(σ) = −(1 + xa00)(x2∂x)2 + x24∂X + (n− 1)x3∂x + L(σ) + Veff(x;σ), (214)

where

L(σ) = 2ix(1 + xa00)
√
σ2 + Zx− σ2a00x

(
x∂x −

n− 1
2 + Z

4
x

σ2 + Zx
)
− aa00x

4∂x (215)

and Veff ∈ x2C∞(Xsp
res). �

Proof. We work on X̂ = [0, x̄)x × ∂X.
We may write P̃0 = P0 + e−iΦ[P0, e

+iΦ]. Observe that

[P0, e
+iΦ] = −(1 + xa00)[(x2∂x)2, eiΦ] + x3(a+ n− 1)[∂x, eiΦ] + x2[4∂X , e

iΦ] (216)
e−iΦ[(x2∂x)2, eiΦ] = 2ix4Φ′∂x − x4Φ′Φ′ + i(x2∂x)2Φ (217)

e−iΦ[∂x, eiΦ] = iΦ′ (218)
e−iΦ[4∂X , e

iΦ] = 0, (219)
where the primes denote differentiation in x. (If a, a00 were nonconstant functions on ∂X, then
eq. (219) would not hold. This is ultimately the reason for assuming that a, a00 are constant.) Thus,
if we set

L(σ) = ax3∂x − 2ix4(1 + xa00)Φ′∂x + VSA, (220)
Veff(x;σ) = −(1 + xa00)(−x4Φ′Φ′ + i(x2∂x)2Φ) + ix3(a+ n− 1)Φ′ − VSA − σ2 − Zx (221)

for
VSA = −2ix(1 + xa00)

√
σ2 + Zx− σ2a00x

(n− 1
2 − Z

4
x

σ2 + Zx
)
, (222)

then eq. (214) holds, and it only remains to verify eq. (215) and the fact that Veff ∈ x2C∞(Xsp
res).

We compute that

+x4Φ′Φ′ = x4
( 1
x2

√
σ2 + Zx− σ2a00x+ ia

2x
)2

= σ2 + Zx− σ2a00x+ iax
√
σ2 + Zx− σ2a00x−

x2a2

4 ,

(223)

−i(x2∂x)2Φ = −ax
2

2 + i

2x
2 (Z− σ2a00)
(σ2 + Zx− σ2a00x)1/2 , (224)

+ix3Φ′ = ax2

2 − ix
√
σ2 + Zx− σ2a00. (225)

From eq. (225) and eq. (220), we get eq. (215).
When adding up the various contributions to Veff , as written in eq. (221), a few key cancellations

happen by design:
(I) the first σ2 in eq. (221) (coming from x4Φ′Φ′, eq. (223)) cancels with the last −σ2 in

eq. (221),
(II) the first Zx term, also coming from x4Φ′Φ′, cancels with the −Zx in eq. (221), so that the

original Coulomb-like term has been “conjugated away,”
(III) multiplying eq. (223) by (1 + xa00) the terms in (1 + xa00)(σ2 − σ2a00x) linear in a00 cancel

per difference-of-squares,
(IV) the iax(σ2 + Zx− σ2a00x)1/2 term in eq. (223) cancels with the term in iax3Φ′ coming from

the last term in eq. (225).
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(V) The ix(σ2 + Zx− σ2a00x)1/2(n− 1) term in Veff coming from VSA cancels with the identical
term in i(n+ 1)x3Φ′ coming from the last term in eq. (225).

All in all, Veff is given by

a00(Z−σ2a00)x2 + ia00(a+n− 1)x2√σ2 + Zx− σ2a00x−
[
(1 +xa00)

(a2

4 + a

2
)
− a2(a+n− 1)

]
x2

+ ix

2 (1 + xa00)
[ Zx− σ2a00x

(σ2 + Zx− σ2a00x)1/2 − (σ2 + Zx− σ2a00x)1/2 Zx
σ2 + Zx

]
. (226)

It is clear that the first line of eq. (226) defines an element of x2C∞(Xsp
res). On the other hand,

−(ix/2)(1 +xa00)σ2a00x/(σ2 + Zx−σ2a00x)1/2 is in x2C∞(Xsp
res) as well. Thus, it remains to verify

that
Zx

(σ2 + Zx)1/2 − (σ2 + Zx− σ2a00x)1/2 Zx
σ2 + Zx ∈ xC

∞(Xsp
res), (227)

i.e. that
1−

(
1− σ2a00x

σ2 + Zx
)1/2

∈ (σ2 + Zx)1/2C∞(Xsp
res). (228)

This is of course not true for each term on the left-hand side individually, but we can expand(
1− σ2a00x

σ2 + Zx
)1/2

= 1 mod σ2a00x

σ2 + ZxC
∞(Xsp

res) = 1 mod xC∞(Xsp
res) (229)

(since f(ζ) = ζ−1((1− ζ)1/2 − 1) ∈ C∞(−∞, 1)ζ , f(σ2a00x/(σ2 + Zx)) ∈ C∞(Xsp
res), which implies

eq. (229)) so in fact eq. (228) is true with some room to spare. We can then conclude that Veff is in
x2C∞(Xsp

res). �

Proposition 3.2. The family L = {L(σ)}σ≥0 ∈ Diff1,0,−2,−1,−3
leC (X) satisfies

L = 2i(1 + xa00)
(
1− σ2a00x

2
1

σ2 + Zx
)
x
√
σ2 + Zx

(
x∂x −

n− 1
2 + Z

4
x

σ2 + Zx
)

mod Diff1,−2,−5,−3,−6
leC (X) (230)

near ∂X. �

Proof. It suffices to restrict attention to X̂ = [0, x̄)× ∂X.
We refer to eq. (215). Expanding (1 − σ2a00x/(σ2 + Zx))1/2 = 1 − (1/2)σ2a00x/(σ2 + Zx) +

O(σ4x2/(σ2 + Zx)2) in Taylor series, we deduce that

2ix(1 + xa00)
((

1− σ2a00x

2(σ2 + Zx)
)√

σ2 + Zx−
√
σ2 + Zx− σ2a00x

)(
x∂x −

n− 1
2 + Z

4
x

σ2 + Zx
)

∈ Diff1,−2,−6,−3,−7
leC (X). (231)

Thus,

L = 2i(1 + xa00)
(
1− σ2a00x

2
1

σ2 + Zx
)
x
√
σ2 + Zx

(
x∂x −

n− 1
2 + Z

4
x

σ2 + Zx
)
− aa00x

4∂x

mod Diff1,−2,−6,−3,−7
leC (X). (232)

On the other hand, aa00x
4∂x ∈ Diff1,−2,−5,−3,−6

leC (X). We conclude eq. (230) from the above. �

Proposition 3.3. P̃0 ∈ Diff2,0,−2,−1,−3
leC (X), and

P̃0 = −(x2∂x)2 + x24∂X + 2ix
√
σ2 + Zx

(
x∂x −

n− 1
2 + Z

4
x

σ2 + Zx
)

mod Diff2,−1,−3,−2,−4
leC (X). (233)
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�

Proof. We have L(σ) ∈ Diff1,0,−2,−1,−3
leC (X) and

−(x2∂x)2 + x24∂X ∈ Diff2,0,−2,−2,−4
leC (X)

xa00(x2∂x) ∈ Diff2,−1,−3,−3,−5
leC (X)

(n− 1)x3∂x ∈ Diff1,−1,−3,−2,−4
leC (X)

Veff ∈ Diff0,−2,−4,−2,−4
leC (X).

(234)

Thus, by Proposition 3.1, P̃0 ∈ Diff2,0,−2,−1,−3
leC (X), and

P̃0 = −(x2∂x)2 + x24∂X + L mod Diff2,−1,−3,−2,−4
leC (X). (235)

Simplifying L modulo Diff2,−1,−3,−2,−4
leC (X) using Proposition 3.2, we get eq. (233). �

Proposition 3.4. For some Υ1, . . . ,ΥJ ∈ SDiff1,−1,−4,−2,−5
leC (X) which near ∂X are given by

Υj = ix4Φ′bjP⊥,j, we have

P̃1(σ) = P1(σ) +
J∑
j=1

Υj +R (236)

for some R ∈ C∞(0,∞)σ2 ; Diff2(X)) which is supported outside of some neighborhood U ⊂ X of
∂X. Thus P̃1 = {P̃1(σ)}σ≥0 ∈ SDiff2,−1,−3,−2,−4

leC (X). If P1 is classical to order β1 > 0, then

P̃1 ∈ Diff2,−1,−3,−2,−4
leC (X) + SDiff2,−1−β1,−3−2β1,−2−β1,−4−2β1

leC (X). (237)
�

Proof. First observe that χP̃1 ∈ C∞([0,∞)σ2 ; Diff2(X◦)) for any χ ∈ C∞c (X◦). Now let Pj,ext ∈
C∞([0,∞)σ2 ;SDiff2,−1,−3

scb (X)) be equal to x4P⊥,jbj∂x near ∂X. Now define

Υj = e−iΦ[Pj,ext, e
+iΦ] = e−iΦ[(1− χ)Pj,ext, e

+iΦ] + e−iΦ[χPj,ext, e
+iΦ], (238)

where χ is identically equal to one in a sufficiently large open set such that 1 − χ is sup-
ported in a neighborhood for which eq. (46) applies. Evidently, we have e−iΦ[χPj,ext, e

+iΦ] ∈
C∞([0,∞)σ2 ; Diff2(X\U)) for some neighborhood U ⊂ X of ∂X. On the other hand, e−iΦ[(1 −
χ)Pj,ext, e

+iΦ] = i(1− χ)x4Φ′bjP⊥,j , so Υj = e−iΦ[Pj,ext, e
+iΦ] near ∂X.

We now write
P̃1 = P1 + e−iΦ[(1− χ)P1, e

+iΦ] + e−iΦ[χP1, e
+iΦ]

= P1 +
J∑
j=1

Υj + e−iΦ[χP1, e
+iΦ].

(239)

Set R = e−iΦ[χP1, e
+iΦ]. Then eq. (236) holds, and R ∈ C∞(0,∞)σ2 ; Diff2(X)) is supported outside

of some neighborhood U ⊂ X of ∂X.
We observe, from eq. (46) (and Proposition 2.10), that

P1 ∈ SDiff2,−1,−4,−3,−6
leC (X) + SDiff1,−1,−3,−2,−4

leC (X) ⊆ SDiff2,−1,−3,−2,−4
leC (X). (240)

Since Υ1, . . . ,ΥJ ∈ SDiff1,−1,−4,−2,−5
leC (X) (and the same holds for R, trivially), we conclude that

P̃1 ∈ SDiff2,−1,−3,−2,−4
leC (X), (241)

as claimed.
If, bj , b′j , b′′j satisfy eq. (50), then the conclusion is similar, except now we can write P1 ∈

Diff2,−1,−3,−2,−4
leC (X) + xβ1SDiff2,−1,−3,−2,−4

leC (X) and

Υ1, . . . ,ΥJ ∈ Diff1,−1,−4,−2,−5
leC (X) + xβ1SDiff1,−1,−4,−2,−5

leC (X), (242)
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which leads to the conclusion eq. (239) as a strengthening of eq. (241). �

Proposition 3.5. Given δ > 0 such that P2 ∈ C∞([0,∞)σ2 ;SDiff2,−1−δ,−3/2−δ
scb (X)),

P̃2 = {P̃2(σ)}σ≥0 ∈ SDiff2,−1−δ,−3−2δ,−1−δ,−3−2δ
leC (X). (243)

If P2 is classical to order (β2, β3), then we can write

P̃2 = {P̃2(σ)}σ≥0 ∈ Diff2,−2,−4,−2,−4
leC (X) + SDiff2,−1−β2,−3−2β2,−1−β2,−3−2β2

leC (X) + x3/2+β3S0(X).
(244)
�

Proof. We restrict attention to X̂ = [0, x̄)x × ∂X, which suffices by an argument similar to that in
the proof of Proposition 3.4.

Let y = (y1, . . . , yn−1) denote local coordinates on ∂X. In terms of these, we can write

P2(σ) = xδ
[
x5c∂2

x + x4
n−1∑
j=1

cj∂x∂yj + x3
n−1∑
j,k=1

cj,k∂yj∂yk + dx3∂x +
n−1∑
j=1

djx
2∂yj + x3/2e

]
(245)

where {c, d, e} ∪ {cj , dj , cj,k}n−1
j,k=1 ⊂ C∞([0,∞)σ;S0(X)) and cj,k = ck,j . We then have

P2(σ)− P̃2(σ) = xδ
[
2ix5cΦ′∂x + ix4

n−1∑
j=1

cj(Φ′∂yj + ∂yjΦ∂x) + 2ix3
n−1∑
j,k=1

cj,k∂yjΦ∂yk − x
5cΦ′Φ′

]

+ xδ
[
ix5cΦ′′ + x4

n−1∑
j=1

cj(i∂yjΦ′ − Φ′∂yjΦ) + x3
n−1∑
j,k=1

cjk(i∂yj∂ykΦ− ∂yjΦ∂ykΦ)
]

+ xδ
[
idx3Φ′ +

n−1∑
j=1

idjx
2∂yjΦ

]
, (246)

i.e., since Φ does not depend on tangential coordinates,

P2(σ)− P̃2(σ) = xδ
[
2ix5cΦ′∂x + ix4

n−1∑
j=1

cjΦ′∂yj − x5cΦ′Φ′ + ix5cΦ′′ + idx3Φ′
]
. (247)

It follows from eq. (225) that

x3+δdΦ′ ∈ Ψ0,−1−δ,−3−2δ,−1−δ,−3−2δ
leC (X), (248)

x5+δcΦ′Φ′ ∈ Ψ0,−1−δ,−4−2δ,−1−δ,−4−2δ
leC (X) by eq. (223), and x5+δcΦ′′ ∈ Ψ0,−2−δ,−5−2δ,−2−δ,−5−2δ

leC (X)
by eq. (225). On the other hand,

x5+δΦ′∂x, x4+δΦ′∂yj ∈ Ψ1,−1−δ,−4−2δ,−2−δ,−5−2δ
leC (X) (249)

by eq. (225). Combining the observations above, in particular eq. (248) and eq. (249), we conclude
that

P2 − P̃2 ∈ SDiff1,−1−δ,−3−2δ,−1−δ,−3−2δ
leC (X). (250)

By eq. (245) (and Proposition 2.10, eq. (136)),

P2 ∈ SDiff2,−1−δ,−3−2δ,−2−δ,−4−2δ
leC (X) + SDiff0,−3/2−δ,−3−2δ,−3/2−δ,−3−2δ

leC (X)

⊂ SDiff2,−1−δ,−3−2δ,−3/2−δ,−3−2δ
leC (X), (251)

We conclude eq. (243) from eq. (250) and eq. (251).
If eq. (51) holds, then instead of eq. (250) we conclude

P2 − P̃2 ∈ Diff1,−2,−5,−2,−5
leC (X) + SDiff1,−1−β2,−3−2β2,−1−β2,−3−2β2

leC (X), (252)
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and instead of eq. (251) we have

P2 ∈ Diff2,−2,−4,−2,−4
leC (X) + SDiff2,−1−β2,−3−2β2,−3/2−β2,−3−2β2

leC (X) + x3/2+β3S0(X). (253)
Equation (244) follows from eq. (252) and eq. (253). �

Proposition 3.6. P̃ ∈ Diff2,0,−2,−1,−3
leC (X) + SDiff2,−1,−3−2δ,−1−δ,−3−2δ

leC (X), with P̃ = P̃0 mod
SDiff2,−1,−3−2δ,−1−δ,−3−2δ

leC (X). If P1, P2 are classical to orders β1 and (β2, β3) respectively, then

P̃ ∈ Diff2,0,−2,−1,−3
leC (X) + xβ1SDiff2,−1,−3,−2,−4

leC (X) + xβ2SDiff2,−1,−3,−1,−3
leC (X) + x3/2+β3S0(X).

(254)
Moreover,

P̃ = −(x2∂x)2 + x24∂X + 2ix
√
σ2 + Zx

(
x∂x −

n− 1
2 + Z

4
x

σ2 + Zx
)

mod Diff2,−1,−3,−2,−4
leC (X) + SDiff2,−1,−3−2δ,−1−δ,−3−2δ

leC (X). (255)
Thus,

P̃ = −(x2∂x)2 + x24∂X + 2ix(σ2 + Zx)1/2x∂x

mod Diff2,−1,−3,−1,−3
leC (X) + SDiff2,−1,−3−2δ,−1−δ,−3−2δ

leC (X). (256)
�

Proof. We have P̃ (σ) = P̃0 + P̃1 + P̃2. As seen in Proposition 3.4 and Proposition 3.5, P̃1 ∈
SDiff2,−1,−3,−2,−4

leC (X) and P̃2 ∈ SDiff2,−1−δ,−3−2δ,−1−δ,−3−2δ
leC (X), so

P̃1 + P̃2 ∈ SDiff2,−1,−3−2δ,−1−δ,−3−2δ
leC (X) (257)

(where we are using δ < 1/2). Likewise, if P1, P2 are classical to orders β1 and (β2, β3) then
Proposition 3.4 and Proposition 3.5 yield

P̃1 + P̃2 ∈ Diff2,−1,−3,−2,−4
leC (X) + xβ1SDiff2,−1,−3,−2,−4

leC (X) + xβ2SDiff2,−1,−3,−1,−3
leC (X)

+ x3/2+β3S0(X). (258)

By Proposition 3.3, P̃0 ∈ Diff2,0,−2,−1,−3
leC (X), so P̃ is in the claimed spaces.

Furthermore, by eq. (257), P̃ = P̃0 mod SDiff2,−1,−3−2δ,−1−δ,−3−2δ
leC (X). Combining with Proposi-

tion 3.3, we get eq. (255).
�

To conclude this discussion, we let

N(P̃ ) = {N(P̃ )(σ)}σ≥0, N(P̃ )(σ) = 2ix
√
σ2 + Zx

(
x∂x −

n− 1
2 + Z

4
x

σ2 + Zx
)

(259)

denote the leC-normal operator, defined initially near ∂X. To avoid technicalities, we extend
N(P̃ )(σ) to a differential operator on X◦ such that, in any compact subset of X◦, N(P̃ )(σ) depends
smoothly on E = σ2, all the way down to σ = 0. Thus:

Proposition 3.7. N(P̃ ) ∈ Diff1,−1,−3
b,leC (X). ��

The following proposition justifies the term “leC-normal operator:”

Proposition 3.8. N(P̃ ) − P̃ ∈ SDiff2,0,−2,−1−δ,−3−2δ
leC (X) ⊆ SDiff2,−1−δ,−3−2δ

b,leC (X). If P1, P2 are
classical to orders β1, and (β2, β3) respectively, then

N(P̃ )− P̃ ∈ Diff2,0,−2,−2,−4
leC (X) + xβ1SDiff2,−1,−3,−2,−4

leC (X) + xβ2SDiff2,−1,−3,−1,−3
leC (X)

+ x3/2+β3S0(X). (260)
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�

Proof. We have N(P̃ ) − P̃ (σ) = (N(P̃ ) − P̃0) − P̃1 − P̃2. We first check that N(P̃ ) − P̃ ∈
SDiff2,0,−2,−1−δ,−3−2δ

leC (X).
• By eq. (257), P̃1 + P̃2 ∈ SDiff2,0,−2,−1−δ,−3−2δ

leC (X), and by eq. (234) the same holds for
P̃0 − L, so it suffices to check that

N(P̃ )− L ∈ Diff2,0,−2,−1−δ,−3−2δ
leC (X). (261)

Indeed, by Proposition 3.2,
N(P̃ )− L ∈ Diff1,−2,−5,−3,−6

leC (X) + xDiff1,0,−2,−1,−3
leC (X) + σ2x/(σ2 + Zx) Diff1,0,−2,−1,−3

leC (X)

⊆ Diff1,−2,−5,−3,−6
leC (X) + Diff1,−1,−4,−2,−5

leC (X) + Diff1,−1,−4,−2,−5
leC (X)

= Diff1,−1,−4,−2,−5
leC (X)

⊂ Diff2,0,−2,−1−δ,−3−2δ
leC (X).

(262)
If P1, P2 are classical to orders β1, (β2, β3), then we instead get eq. (260). �

We now consider the L2
sc(X) = L2(X, g0)-based adjoint P̃ ∗, defined such that�

X
f∗P̃ g dVolg0 =

�
X

(P̃ ∗f)g dVolg0 (263)

for all f, g ∈ S(X). This is a family of differential operators and, by Proposition 2.10, an element of
SDiff2,0,−2,−1,−3

leC (X) ⊂ Ψ2,0,−2,−1,−3
leC (X). We form the differential operators

<P̃ = 1
2(P̃ + P̃ ∗), =P̃ = 1

2i(P̃ − P̃
∗), (264)

the self-adjoint and anti- self-adjoint parts of P̃ .

Proposition 3.9. For any exactly conic metric g0, there exists a differential operator R = Rg0 ∈
SDiff2,−1−δ,−3−2δ,−1−δ,−3−2δ

leC (X) such that

P̃ ∗ = P̃ + (P ∗1 − P1) +
J∑
j=1

(Υ∗j −Υj) +R, (265)

and, near ∂X,
Υ∗j ∈ x2%tfS

0(Xsp
res) Diff1(∂X) ⊂ SDiff1,−1,−4,−2,−5

leC (X) (266)

P ∗1 =
∑J
j=1
[
− x2P ∗⊥,j(b∗jx2∂x + xb∗,j) + x3b′∗j P

∗
∂X,j + x2b′′∗j Q

∗
∂X,j

]
∈ SDiff2,−1,−3,−2,−4

leC (X) (267)

for some b∗,1, · · · , b∗,J ∈ S0(X). �

Proof. It clearly suffices to restrict attention to X̂ = [0, x̄)x × ∂X, that is to compute the formal
adjoint of P̃ with respect to

L2
sc(X̂) = L2([0, x̄)x × ∂Xy, x

−(n+1) dxdVolg∂X (y)) (268)
up to the required order.

Begin with P̃0, which we rewrite as

P̃0 = −(1 + xa00)
(
x2∂x −

x(n− 1)
2

)2
+ x24∂X − x4(n− 1)a00∂x + L(σ) +W (269)

for W ∈ x2C∞(Xsp
res).

• We see that x24∂X = x24g∂X is formally self-adjoint on L2
sc([0, x̄)× ∂X), and

• the adjoint of W is its complex conjugate W ∗ ∈ x2C∞(Xsp
res).
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• We also have a00x
4∂x ∈ SDiff1,−2,−5,−3,−6

leC (X), thus (a00x
4∂x)∗ ∈ SDiff1,−2,−5,−3,−6

leC (X).
• On the other hand, x2∂x − x(n− 1)/2 is formally anti- self-adjoint on L2

sc([0, x̄)× ∂X), so[
(1 + xa00)

(
x2∂x −

x(n− 1)
2

)2]∗
=
(
x2∂x −

x(n− 1)
2

)2
(1 + xa00)

= (1 + xa00)
(
x2∂x −

x(n− 1)
2

)2
+ a00

[(
x2∂x −

x(n− 1)
2

)2
, x
]

= (1 + xa00)
(
x2∂x −

x(n− 1)
2

)2
+ 2a00x

4∂x + (3− n)a00x
3.

• By the same computation opening this subsection N(P̃ ), is formally self-adjoint. So, by
Proposition 3.2,

L∗ = L+ [N(P̃ ), (1 + xa00)(1− σ2a00x/(σ2 + Zx)−1)] mod Diff1,−2,−5,−3,−6
leC (X)

= L+ 2ix
√
σ2 + Zx[x∂x, (1 + xa00)(1− σ2a00x/(σ2 + Zx)−1)] mod Diff1,−2,−5,−3,−6

leC (X)

= L mod Diff1,−2,−5,−2,−5
leC (X) = L mod Diff1,−2,−4,−2,−4

leC (X).

(270)

So,
P̃ ∗0 = P̃0 mod SDiff1,−2,−4,−2,−4

leC (X). (271)
On the other hand, we trivially have from Proposition 3.5 that

P̃ ∗2 ∈ SDiff2,−1−δ,−3−2δ,−1−δ,−3−2δ
leC (X). (272)

Now define R = P̃ ∗ − P̃ − (P ∗1 − P1)−
∑J
j=1(Υ∗j −Υj), so that eq. (265) holds by construction.

Rearranging this definition,

R = (P̃ ∗0 − P̃0) + (P̃ ∗1 − P̃1) + (P̃ ∗2 − P̃2)− (P ∗1 − P1)−
J∑
j=1

(Υ∗j −Υj)

= (P̃ ∗0 − P̃0) + (P̃ ∗2 − P̃2) +
([
P̃1 − P1 −

J∑
j=1

Υj

]∗
−
[
P̃1 − P1 −

J∑
j=1

Υj

])
.

(273)

Thus, using eq. (271), eq. (272), Proposition 3.5, and Proposition 3.4,

R ∈ SDiff1,−2,−4,−2,−4
leC (X) + SDiff2,−1−δ,−3−2δ,−1−δ,−3−2δ

leC (X)

= SDiff2,−1−δ,−3−2δ,−1−δ,−3−2δ
leC (X), (274)

as claimed.
Equation (266) follows from the observation that Υ∗j = −ix4Φ′bjP ∗⊥,j near ∂X, where P ∗⊥,j is

computed using the L2(∂X, g∂X)-inner product. On the other hand,

P ∗1 =
J∑
j=1

[
P ∗⊥,j(x2b∗j (x2∂x)∗ + [(x2∂x)∗, x2b∗j ]) + x3b′∗j P

∗
∂X + x2b′′∗j Q

∗
∂X,j

]

=
J∑
j=1

[
P ∗⊥,j(x2b∗j (−x2∂x + x(n− 1))− x[x∂x, x2b∗j ]) + x3b′∗j P

∗
∂X,j + x2b′′∗j Q

∗
∂X,j

]

=
J∑
j=1

[
P ∗⊥,j(x2b∗j (−x2∂x + x(n− 1))− 2x3b∗j − x3(x∂xb∗j )) + x3b′∗j P

∗
∂X,j + x2b′′∗j Q

∗
∂X,j

]
(275)

near ∂X, where bj , b′j , b′′j are as in eq. (46). Equation (267) follows from this, for some choice of
b∗,j . �
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We see from the above that

=P̃ ∈ SDiff1,−1,−4,−2,−5
leC (X) + SDiff2,−1,−3,−2,−4

leC (X) + SDiff2,−1−δ,−3−2δ,−1−δ,−3−2δ
leC (X)

⊂ SDiff2,−1,−3,−1−δ,−3−2δ
leC (X). (276)

Thus, =P̃ is one order lower than P̃ at sf and ff and slightly lower order at bf and tf, and we
have been entirely explicit about the leading terms of =P̃ (namely =P1 and =Υj) at sf and ff, the
remainder (2i)−1R being slightly more than one order lower than P̃ at both faces.

4. The situation at zero energy

In this section we consider P (0) and P̃ (0) in some detail. Specifically, we apply [Vas21a, Theorem
1.1] to study the strong limit

R(E = 0; Z± i0) = slimε→0+ R(E = 0; Z± iε) (277)

used in the statement of Theorem 1.1 to characterize the resolvent output at zero energy. The
mapping properties of this operator will be used in §6 in order to prove the smoothness of the
output of the conjugated resolvent at positive energy all the way down to zero energy (as used e.g.
in Corollary 1.3).

Recall that x1/2 = 2−1/2x1/2. Then, from the form eq. (44) of P0,

P0(0) = −(1 + 2x2
1
2
a00(0))(x3

1
2
∂x 1

2
)2 + 4x4

1
2
4∂X + 2x5

1
2
[a(0) + n− 1]∂x 1

2
− 2Zx2

1
2

= −x2
1
2
(1 + 2x2

1
2
a00(0))(x2

1
2
∂x 1

2
)2 + 4x4

1
2
4∂X + 2x5

1
2

[
a(0) + n− 3

2 − x
2
1
2
a00(0)

]
∂x 1

2
− 2Zx2

1
2
.

(278)

(Recall that we are notationally suppressing the dependence of a00, a on y ∈ ∂X.) (The extra
−x3

1/2∂x1/2 in eq. (278) is the source of the (σ2 + Zx)−1/4 term in eq. (10).) Therefore

x
−1−n/2
1/2 P0(0)x(n−2)/2

1/2 = −(1 + 2x2
1/2a00(0))(x2

1
2
∂x 1

2
)2 + 4x2

1
2
4∂X − 2Z

+ x3
1
2

[
2a(0) + n− 1− 2(n− 1)x2

1
2
a00(0)

]
∂x 1

2
+ (n− 2)

[
a(0) + 3n

4 −
3
2 − nx

2
1
2
a00(0)

]
x2

1
2
. (279)

Thus, x−1−n/2
1/2 P̃0(0)x−1+n/2

1/2 ∈ Diffb(X1/2) has the same form as the conjugated spectral family at
positive energy, except with respect to x1/2 instead of x (and with an extra short-range potential in
eq. (279)).

We generalize this observation:

Proposition 4.1. If g is an asymptotically conic metric on X, and if we set g1/2 = x2
1/2g, then

there exists some Veff ∈ x2S0(X) such that

x
1−n/2
1/2 4gx

−1+n/2
1/2 = x2

1/24g1/2 + Veff . (280)

holds. �

Proof. We first want to show that x1−n/2
1/2 4gx

−1+n/2
1/2 − x2

1/24g1/2 is zeroth order (and therefore a
function on X◦). Indeed, 4g = x2

1/24g1/2 + (n− 2)x1/2∇g1/2x1/2, so

x
1−n/2
1/2 4gx

−1+n/2
1/2 = x2

1/24g1/2 + x
3−n/2
1/2 4g1/2x

−1+n/2
1/2 + (n− 2)x1/2g1/2(dx1/2,dx

(n−2)/2
1/2 ). (281)

It is therefore the case that x1−n/2
1/2 4gx

−1+n/2
1/2 − x2

1/24g1/2 = Veff for

Veff = x
3−n/2
1/2 4g1/2x

−1+n/2
1/2 + (n− 2)x1/2g1/2(dx1/2,dx

(n−2)/2
1/2 ). (282)
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Since g1/2 is an asymptotically conic metric on X1/2 (see below), the fact that Veff ∈ x2S0(X) can
be read off eq. (282), but we check in local coordinates.

It suffices to restrict attention to a neighborhood of ∂X. Let y1, . . . , yn−1 denote a local system
of coordinates on ∂X. Then, using g = x−2

1/2g1/2,

4g = −
xn1/2

|g1/2|1/2
∂i(x2−n

1/2 |g1/2|1/2g
ij
1/2∂j)

= −
x2

1/2

|g1/2|1/2
∂i(|g1/2|1/2g

ij
1/2∂j) + (n− 2)x1/2g

0i
1/2∂i

(283)

where ∂0 = ∂x1/2 and ∂i = ∂yi for i = 1, . . . , n− 1. Conjugating the right-hand side of eq. (283) by
x

(n−2)/2
1/2 , we see that

x
1−n/2
1/2 4gx

−1+n/2
1/2 = −

x2
1/2

|g1/2|1/2
∂i(|g1/2|1/2g

ij
1/2∂j) + 4−1n(n− 2)g00

1/2

= x2
1/24g1/2 −

x1/2

|g1/2|1/2
n− 2

2 ∂i(|g1/2|1/2gi01/2) + 4−1n(n− 2)g00
1/2.

(284)

Since g00
1/2 ∈ x

4
1/2S

0(X1/2) = x2S0(x), 4−1n(n− 2)g00
1/2 ∈ x

4
1/2S

0(X1/2).
Likewise, we see that |g1/2|−1/2∂0|g1/2|1/2 ∈ x−1

1/2S
0(X1/2), |g1/2|−1/2∂i|g1/2|1/2 ∈ S0(X1/2) for

i 6= 0, and
∂ig

i0 ∈ x4
1/2S

0(X1/2) (285)
for i 6= 0. So,

Veff = −
x1/2

|g1/2|1/2
n− 2

2 ∂i(|g1/2|1/2gi01/2) + 4−1n(n− 2)g00
1/2 ∈ x

4
1/2S

0(X1/2) = x2S0(X). (286)

�

Observe that if g is an asymptotically conic metric on X, then g1/2 is an asymptotically conic
metric on X1/2. Indeed, g1/2 is certainly a Riemannian metric on X◦ = X◦1/2, and it is a sum of
x2

1/2g0, which is exactly conic on X1/2, and terms in

x2C∞(X; scSym2 T ∗X) ⊂ x2
1/2C

∞(X; scSym2 T ∗X1/2), (287)

x2+δS0(X; scSym2 T ∗X) ⊂ x2+2δ
1/2 S0(X; scSym2 T ∗X1/2). (288)

Consequently, by Proposition 4.1, if P is the spectral family of an attractive Coulomb-like Schrödinger
operator, then

x
−1−n/2
1/2 P (0)x−1+n/2

1/2 = x−2
1/2(x−1+n/2

1/2 )−1P (0)x−1+n/2
1/2 (289)

is a member P0(2Z) = 4g1/2−2Z−W of the spectral family {P0(ζ) = P0(0)−ζ}ζ≥0 of a Schrödinger
operator

P0(0) = 4g1/2 +W (290)

on X1/2, where the potential W ∈ xS0(X) = x2
1/2S

0(X1/2) is short-range.
Thus, P0(2Z) satisfies the hypotheses of [Vas21a, §3], with 21/2Z1/2 in place of σ and X1/2 in

place of X. Moreover, as seen from eq. (61) with a = 0, the phase Φ(−; 0) is just that used by
Vasy’s in his conjugation. Thus, P̃ (0) has the form of Vasy’s conjugated operator (with 21/2Z1/2 in
place of σ and X1/2 in place of X). In order to denote the Z dependence of P (0) and P̃ (0), we write

P (0) = P (0; Z) = x
1+n/2
1/2 P0(2Z)x1−n/2

1/2 (291)
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and P̃ (0) = P̃ (0; Z). For ε > 0, let P (0; Z + iε) denote P (0) with Z replaced by Z + iε. Since
S(X1/2) = S(X) and S ′(X1/2) = S ′(X), the limiting absorption principle (as in [Mel94]) applies in
the following form: for ε > 0, the resolvent

R0(2Z + 2iε) = x
−1−n/2
1/2 R(0; Z + iε)x(n−2)/2

1/2 : S(X)→ S ′(X) (292)

of P0(0) (evaluated at “energy” ζ = 2Z + 2iε) – defined e.g. via the functional calculus – admits
a strong limit x−1−n/2

1/2 R(0; Z + i0)x−1+n/2
1/2 : S(X)→ S ′(X). Using [Vas21a, Theorem 1.1], we can

construct this resolvent as a map between suitable Sobolev spaces using the conjugated perspective:

Proposition 4.2. If P (σ) is the spectral family of an attractive Coulomb-like Schrödinger operator
on X, then, for any m, ς, ` ∈ R satisfying ` < −3/2 < ς,

P̃ (0; Z) : {u ∈ Hm,ς+n/2,`+n/2
scb (X1/2) : P̃ (0)u ∈ Hm−2,ς+3+n/2,`+3+n/2

scb (X1/2)}

→ H
m−2,ς+3+n/2,`+3+n/2
scb (X1/2) (293)

is invertible, and the inverse

R̃+(0; Z) : Hm−2,ς+3+n/2,`+3+n/2
scb (X1/2)→ H

m,ς+n/2,`+n/2
scb (X1/2) (294)

is related to R(0; Z + i0) by the formula e+iΦ(−;0)R̃+(0; Z)e−iΦ(−;0)f = R(0; Z + i0)f , which holds
for all f ∈ S(X). �

Proof. Suppose that we are given m, ς1/2, `1/2 ∈ R with `1/2 < −1/2 < ς1/2. Then, combining the
observations above and [Vas21a, Theorem 1.1],

e−iΦ(−;0)P0(2Z)e+iΦ(−;0) = x
−1−n/2
1/2 P̃ (0; Z)x−1+n/2

1/2 :

{u ∈ Hm,ς1/2,`1/2
scb (X1/2) : x−1−n/2

1/2 P̃ (0; Z)x−1+n/2
1/2 u ∈ Hm−2,ς1/2+1,`1/2+1

scb (X1/2)}

→ H
m−2,ς1/2+1,`1/2+1
scb (X1/2) (295)

is invertible, defining a continuous linear map

R̃0(Z) : Hm−2,ς1/2+1,`1/2+1
scb (X1/2)→ H

m,ς1/2,`1/2
scb (X1/2), (296)

and this is related to the limiting resolvent R0(2Z + i0) of the spectral family P0 = {P0(0)− ζ}ζ≥0
of the Schrödinger operator P0(0) on X1/2 by

e+iΦ(−;0)R̃0(0; Z)e−iΦ(−;0)f = R0(2Z + i0)f = x
−1−n/2
1/2 R(0; Z + i0)x−1+n/2

1/2 f, (297)

which holds for all f ∈ S(X).
Call the (Z-dependent) domain and codomain of eq. (295)

X̃m,ς1/2,`1/2 = {u ∈ Hm,ς1/2,`1/2
scb (X1/2) : x−1−n/2

1/2 P̃ (0; Z)x−1+n/2
1/2 u ∈ Hm−2,ς1/2+1,`1/2+1

scb (X1/2)}

= {u ∈ Hm,ς1/2,`1/2
scb (X1/2) : P̃ (0; Z)x−1+n/2

1/2 u ∈ Hm−2,ς1/2+2+n/2,`1/2+2+n/2
scb (X1/2)}

Ỹm,ς1/2,`1/2 = H
m−2,ς1/2+1,`1/2+1
scb (X1/2).

Setting

Xm,ς,` = x
−1+n/2
1/2 X̃m,ς0,`0

= {u ∈ Hm,ς+n/2,`+n/2
scb (X1/2) : P̃ (0; Z)u ∈ Hm−2,ς+3+n/2,`+3+n/2

scb (X1/2)}
(298)

Ym,ς,` = H
m−2,ς+3+n/2,`+3+n/2
scb (X1/2) (299)
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for ς = ς1/2 − 1 and ` = `1/2 − 1, we have a commutative diagram

X̃m,ς,`0
x
−1−n/2
1/2 P̃ (0)x−1+n/2

1/2 //

×x−1+n/2
1/2

��

Ỹm,ς0,`0
×x1+n/2

1/2
��

Xm,ς,`
P̃ (0) // Ym,ς,`

(300)

in the category of Banach spaces. The vertical arrows are manifestly isomorphisms, and as observed
the top horizontal arrow is as well.

Hence, P̃ (0) = P̃ (0; Z) is invertible, and the inverse R̃+(0) = R̃+(0; Z) has the properties specified
in the proposition. �

And for the b-Sobolev spaces:

Proposition 4.3. If P (σ) is the spectral family of an attractive Coulomb-like Schrödinger operator
on X, for any m, ` = 2l ∈ R satisfying ` < −3/2 < m+ `,

P̃ (0; Z) : {u ∈ Hm,`+n/2
b (X1/2) : P̃ (0; Z)u ∈ Hm,`+3+n/2

b (X1/2)} → H
m,`+3+n/2
b (X1/2)

: {u ∈ Hm,l
b (X) : P̃ (0; Z)u ∈ Hm,l+3/2

b (X)} → H
m,l+3/2
b (X)

(301)

is invertible. �

Proof. The equality

{u ∈ Hm,`+n/2
b (X1/2) : P̃ (0; Z)u ∈ Hm,`+3+n/2

b (X1/2)} = {u ∈ Hm,l
b (X) : P̃ (0; Z)u ∈ Hm,l+3/2

b (X)}
(302)

follows from Lemma 2.18.
First of all, setting ς = m+ `,

{u ∈ Hm,`+n/2
b (X1/2) : P̃ (0; Z)u ∈ Hm,`+3+n/2

b (X1/2)} ⊂ Xm,ς,`, (303)

and so eq. (301) is injective (by Proposition 4.2). Conversely,

H
m,l+3/2
b (X) ⊂ Ỹm,ς,`, (304)

so given any f ∈ H
m,l+3/2
b (X) there exists a u ∈ X̃m,ς,` such that P̃ (0; Z)u = f . Thus, u ∈

H
m,`+n/2
b (X1/2), and we already know that f = P̃ (0; Z)u ∈ Hm,`+3+n/2

b (X1/2), so u is actually in
the codomain of eq. (301). Thus, eq. (301) is surjective. �

5. Symbolic estimates

We now proceed to establish quantitative control of u ∈ S ′(X) in terms of P̃ u microlocally in the
symbolic region of the leC-phase space leCT

∗
X, meaning at df ∪ sf ∪ tf. Since we make no attempt

to be uniform in the σ → ∞ limit, we simply restrict attention to σ ∈ [0,Σ] for some arbitrary
Σ > 0, and the estimates will all depend on Σ in some unexamined way. The main result of this
section, duplicated below as Proposition 5.14, says:

• for every Σ > 0, N ∈ N, and m, s, ς, l, `, s0, ς0 ∈ R satisfying l < −1/2 < s0 < s and
` < −3/2 < ς0 < ς ≤ `+ s− l, there exists a constant C = C(P̃ ,Σ, N,m, s, ς, l, `) > 0 such
that

‖u‖
Hm,s,ς,l,`

leC
≤ C(‖P̃ u‖

Hm−2,s+1,ς+3,l+1,`+3
leC

+ ‖u‖
H−N,l,`b,leC

) (305)

holds for all u ∈ S ′(X) and σ ∈ [0,Σ] such that ‖u‖
H
−N,s0,ς0,−N,−N
leC (X)(σ) <∞.
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(As mentioned in the introduction, [Vas21a, §5] suffices for the analysis of the σ → ∞ regime.)
The contents of this section should be compared to the contents of [Vas21a, §4], as our argument
below is very similar to some of the symbolic computations there. Using Lemma 2.16, in order to
prove eq. (305) it suffices to establish quantitative control of u within each member of some finite
collection of open subsets of the leC-phase space covering df ∪ sf ∪ tf — see Figure 5.

By eq. (256),

P̃ = −(x2∂x)2 + x24∂X + 2ix(σ2 + Zx)1/2x∂x mod SDiff2,−1,−3,−1,−3
leC (X) (306)

(near ∂X). Thus, the leC-principal symbol σ2,0,−2,−1,−3
leC (P̃ ) ∈ S2,0,−2,−1,−3

leC (X)/S1,−1,−3,−1,−3
leC (X) of

P̃ has a representative of the form
p̃ = p̃0 + p̃1,2 (307)

for p̃1,2 ∈ S2,−1,−3,−1,−3
leC (X), where p̃0 is a representative of σ2,0,−2,−1,−3

leC (P̃0). Thus,

p̃0 = x2ξ2
b + x2η2

b − 2x(σ2 + Zx)1/2ξb (308)

near ∂X. (Recall from §2 that ξb is the b-cofiber coordinate dual to x and η = ηb ∈ T ∗∂X.)
The ellipticity of P̃ ∈ SDiff2,0,−2,−1,−3

leC (X) (see Proposition 5.2) at and near df makes establishing
control there trivial, so we work on leCT ∗X = leCT

∗
X\df and establish control at {x = 0} ⊂ leCT ∗X.

Thus, p̃1,2 is irrelevant for the symbolic considerations below (except those in §5.1), all of which are
restricted away from df.

In order to investigate the dynamics away from bf∪tf, we introduce new coordinates on R+
σ ×T ∗X◦

(over some collar neighborhood of ∂X, not including the boundary itself) by

ξsc,leC = ξb%bf00%tf00 = ξb%sf%ff%bf%tf (309)
ηsc,leC = η%bf00%tf00 = η%sf%ff%bf%tf ∈ T ∗∂X, (310)

for ξb ∈ R and η = ηb ∈ T ∗∂X. More explicitly, ξsc,leC = ξbx(σ2 +Zx)−1/2, ηsc,leC = ηx(σ2 +Zx)−1/2.
These extend to fiber coordinates on the bundle [0, x̄)sp

res × Rξsc,leC × (T ∗∂X)ηsc,leC → [0, x̄)sp
res, and

we write
sc,leCT ∗∂XX = (∂[0, x̄)sp

res\zf◦)× Rξsc,leC × (T ∗∂X)ηsc,leC

= ∂(([0, x̄)sp
res\zf◦)× Rξsc,leC × (T ∗∂X)ηsc,leC). (311)

(We do not endow sc,leCT ∗∂XX with any more structure than that of a set.) Let o denote the zero
section of T ∗∂X. While sc,leCT ∗∂XX is not a mwc, [0, x̄)sp

res × Rξsc,leC × T ∗∂X is.
The punctured space sc,leCT ∗∂XX\o∂ , o∂ = {x = 0, ξsc,leC = 0 and ηsc,leC ∈ o}, can be identified

with sf ∪ ff\(df ∪ bf ∪ tf):

Proposition 5.1. The identity map i : {0 ≤ x < x̄} ∩ R+
σ × T ∗X◦ → {0 ≤ x < x̄} ∩ R+

σ × T ∗X◦
composed with (Dι)∗ : {0 ≤ x < x̄} ∩ (R+

σ × T ∗X◦) → R+
σ × (0, x̄)x × Rξ × T ∗∂X (where ι is the

boundary collar) extends (uniquely) to a smooth map

ī : {0 ≤ x < x̄} ∩ leCT ∗X → [0, x̄)sp
res × Rξsc,leC × (T ∗∂X)ηsc,leC (312)

restricting to a diffeomorphism {0 ≤ x < x̄} ∩ leCT
∗
X\(df ∪ bf ∪ tf) → ([0, x̄)sp

res × Rξsc,leC ×
(T ∗∂X)ηsc,leC)\o∂. �

Proof. Here we are using the boundary collar ι (really (Dι)∗) to identify {0 < x < x̄}∩ (R+
σ ×T ∗X◦)

with R+
σ × (0, x̄)x × Rξ × T ∗∂X.

Using ι, we see that ξsc,leC is a smooth function on the domain of eq. (312), as is ηsc,leC ∈ T ∗∂X.
Likewise, the (smooth) projection leCT ∗X → Xsp

res fits into a composition

{0 ≤ x < x̄} ∩ leCT ∗X → {0 ≤ x < x̄} ∩Xsp
res

ι−1
→ X̂sp

res = [0, x̄)sp
res × ∂X → [0, x̄)sp

res, (313)
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R+

R0

Σ

sc,leCT ∗pX

Figure 5. Schematic of the proof of eq. (305) when dim ∂X = 1. The situation over
a point p ∈ (∂[0, x̄)sp

res\zf◦)× ∂X in the sc,leC-phase space is illustrated, with Σ =
Char2,0,−2

sc,leC (P̃ ) in red. There are four subsets of interest: the dark gray neighborhood
of R+, controlled using a high regularity radial point estimate, the dark gray
neighborhood of R0 = o∂ , controlled using a low regularity radial point estimate
(and an elliptic estimate), a neighborhood of the rest of the characteristic set which
stays away from R+,R0 over which we can propagate regularity, and the rest of the
cofiber (light gray background), where elliptic estimates apply. Cf. [Mel94, Figure 2].
The direction of the Hamiltonian flow of P̃ is indicated with arrows. (Note that only
the “vertical” components of the flow are drawn — the Hamiltonian flow also changes
p.)

where X̂ = [0, x̄)× ∂X, which shows that the [0, x̄)sp
res component of eq. (312) is smooth. Thus, ī is

smooth.
The diffeomorphism clause follows from the inversion formulas

%df =
[
1 + x

σ2 + Zx +
( x2

σ2 + Zx + ξ2
sc,leC + η2

sc,leC

)1/2]−1
, (314)

%sf = x

σ2 + Zx
[
1 +

( x

σ2 + Zx +
( x2

σ2 + Zx + ξ2
sc,leC + η2

sc,leC

)1/2)−1]
, (315)

%ff = (σ2 + Zx)1/2
( x

σ2 + Zx
( x2

σ2 + Zx + ξ2
sc,leC + η2

sc,leC

)−1/2
+ 1

)
, (316)

%tf =
[
1 + x

σ2 + Zx
( x2

σ2 + Zx + ξ2
sc,leC + η2

sc,leC

)−1/2]−1
, (317)

and

%bf =
[
1 +

(
1 + x

σ2 + Zx
)( x2

σ2 + Zx + ξ2
sc,leC + η2

sc,leC

)−1/2]−1

×
[
1 + x

σ2 + Zx
( x2

σ2 + Zx + ξ2
sc,leC + η2

sc,leC

)−1/2]
, (318)

(holding on {0 < x < x̄} ∩R+
σ × T ∗X◦), which certainly suffice to define a smooth two-sided inverse

([0, x̄)sp
res × Rξsc,leC × (T ∗∂X)ηsc,leC)\o∂ → {0 ≤ x < x̄} ∩ leCT

∗
X\(df ∪ bf ∪ tf) of ī. �
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R+

Σ

R

[sc,leCT ∗pX; (o∂)p]

Figure 6. The result of blowing up the zero section of sc,leCT ∗∂XX over a fixed point
p ∈ (∂[0, x̄)sp

res\zf◦ ∪ (bf ∩ tf))× ∂X, with Σ = Char2,0,−2,−1,−3
leC (P̃ ) (which, according

to ī, agrees with Char2,0,−2
sc,leC (P̃ ) away from bf ∪ tf but is deformed by the blow-up)

and the vertical Hamiltonian flow on it indicated. Cf. [Vas21a, Figure 3]. The inner
black circle depicts either bf ∩ sf or tf ∩ ff, depending on whether σ > 0 or σ = 0.
Over each p, it is a copy of Sn−1. Its equator is the portion of R over p. The radial
point estimate in §5.3 is used to control the dark gray neighborhood, while elliptic
estimates suffice for the rest of bf ∩ sf or tf ∩ ff (which is away from R).

In terms of ξsc,leC and ηsc,leC, p̃0 can be written as

p̃0 = (σ2 + Zx)(ξ2
sc,leC + g−1

∂X(ηsc,leC, ηsc,leC)− 2ξsc,leC) (319)
= (σ2 + Zx)(ξ2

sc,leC + η2
sc,leC − 2ξsc,leC) (320)

in T ∗X◦. Weighting, p̃%2
df%
−2
ff %−1

bf %
−3
tf = p̃2,0,−2,−1,−3 induces a well-defined function on ∂leCT ∗X

and thus on sc,leCT ∗∂XX\o∂ . Note that this restriction does not depend on p̃1,2. The portion of the
leC-characteristic set of P̃ disjoint from bf ∪ tf can be written as

Char2,0,−2,−1,−3
leC (P̃ )\(bf ∪ tf) = (p̃2,0,−2,−1,−3|sc,leCT ∗

∂X
X\o∂ )−1({0}). (321)

This is equal to {ξ2
sc,leC + η2

sc,leC − 2ξsc,leC = 0}\o∂ ⊂ sc,leCT ∗∂XX. For convenience, we add in o∂ to
give a new set

Char2,0,−2
sc,leC (P̃ ) = {ξ2

sc,leC + g−1
∂X(ηsc,leC, ηsc,leC)− 2ξsc,leC = 0} ⊂ sc,leCT ∗∂XX, (322)

which consists of an off-center sphere over each point of (∂[0, x̄)sp
res\zf) × ∂X (in terms of the

trivialization eq. (311)), of radius one and centered at ξsc,leC = 1 and ηsc,leC ∈ o. See Figure 5, which
is a translated version of [Mel94, Figure 2]. The portion of

Char2,0,−2,−1,−3
leC (P̃ ) = (p̃2,0,−2,−1,−3)−1({0}) ∩ (df ∪ sf ∪ ff) (323)

over a point p ∈ (∂[0, x̄)sp
res\zf◦\(bf ∩ tf))×∂X is depicted in Figure 6. Note that Char2,0,−2,−1,−3

leC (P̃ )
only contains a codimension one subset of sf ∩ bf, ff ∩ tf, that corresponding to ξsc,leC = 0, while
the lift of Char2,0,−2

sc,leC (P̃ ) contains the whole sets.
Elliptic estimates control u in terms of P̃ u away from this set — see §5.1.
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As shown in §5.2, the Hamiltonian flow Hp̃ ∈ V(R+
σ × T ∗X◦) associated to p̃ is given in terms of

the sc,leC- coordinates above by

Hp̃0 = x(σ2 + Zx)1/2
[
2(ξsc,leC − 1)x∂x + 2g−1

∂X(ηsc,leC,−)

+ 2σ2 + Zx
σ2 + Zx

(
(ξsc,leC − 1)ηsc,leC∂ηsc,leC + ξsc(ξsc,leC − 2)∂ξsc,leC

)
− 2p̃0
σ2 + Zx∂ξsc,leC

]
(324)

to leading order at ∂X, where ηsc,leC∂ηsc,leC ∈ V(T ∗∂X) ⊂ V(R+
σ × [0, x̄)x×Rξsc,leC ×T ∗∂X) denotes

the vector field on T ∗∂X given in local coordinates y1, . . . , yn−1 for ∂X by

ηsc,leC∂ηsc,leC =
n−1∑
j=1

ηsc,leC,j∂ηsc,leC,j , (325)

where ηsc,leC,j is the cofiber component of ηsc,leC dual to yj . It will be convenient to work with
the weighted Hamiltonian vector fields H2,0,−2

p̃0 = %dfx
−1(σ2 + Zx)−1/2Hp̃0 , H

2,0,−2
p̃ = %dfx

−1(σ2 +
Zx)−1/2Hp̃.

The vector field Hp̃, as given by eq. (324), defines on the sc,leC-characteristic set Char2,0,−2
sc,leC (P̃ ) a

source-to-sink flow, with
• {ξsc,leC = ηsc,leC = 0} = R0 ⊂ sc,leCT ∗∂X , X, the “selected radial set,” and
• {ξsc,leC = 2, ηsc,leC = 0} = R+ ⊂ sf ∪ tf, the “unselected radial set,”

the sink and source (respectively, under our sign conventions) of the flow. Hence, leC-analogues of
standard propagation and radial point estimates apply away from o∂ (the dependence on the one
parameter being unimportant), and the proofs are straightforward modifications of the analogous
estimates in [Mel94]. These estimates are proven in §5.2. Note that the (ξsc,leC − 1)x∂x term in
eq. (324) does not actually vanish on the portion of R0,R+ over the interior of tf — rather, it
induces a flow from the bf side to the zf side. Thus, it is also possible to prove a propagation result
in which regularity at R+ ∩ sf is propagated into R+ ∩ zf. We will not need (and hence will not
prove) such an estimate, as a much weaker argument in §6 suffices to show that for nice f the output
R̃+(E)f of the conjugated resolvent R̃+(E) converges weakly to something satisfying the conjugated
version of the Sommerfeld radiation condition as E → 0+. (But it is still worth pointing out that
R+ ∩ zf is not a source of the flow in every direction — it is a sink in the ς = σ/x1/2 direction.)

The radial point estimate at the selected radial set is somewhat more nonstandard. Rather than
R0, we work with R = Char2,0,−2,−1,−3

leC (P̃ ) ∩ (bf ∪ tf). See [Vas21a, Figure 3] for the σ > 0 case.
The face ff meets bf at an edge — see Figure 3, Figure 7 — and so sf ∪ff\df is not just the boundary
of

[[0, x̄)sp
res × Rξsc,leC × T

∗∂X, [0, x̄)sp
res × {0} × o], (326)

which is why Figure 6 depicts the situation only over p ∈ [0, x̄)res
sp × ∂X not on the zero face or

corner. Away from that edge, our situation looks (even at ff) very much like that in [Vas21a]. An
argument similar to that used to prove the radial point estimate there suffices to prove an estimate
here that is uniform down to σ = 0, albeit without the desired number of independent orders. In
order to prove an estimate with the desired number of independent orders, it will be necessary to
take into account the aberrant edge. See §5.3.

The elliptic, propagation, and radial point estimates in §5.1, §5.2, §5.3 are combined in a short
epilogue §5.4, which contains Theorem 5.12, as well as the corollary Proposition 5.14 stated above.

5.1. Ellipticity.

Proposition 5.2. P̃ ∈ Diff2,0,−2,−1,−3
leC (X) is elliptic in some neighborhood of df. �
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df

bf

zf

tf

ffsf

Figure 7. The radial sets R+,R (in red) as subsets of the leC-phase space (ignoring
the degrees of freedom associated with T ∗∂X). The top line represents R+, while
the bottom line depicts R. (Note that on bf ∩ ff, x/(σ2 + Zx) = σ2 + Zx = 0.)

Proof. By assumption, P̃ is elliptic at every point of df◦. By eq. (255), P̃ will be elliptic at a point
of sf ∪ ff (including the points of ∂df ⊂ sf ∪ ff) if and only if P̃0 is. Char2,0,−2,−1,−3

leC (P̃0) is contained
away from df, so the same then holds for Char2,0,−2,−1,−3

leC (P̃ ). �

Via the leC-calculus analogue of the usual argument via parametrix:

Proposition 5.3. Let A,A0, B ∈ Ψ0,0,0,0,0
leC (X), with WF′0,0leC (A),WF′leC(A0) ⊆ Ell0,0,0,0,0leC (B) ∩

Ell2,0,−2,−1,−3
leC (P̃ ).
Then, for each Σ > 0, m, s, ς, l, ` ∈ R, and N ∈ N, there exists a

C = C(P̃ , A,A0, B,m, s, ς, l, `,N,Σ) > 0
such that, for any u ∈ S ′(X),

‖Au‖
Hm,s,ς,l,`

leC
≤ C

[
‖BP̃u‖

Hm−2,s,ς+2,l+1,`+3
leC

+ ‖u‖
H−N,−N,−N,l,`leC

]
(327)

‖A0u‖Hm,s,ς,l,`
leC

≤ C
[
‖BP̃u‖

Hm−2,s,ς+2,l+1,`+3
leC

+ ‖u‖
H−N,−N,−N,−N,−NleC

]
(328)

for all σ ∈ (0,Σ] (in the strong sense that if the right-hand side is finite then the left-hand side is as
well). �

Proof. Let b ∈ S0,0,0,0,0
leC (X) = S0,0,0

b,leC(X) denote a representative of σ0,0,0,0,0
leC (B). Let ϕ ∈ C∞c (R) be

identically equal to one in some neighborhood of [0,Σ] and supported in (−∞, 2Σ).
The set

K = WF′0,0leC (A) ∩ {σ ≤ 2Σ} ⊆ df ∪ sf ∪ ff ⊆ ∂leCT
∗
X (329)

is a compact subset of leCT
∗
X, so we can find some χ ∈ S0,0,0,0,0

leC (X) such that χ = 1 iden-
tically in some neighborhood of K and such that χ = 0 identically in some neighborhood of
Char2,0,−2,−1,−3

leC (BP̃ ) = Char0,0,0,0,0
leC (B)∪Char2,0,−2,−1,−3

leC (P̃ ). We can moreover choose χ such that
χ = 0 identically in some neighborhood of b−1({0}) ∪ p̃−1({0}). Consider f = χ/bp̃ ∈ S−2,0,2,1,3

leC (X).
Quantizing, we get some F = Op(f) ∈ Ψ−2,0,2,1,3

leC (X) such that – via the leC-principal symbol
short exact sequence –

ϕA(1− FBP̃ ) ∈ Ψ−1,−1,−1,0,0
leC (X). (330)

Indeed, ϕA(1−FBP̃ ) ∈ Ψ0,0,0,0,0
leC (X) by Proposition 2.6. By Proposition 2.9, for any representative

a ∈ S0,0,0,0,0
leC (X) of the principal symbol σ0,0,0,0,0

leC (A),

σ0,0,0,0,0
leC (ϕA(1− FBP̃ )) = ϕa(1− χ) mod S−1,−1,−1,0,0

leC (X)

= 0 mod S−1,−1,−1,0,0
leC (X),

(331)
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which implies eq. (330). So, for σ ∈ [0,Σ],

‖Au‖
Hm,s,ς,l,`

leC
= ‖ϕAu‖

Hm,s,ς,l,`
leC

≤ ‖ϕAFBP̃u‖
Hm,s,ς,l,`

leC
+ ‖ϕA(1− FBP̃ )u‖

Hm,s,ς,l,`
leC

� ‖BP̃u‖
Hm−2,s,ς+2,l+1,`+3

leC
+ ‖ϕAu‖

Hm−1,s−1,ς−1,l,`
leC

= ‖BP̃u‖
Hm−2,s,ς+2,l+1,`+3

leC
+ ‖Au‖

Hm−1,s−1,ς−1,l,`
leC

.

(332)

Inducting, we conclude the estimate eq. (327).
The second estimate, eq. (328), is proven in a completely analogous manner. �

5.2. Propagation. The Hamiltonian vector field Hp̃ ∈ V(R+
σ × T ∗X◦) associated with the symbol

p̃ ∈ C∞((0,∞)σ × T ∗X◦) is given near ∂X by

Hp̃ = (∂ξb p̃)x∂x − (x∂xp̃)∂ξb +
n−1∑
j=1

((∂ηj p̃)∂yj − (∂yj p̃)∂ηj ) ∈ C∞((0,∞)σ;V(T ∗X◦)) (333)

with respect to any set of local coordinates y = (y1, . . . , yn−1) on ∂X. (We will alternatively
identify Hp̃ as a smooth family of elements of V(T ∗X◦) and as a vector field on R+

σ × T ∗X◦ without
∂σ component.) Together, x, y, ξsc,leC, ηsc,leC constitute a coordinate chart for T ∗X◦, so we can
rewrite Hp̃(σ) ∈ C∞(T ∗X◦;TT ∗X◦) in terms of them, and the result (patching together the various
coordinate charts for ∂X) can be interpreted as a weighted b-vector field on [0, x̄)sp

res × Rξsc,leC ×
(T ∗∂X)y,ηsc,leC (after restricting attention to a small collar neighborhood of ∂X). To perform this
rewrite, we need the following substitutions:

x∂x → x∂x + ∂ξsc,leC
∂x

x∂ξsc,leC,j +
n−1∑
j=1

∂ηsc,leC,j
∂x

x∂ηsc,leC,j

= x∂x + 2σ2 + Zx
2(σ2 + Zx)ξsc,leC∂ξsc,leC + 2σ2 + Zx

2(σ2 + Zx)

n−1∑
j=1

ηsc,leC,j∂ηsc,leC,j

(334)

and

∂ξb →
∂ξsc,leC
∂ξb

∂ξsc,leC = x√
σ2 + Zx

∂ξsc,leC , ∂ηj →
∂ηsc,leC,j
∂ηj

∂ηsc,leC,j = x√
σ2 + Zx

∂ηsc,leC,j (335)

for j = 1, . . . , n− 1, where the partial derivatives are taken with respect to the coordinate system
x, y, ξb, η. In other words, letting (x∂x)old, (∂yj )old denote the local vector fields defined using the
coordinate system x, y, ξb, η, we have

(∂yj )old = ∂yj , (336)

(x∂x)old = x∂x + 2σ2 + Zx
2(σ2 + Zx)ξsc,leC∂ξsc,leC + 2σ2 + Zx

2(σ2 + Zx)

n−1∑
j=1

ηsc,leC,j∂ηsc,leC,j , (337)

where the partial derivatives on the right-hand side are defined using the coordinate system
x, y, ξsc,leC, ηsc,leC. In terms of this new notation, eq. (333) says

Hp̃ = (∂ξb p̃)(x∂x)old − ((x∂x)oldp̃)∂ξb +
n−1∑
j=1

((∂ηj p̃)(∂yj )old − ((∂yj )oldp̃)∂ηj ). (338)

The same holds for p̃0 in place of p̃. The ∂yj component of Hp̃0 = Hp̃ −Hp̃1,2 is given by

∂ηj p̃0 = x√
σ2 + Zx

∂p̃

∂ηsc,leC
= 2x

√
σ2 + Zx

n−1∑
k=1

gkjηsc,leC,k. (339)
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On the other hand, the ∂ηsc,leC,j component of Hp̃0 is given by

2σ2 + Zx
2σ2 + 2Zxηsc,leC,j

∂p̃0
∂ξb
− x

(σ2 + Zx)1/2
∂p̃0
∂yj

= 2σ2 + Zx
2σ2 + 2Zx

x

(σ2 + Zx)1/2 ηsc,leC,j
∂p̃0

∂ξsc,leC

= 2σ2 + Zx
(σ2 + Zx)1/2xηsc,leC,j(ξsc,leC − 1),

(340)

while the ∂ξsc,leC component is given by

2σ2 + Zx
2σ2 + 2Zxξsc,leC

∂p̃0
∂ξb
− x2

(σ2 + Zx)1/2

(∂p̃0
∂x

)
old

= 2σ2 + Zx
(σ2 + Zx)1/2xξsc,leC(ξsc,leC − 1)− x

(σ2 + Zx)1/2

[
2p̃0 + ξsc,leC(2σ2 + Zx)

]
= 2σ2 + Zx

(σ2 + Zx)1/2xξsc,leC(ξsc,leC − 2)− 2xp̃0
(σ2 + Zx)1/2 , (341)

and the x∂x component is x(σ2 + Zx)−1/2∂ξsc,leC p̃0 = 2x(σ2 + Zx)1/2(ξsc,leC − 1). To summarize:

Proposition 5.4. In terms of the coordinates x, y, ξsc,leC, ηsc,leC,

Hp̃0 = x(σ2 + Zx)1/2
[
2(ξsc,leC − 1)x∂x + 2g−1

∂X(ηsc,leC,−)

+ 2σ2 + Zx
σ2 + Zx

(
ξsc,leC(ξsc,leC − 2)∂ξsc,leC +

n−1∑
j=1

ηsc,leC,j(ξsc,leC − 1)∂ηsc,leC,j

)
− 2p̃0
σ2 + Zx∂ξsc,leC

]
(342)

(in the relevant neighborhood of leCT ∗X). ��

Letting H−,0,−2
p̃ = x−1(σ2 + Zx)−1/2Hp̃ ∈ V(R+

σ × T ∗X◦), H
−,0,−2
p̃ defines a b-vector field on

sc,leCT ∗X = [0, x̄)sp
res × Rξsc,leC × (T ∗∂X)y,ηsc,leC . (343)

Likewise for p̃0. Note that H−,0,−2
p̃ and H−,0,−2

p̃0 agree at every point of sf ∪ ff. Restricting to
{x = 0}, H−,0,−2

p̃ can be considered as a family

H : ∂([0, x̄)sp
res\zf◦)→ V(Rξsc,leC × (T ∗∂X)y,ηsc,leC) (344)

of vector fields on the fiber R × T ∗∂X. In order to understand H, consider H−,0,−2
p̃ over a

neighborhood of a subset of the interior of the transition face tf of [0, x̄)sp
res, which we can parametrize

in terms of x ∈ [0, x̄) and λ ∈ R+ by writing σ2 = Zλx. In this neighborhood, x1/2 is a bdf for the
transition face. Then, H can be thought of as a family of vector fields on Rξsc,leC ×T ∗∂X dependent
on the parameter λ, with explicit formula

H = 2λ+ 1
λ+ 1

[
(ξsc,leC − 1)ηsc,leC∂ηsc,leC + (ξsc,leC − 2)ξsc∂ξsc,leC

]
+ 2g−1

∂X(ηsc,leC,−) (345)

when p̃ = 0. The ∂y-component of H is independent of λ and comes from the projection of the
geodesic flow on T ∗∂X down to ∂X. The cofiber components of H (bracketed) depend on λ only
in the form of an overall factor that – crucially – is nonzero for all λ ∈ [0,∞). (In fact, eq. (345)
makes sense as a family of vector fields on R × T ∗∂X for all λ > −1, and it is non-vanishing for
λ > −1/2, but we do not consider this “extended transition face” here The vanishing at λ = −1/2
is one sign that the consideration of negative λ would require solving a b-problem analogous to
the b-problem encountered in the low-energy analysis of Coulomb-free Schrödinger operators. Cf.
Remark 8.) From eq. (345), we read off the following crucial observation: over the transition face of
[0, x̄)sp

res, parametrized as above, H, when restricted to the characteristic set of p̃ and away from
bf ∪ tf, vanishes if and only if ηsc,leC = 0 and ξsc,leC = 2, i.e. on R+. Between this submanifold and
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the zero section R0, H has (over each point in ∂[0, x̄)sp
res) a source-to-sink flow within Char2,0,−2

sc,leC (P̃ ).
In order to see that {ξsc = ηsc = 0} is a sink of the flow, observe that

H(ξ2
sc,leC + η2

sc,leC) = 4λ+ 2
λ+ 1

[
η2

sc(ξsc,leC − 1) + ξ2
sc(ξsc,leC − 2)

]
− 4p̃0ξsc,leC

σ2 + Zx (346)

(note that p̃0/(σ2 + Zx) = ξ2
sc,leC + η2

sc,leC − 2ξsc,leC is well-defined).
The same computation yields:

Proposition 5.5. H−,0,−2
p̃0 (ξ2

sc,leC + η2
sc,leC) = β0,1(ξ2

sc,leC + η2
sc,leC) + F0,2 + F0,3 for

β0,1 = 4σ2 + 2Zx
σ2 + Zx (ξsc,leC − 1), F0,2 = −ξ2

sc,leC
4σ2 + 2Zx
σ2 + Zx , F0,3 = −4p̃0ξsc,leC

σ2 + Zx . (347)

These extend to symbols on the leC-phase space. The first two are nonpositive in the vicinity of
bf ∪ tf, while F0,3 vanishes cubically there. ��

Note a similar statement holds if we replace p̃0 by p̃, if instead of F0,3 = −4p̃0ξsc,leC/(σ2 + Zx)
we use

H−,0,−2
p̃1,2 (ξ2

sc,leC + η2
sc,leC)− 4p̃0ξsc,leC/(σ2 + Zx), (348)

which is the sum of a cubically vanishing term and a term suppressed by a factor of x(σ2 + Zx)−1/2.
Consider, for each pair of Θ1,Θ2 ∈ (0, π) with Θ1 < Θ2, the set P[Θ1,Θ2] ⊂ sf ∪ ff defined by

P [Θ1,Θ2] = Char2,0,−2
leC (P̃ )∩{arccos(ξsc,leC− 1) ∈ [Θ1,Θ2]}. The following proposition is a symbolic

version of the statement that the Hamiltonian flow is source-to-sink, R+ to R0.

Proposition 5.6. Let Θ ∈ S0,0,0,0,0
cl,leC (X) satisfy Θ = arccos(ξsc,leC − 1) in some neighborhood of

P[Θ1,Θ2].
For any pair if Θ1,Θ2 ∈ (0, π) with Θ1 < Θ2, the symbol α ∈ S0,0,0,0,0

cl,leC (X) defined by H2,0,−2
p̃ Θ = α

satisfies α > 0 on P[Θ1,Θ2]. �

Proof. Given such Θ ∈ S0,0,0,0,0
cl,leC (X), Θ is equal to arccos(ξsc,leC − 1) in some neighborhood U ⊂

leCT
∗
X of P[Θ1,Θ2]. Thus,

H−,0,−2
p̃0 Θ = 2σ2 + Zx

σ2 + Zx ξ
1/2
sc,leC(2− ξsc,leC)1/2 + 2p̃0

σ2 + Zx
1

ξ
1/2
sc,leC(2− ξ2

sc,leC)1/2
(349)

in some neighborhood of P [Θ1,Θ2], where we are taking positive square roots. Since p̃0 vanishes on
P[Θ1,Θ2], the expression on the right-hand side is positive on P[Θ1,Θ2].

Since %df is positive on P [Θ1,Θ2], the same statement applies to H2,0,−2
p̃0 Θ. And since H2,−0,−2

p̃1,2 Θ
vanishes at P[Θ1,Θ2], the same statement applies to α = H2,0,−2

p̃ Θ. �

Clearly, there exist Θ = ΘΘ1,Θ2 ∈ S
0,0,0,0,0
cl,leC (X) satisfying the hypotheses of the previous proposi-

tion.

Proposition 5.7. Suppose that G1, G2, G3 ∈ Ψ−∞,0,0,−∞,−∞leC (X) satisfy the following: there exist

Θ1,Θ2,Θ3,Θ4,Θ5 ∈ (0, π) (350)

satisfying Θ1 < Θ2 < Θ3 < Θ4 < Θ5 and
• WF′leC(G1) ∩ Char2,0,−2,−1,−3

leC (P̃ ) ⊆ P[Θ3,Θ4],
• P[Θ1,Θ2] ⊆ Ell0,0,0,0,0leC (G3),
• P[Θ1,Θ5] ⊆ Ell0,0,0,0,0leC (G2),
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and WF′leC(G1) ⊆ Ell0,0,0,0,0leC (G2). Then, for every Σ > 0, N ∈ N, m, s, ς, l, ` ∈ R, there exists a
constant

C = C(P̃ , G1, G2, G3,Θ1,Θ2,Θ3,Θ4,Θ5,Σ, N,m, s, ς, l, `) > 0 (351)
such that

‖G1u‖Hm,s,ς,l,`
leC

≤ C
[
‖G2P̃ u‖H−N,s+1,ς+3,−N,−N

leC
+ ‖G3u‖H−N,s,ς,−N,−NleC

+ ‖u‖
H−N,−N,−N,−N,−NleC

]
(352)

holds for all u ∈ S ′(X) and σ ∈ [0,Σ] (in the strong sense that if the right-hand side is finite, then
the left-hand side is as well, and the stated inequality holds). �

Proof. Throughout the argument below, we can take N to be sufficiently large such that any of the
finitely many functions of m, s, ς, l, ` that arise can be bounded below −N .

We may assume without loss of generality that G2 is essentially supported away from R+:

R+ ∩WF′leC(G2) = ∅. (353)

Let ϕ ∈ C∞c (R) satisfy suppϕ ⊂ [Θ1,Θ5] and

ϕ′(θ) = ϕ0(θ)2 + ϕ1(θ) (354)

for ϕ0 ∈ C∞c (R) nonvanishing on [Θ3,Θ4] and ϕ1 ∈ C∞c (R) supported within (Θ1,Θ2). The
construction of such ϕ is standard. Moreover, for any closed interval I ⊂ ((Θ1 + 3Θ2)/4,Θ5) and
any ε > 0, we can construct ϕ such that εϕ2

0 ≥ ϕ in I. This construction is also standard — we
consider ϕ00 ∈ C∞(R) given by

ϕ00 =
{
e−z/(Θ5−Θ) (Θ ≤ Θ5)
0 (Θ > Θ5)

(355)

for a parameterz = z(σ) > 0 and ϕ01 ∈ C∞(R) that is identically equal to one in some neighborhood
of [Θ2,∞) and identically zero in some neighborhood of (−∞,Θ1]; setting ϕ = −ϕ00ϕ

2
01 we have

ϕ′ = −2ϕ00ϕ01ϕ
′
01 − ϕ′00ϕ

2
01 = −2ϕ00ϕ01ϕ

′
01 + z(Θ5 −Θ)−2ϕ00ϕ

2
01. (356)

Setting ϕ0 = z1/2(Θ5 − Θ)−1ϕ
1/2
00 ϕ01 and ϕ1 = −2ϕ00ϕ01ϕ

′
01, we see that ϕ,ϕ′ have the desired

form.
Fix Θ ∈ S0,0,0,0,0

cl,leC (X) that is equal to arccos(ξsc,leC − 1) in some neighborhood of P [Θ1,Θ5]. Pick
a neighborhood U0 of P[Θ1,Θ5] on which Θ is identically arccos(ξsc,leC − 1) and such that α is
bounded below on U0 (in compact sets worth of σ). Let

ϕ(Θ) ∈ S−∞,0,0,−∞,−∞cl,leC (X) (357)

denote a symbol equal to ϕ ◦ Θ on some neighborhood U b U0 of P[Θ1,Θ5], and let ψ ∈
S−∞,0,0,−∞,−∞cl,leC (X) have suppψ b U and be identically equal to 1 on some neighborhood of
P[Θ1,Θ5]. We can choose ψ such that

supp(ϕ(Θ)H2,0,−2
p̃ ψ) ∩ (p̃2,0,−2,−1,−3)−1({0}) = ∅ (358)

and suppψ ∩ (df ∪R+) = ∅. Consider the symbol

a0 = ϕ(Θ)ψ2 ∈ S−∞,0,0,−∞,−∞cl,leC (X). (359)

We then compute

H2,0,−2
p̃ a0 = (ϕ0(Θ)2 + ϕ1(Θ))ψ2α+ 2ψϕ(Θ)H2,0,−2

p̃ ψ, (360)

where α is as in Proposition 5.6.
Now set, for to-be-decided K > 0, set φε(x) = (1 + εx−1)−K , for each ε ≥ 0. Now set a(ε)

0 = φ2
εa0.
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In §3, we checked that =P̃ ∈ SDiff2,−1,−3,−1−δ,−3−2δ
leC (X) ⊂ Ψ2,−1,−3,−1−δ,−3−2δ

leC (X). Let p1 denote
a representative of σ2,−1,−3,−1−δ,−3−2δ

leC (−2=P̃ ). Then,

H2,0,−2
p̃ a

(ε)
0 = (ϕ0(Θ)2 +ϕ1(Θ))φ2

εψ
2α+ 2ψϕ(Θ)H2,0,−2

p̃ ψ+ 2Kψ2φ2
ε(εx−1)(1 + εx−1)−1ϕβ1, (361)

H2,0,−2
p̃ a

(ε)
0 + %df%

−1
sf %

−3
ff %−1

bf %
−3
tf p1a

(ε)
0 = (ϕ0(Θ)2 + ϕ1(Θ))φ2

εψ
2α+ 2ψϕ(Θ)H2,0,−2

p̃ ψ

+ 2Kψ2φ2
ε(εx−1)(1 + εx−1)−1ϕβ1 + ψ2p1%df%

−1
sf %

−3
ff %−1

bf %
−3
tf φ

2
εϕ, (362)

where β1 ∈ S0,0,0,0,0
cl,leC (X) is defined by H2,0,−2

p̃ x = β1x.
We now let a = %−2s−1

sf %−2ς−3
ff %−2l−1

bf %−2`−3
tf a0, a(ε) = %−2s−1

sf %−2ς−3
ff %−2l−1

bf %−2`−3
tf a

(ε)
0 . Then, a(•) ∈

L∞([0, 1]ε;S−∞,2s+1,2ς+3,−∞,−∞
leC (X)) and

H2,0,−2
p̃ a(ε) = %−2s−1

sf %−2ς−3
ff %−2l−1

bf %−2`−3
tf (H2,0,−2

p̃ a
(ε)
0 + a

(ε)
0 p2) (363)

for some p2 ∈ S0,0,0,0,0
cl,leC (X). Thus,

H2,0,−2
p̃ a(ε) + %df%

−1
sf %

−3
ff %−1

bf %
−3
tf p1a

(ε) = %−2s−1
sf %−2ς−3

ff %−2l−1
bf %−2`−3

tf

[
(ϕ0(Θ)2 + ϕ1(Θ))φ2

εψ
2α

+ 2ψϕ(Θ)H2,0,−2
p̃ ψ + 2Kψ2φ2

ε(εx−1)(1 + εx−1)−1ϕβ1 + φ2
εϕ(Θ)ψ2p2

+ ψ2p1%df%
−1
sf %

−3
ff %−1

bf %
−3
tf φ

2
εϕ
]
. (364)

Dividing by %dfx
−1(σ2 + Zx)−1/2,

Hp̃a
(ε) + p1a

(ε) = %−1
df %

−2s
sf %−2ς

ff %−2l
bf %

−2`
tf

[
(ϕ0(Θ)2 + ϕ1(Θ))φ2

εψ
2α

+ 2ψϕ(Θ)H2,0,−2
p̃ ψ + 2Kψ2φ2

ε(εx−1)(1 + εx−1)−1ϕβ1 + φ2
εϕ(Θ)ψ2p2

+ ψ2p1%df%
−1
sf %

−3
ff %−1

bf %
−3
tf φ

2
εϕ
]
. (365)

For each K, δ > 0, we may choose ψ = ψK,δ (perhaps dilating it if necessary) such that its
essential support is a subset of Ell0,0,0,0,0leC (G2) and such that, taking z = zK,δ,ψ ∈ C∞([0,∞)σ;R+)
sufficiently large,

bε = %
−1/2
df %−ssf %

−ς
ff %−lbf %

−`
tf φεϕ

1/2
00 ϕ01ψ

[
z(Θ5 −Θ)−2α− 2K εx−1

1 + εx−1β1 − p2

− p1%df%
−1
sf %

−3
ff %−1

bf %
−3
tf − 2δφ2

εψ
2ϕ
]1/2

(366)

is a well-defined uniform family of leC-symbols, specifically b• ∈ L∞([0, 1]ε;S−∞,s,ς,−∞,−∞leC (X)). In
addition, we set

eε = %−1
df %

−2s
sf %−2ς

ff %−2l
bf %

−2`
tf ϕ1(Θ)φ2

εψ
2α, (367)

fε = 2%−1
df %

−2s
sf %−2ς

ff %−2l
bf %

−2`
tf ϕ(Θ)p̃−1ψH2,0,−2

p̃ ψ (368)
(the division by p̃ in eq. (368) being unproblematic by eq. (358)). Thus,

e• ∈ L∞([0, 1]ε;S−∞,2s,2ς,−∞,−∞cl,leC (X)), (369)

f• ∈ L∞([0, 1]ε;S−∞,2s,2ς+2,−∞,−∞
cl,leC (X)). (370)

In terms of these,
Hp̃a

(ε) + p1a
(ε) = 2δ%−1

df %
2s+2
sf %2ς+6

ff %2l+2
bf %2`+6

tf a(ε)2 + b2ε + eε + fεp̃. (371)

Setting Aε = (1/2)(Op(a(ε)) + Op(a(ε))∗), Bε = Op(bε), Eε = Op(eε), Fε = Op(fε),
− i[<P̃ , Aε]− {=P̃ , Aε} = 2δAεΛ2

1/2,−s−1,−ς−3,−l−1,−`−3Aε +B∗εBε + Eε + F ∗ε P̃ +Rε (372)
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for some R• ∈ L∞([0, 1]ε; Ψ−∞,2s−1,2ς−1,2l,2`
leC (X)). We have

A• ∈ L∞([0, 1]ε; Ψ−∞,2s+1,2ς+3,−∞,−∞
leC (X)),

F• ∈ L∞([0, 1]ε; Ψ−∞,2s,2ς+2,−∞,−∞
leC (X)),

B• ∈ L∞([0, 1]ε; Ψ−∞,s,ς,−∞,−∞leC (X)),

E• ∈ L∞([0, 1]ε; Ψ−∞,2s,2ς,−∞,−∞leC (X)),

(373)

and

WF′L∞,leC(A•),WF′L∞,leC(B•),WF′L∞,leC(E•),
WF′L∞,leC(F•),WF′L∞,leC(R•) ⊂ suppψϕ(Θ), (374)

where the last of these inclusions (the one for R•) follows from the one for A• and WF′L∞([P̃ , A•]) ⊂
WF′L∞(A•).

Now, for each m0, s0, ς0, l0, `0 ∈ R, there exist K > 0 (dependent on m0, s0, ς0, l0, `0 and m, l, `
but nothing else) such that, given {u(−;σ)}σ≥0 ∈ L∞([0, 2Σ];Hm0,s0,ς0,l0,`0

leC (X)), it is the case that,
for any ε > 0 (and for each σ > 0, implicit in the notation below),

2=〈P̃ u, Aεu〉L2 = −〈{=P̃ , Aε}u, u〉L2 + i〈[<P̃ (σ), Aε]u, u〉L2 , (375)

where the pairings above are well-defined (and where we are using the convention that 〈−,−〉L2 is
antilinear in the first slot). Indeed, Aε, {=P̃ , Aε}, and [<P̃ (σ), Aε] are all smoothing operators – i.e.
lying in Ψ−∞,∞,∞scb (X) if σ > 0 and Ψ−∞,∞,∞scb (X1/2) if σ = 0 (in a uniform sense made precise by the
leC-calculus, but since we simply need to justify some integration by parts σ-wise the uniformity is
not important here) – and by taking K large they can be made to induce an arbitrarily large amount
of decay for each ε > 0. Given N , we fix m0, s0, ς0, l0, `0 ∈ R such that m0, s0, ς0, l0, `0 < −N .
Then, we can take K depending on m, l, `,N and nothing else such that eq. (375) holds for all
{u(−;σ)}σ≥0 ∈ L∞([0,Σ];H−N,−N,−N,−N,−NleC (X)).

Applying eq. (375) to {u(−;σ)}σ>0 ∈ H−N,−N,−N,−N,−NleC (X) and pairing against u (after taking
K large enough), we have

2=〈P̃ u, Aεu〉L2 = ‖Bεu‖2L2 + 〈u,Eεu〉L2 + 〈P̃ u, Fεu〉L2 + 〈Rεu, u〉L2

+ 2δ‖Λ2
1/2,−s−1,−ς−3,−l−1,−`−3Aεu‖

2
L2 (376)

for ε > 0. So,

‖Bεu‖2L2 + 2δ‖Λ1/2,−s−1,−ς−3,−l−1,−`−3Aεu‖2L2 ≤
2|〈P̃ u, Aεu〉L2 |+ |〈P̃ u, Fεu〉L2 |+ |〈Rεu, u〉L2 |+ 〈u,Eεu〉L2 |. (377)

Fix self-adjoint G ∈ Ψ−∞,0,0,−∞,−∞leC (X) (constructed via Op) such that WF′leC(1−G) is disjoint
from a neighborhood of the L∞-esssupp of a, b, f, e and such that WF′leC(G) is disjoint from R+ and
satisfies WF′leC(G) ⊂ Ell0,0,0,0,0leC (G2). (Both a, f are supported away from R+ and Char0,0,0,0,0

leC (G2),
so such a G exists.) Then (for K large enough):

• Writing P̃ = (1−G)P̃ +GP̃ and noting that

(1−G)A• ∈ L∞([0, 1]ε; Ψ−∞,−∞,−∞,−∞,−∞leC (X)), (378)

we have, for each N ∈ N,

2|〈P̃ u,Aεu〉L2 | ≤ 2|〈GP̃u,Aεu〉L2 |+ 2|〈P̃ u, (1−G)Aεu〉L2 |

� 2−1δ
−1‖GP̃u‖2YN + 2δ‖Λ1/2,−s−1,−ς−3,−l−1,−`−3Aεu‖2L2 + ‖u‖2EN ,

(379)



60 ETHAN SUSSMAN

for any δ > 0, where the constant in eq. (379) is independent of δ. We have abbreviated
EN = H−N,−N,−N,−N,−NleC (X),

YN = H−N,s+1,ς+3,l+1,`+3
leC (X). (380)

We also set Y∗,N = H
−N,−(s+1),−(ς+3),−(l+1),−(`+3)
leC (X) (so dual in all orders except that at

df).
• Similarly, we can chose self-adjoint Ḡ3 ∈ Ψ−∞,0,0,−∞,−∞leC (X) with

WF′leC(1− Ḡ3) ∩WF′L∞,leC(E•) = ∅, (381)

WF′leC(Ḡ3) ∩ Char2,0,−2,−1,−3
leC (P̃ ) ⊆ P[Θ1,Θ2], and WF′leC(Ḡ3) ⊆ Ell0,0,0,0,0leC (G2). Then

|〈u,Eεu〉L2 | ≤ |〈Ḡ3u,Eεu〉L2 |+ |〈u, (1− Ḡ3)Eεu〉L2 |
� ‖Ḡ3u‖2XN + ‖Eεu‖2X ∗N + ‖u‖2EN ,

� ‖Ḡ3u‖2XN + ‖Eεu‖2X∗,N + ‖u‖2EN ,
(382)

where XN = H−N,s,ς,l,`leC (X), X∗,N = H−N,−s,−ς,−l,−`leC (X).
The bound ‖Eεu‖2X ∗N � ‖Eεu‖

2
X∗,N +‖u‖2EN follows (using eq. (373)) from the construction

via Op ofH1 ∈ Ψ−1,0,0,0,0
leC (X) andH2 ∈ Ψ0,0,0,0,0

leC (X) such that WF′L∞,leC(E•)∩WF′leC(H2) =
∅ and 1 = H1 +H2. Then, we can compute

‖Eεu‖2X ∗N ≤ ‖H1Eεu‖2X ∗N + ‖H2Eεu‖2X ∗N
� ‖Eεu‖2HN−1,s,ς,l,`

leC
+ ‖H2Eεu‖2X ∗N

� ‖Eεu‖2HN−1,s,ς,l,`
leC

+ ‖u‖2EN .
(383)

Proceeding inductively, we deduce ‖Eεu‖2X ∗N � ‖Eεu‖
2
X∗,N + ‖u‖2EN . This argument will be

used below without further comment.
•

|〈P̃ u, Fεu〉L2 | ≤ |〈GP̃u, Fεu〉L2 |+ |〈P̃ u, (1−G)Fεu〉L2 |
� ‖GP̃u‖2YN + ‖Fεu‖2Y∗,N + ‖u‖2EN .

(384)

We have WF′L∞,leC(F•) ∩ Char2,0,−2,−1,−3(GP̃ ) = ∅ (since, by eq. (358), f• is supported
away from the characteristic set), so we can deduce via the elliptic parametrix construction
that

‖Fεu‖Y∗N � ‖GP̃u‖H−N,s,ς+1,−N,−N
leC

+ ‖u‖EN
� ‖GP̃u‖2YN + ‖u‖2EN

(385)

for N sufficiently large, so

|〈P̃ u, Fεu〉L2 | � ‖GP̃u‖2YN + ‖u‖2EN . (386)

• Writing Rε = (1−G2)Rε+G2Rε, since 1−G2 = (1−G)(1+G) implies WF′L∞,leC(1−G2) ⊂
WF′L∞,leC(1−G), for each N ∈ N we have

|〈Rεu, u〉L2 | � (‖GRεu‖Z∗,N ‖Gu‖ZN + ‖u‖2EN ) � (‖GRεu‖2Z∗,N + ‖Gu‖2ZN + ‖u‖2EN )

� (‖R̃εGu‖2Z∗,N + ‖Gu‖2ZN + ‖u‖2EN )

� (‖Gu‖2ZN + ‖u‖2EN )

(387)
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for some R̃• ∈ L∞([0, 1]ε; Ψ−∞,2s−1,2ς−1,2l,2`
leC (X)), where

ZN = H
−N,(2s−1)/2,(2ς−1)/2,l,`
leC (X), (388)

Z∗,N = H
−N,−(2s−1)/2,−(2ς−1)/2,−l,−`
leC (X). (389)

Combining eq. (377), eq. (379) with δ sufficiently small, eq. (386), eq. (387), we have proven that

‖Bεu‖2L2 � ‖GP̃u‖2YN + ‖Gu‖2ZN + ‖Ḡ3u‖2XN + ‖Eεu‖2X∗,N + ‖u‖2EN , (390)

i.e.

‖B̂εu‖2XN � ‖GP̃u‖
2
YN + ‖Gu‖2ZN + ‖Ḡ3u‖2XN + ‖Êεu‖2XN + ‖u‖2EN , (391)

‖B̂εu‖XN � ‖GP̃u‖YN + ‖Gu‖ZN + ‖Ḡ3u‖XN + ‖Êεu‖XN + ‖u‖EN , (392)

where B̂ε = Λ0,−s,−ς,0,0Bε and Êε = Λ−2s,−2ς,0,0Eε. Hence, B̂•, Ê• ∈ Ψ0,0,0,0,0
leC (X). By the choice ψ,

WF′L∞,leC(B•),WF′L∞,leC(E•) ⊆ Ell0,0,0,0,0leC (G2). Since Ê• ∈ L∞([0, 1]ε; Ψ−∞,0,0,−∞,−∞leC ),

‖Êεu‖XN � ‖Êεu‖X̄N (393)

for X̄N = H−N,s,ς,−N,−NleC (X). Since WF′L∞,leC(E•) ∩ Char2,0,−2,−1,−3
leC (P̃ ) ⊂ P[Θ1,Θ2],

WF′L∞,leC(E•) ⊂ Ell2,0,−2,−1,−3
leC (GP̃ ) ∪ Ell0,0,0,0,0leC (G3). (394)

Consequently, ‖Êεu‖XN � ‖GP̃u‖ȲN + ‖G3u‖X̄N + ‖u‖EN for sufficiently large N , where ȲN =
H−N,s+1,ς+3,−N,−N

leC (X). Likewise,

‖Ḡ3u‖XN � ‖GP̃u‖ȲN + ‖G3u‖X̄N + ‖u‖EN . (395)

Letting Z̄N = H
−N,s−1/2,ς−1/2,−N,−N
leC (X), since G ∈ Ψ−∞,0,0,−∞,−∞leC (X), ‖Gu‖ZN � ‖Gu‖Z̄N .

Because WF′leC(G) ⊆ Ell0,0,0,0,0leC (G2), ‖GP̃u‖ȲN � ‖G2P̃ u‖ȲN +‖u‖EN and ‖Gu‖Z̄N � ‖G2u‖Z̄N +
‖u‖EN for sufficiently large N . We have therefore shown that

‖B̂εu‖XN � ‖G2P̃ u‖ȲN + ‖G2u‖Z̄N + ‖G3u‖X̄N + ‖u‖EN . (396)

Thus, for each σ ≥ 0, B̂εu(−;σ) is uniformly bounded in XN (σ) as ε→ 0+.
For each σ ≥ 0, given any sequence {εk}k∈N ⊂ (0, 1] with εk → 0 as k →∞, there exists – by the

Banach-Alaoglu theorem – a subsequence εkκ thereof such that

{B̂εkκ
(σ)u(−;σ)}κ∈N ⊂ XN (σ) (397)

is weakly convergent in the scb-Sobolev space XN (σ) and in fact in any closed ball in XN (σ) in
which B̂εku(−;σ) is eventually contained. Call the weak limit v = v(N, σ, {εkκ}κ∈N) ∈ XN (σ). The
preceding clause means that

‖v‖XN (σ) ≤ lim sup
κ→∞

‖B̂εkκ (σ)u(−;σ)‖XN (σ). (398)

The family {Bε(σ)}ε∈[0,1] was constructed so that it is continuous down to ε = 0 with respect to the
topology of some space of high order ΨDOs. (This follows from the analogous observation for b•(σ)
and the continuity of the quantization map.) Consequently,

B̂εk(σ)u(−;σ)→ B̂0(σ)u(−;σ) (399)

in the topology of S ′(X) as k →∞. But B̂εkκ (σ)u(−;σ)→ v in S ′(X), so v = B̂0(σ)u(−;σ). The
sequence {εk}k∈N was arbitrary, so we can actually conclude from eq. (398) that

‖B̂0(σ)u(−;σ)‖XN (σ) ≤ lim inf
ε→0+

‖B̂εu(−;σ)‖XN (σ). (400)
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This applies for each σ ≥ 0, so
‖B̂0u‖XN � ‖G2P̃ u‖ȲN + ‖G2u‖Z̄N + ‖G3u‖X̄N + ‖u‖EN . (401)

Since ϕ is nonvanishing on [Θ3,Θ4], we have Ell0,0,0,0,0leC (B̂0) ⊇ P[Θ3,Θ4] ⊇ Char2,0,−2,−1,−3
leC (P̃ ) ∩

WF′leC(G1), so (via elliptic regularity) ‖G1u‖X � ‖B̂0u‖XN + ‖G2P̃ u‖ȲN + ‖u‖EN , where X =
Hm,s,ς,l,`

leC (X). This yields

‖G1u‖X � ‖G2P̃ u‖ȲN + ‖G2u‖Z̄N + ‖G3u‖X̄N + ‖u‖EN . (402)
Observe that the leC-Sobolev space ZN is lower order than X at sf and ff. Since the leC- Sobolev
spaces XN ,YN get bigger as s, ς decrease, an inductive argument (which we can carry out because
eq. (353)) upgrades eq. (402) to eq. (352). �

Since H2,0,−2
p̃ , viewed as a vector field on sc,leCT ∗X, vanishes at the two radial sets, in order to

carry out a positive commutator argument we must take into account the previously negligible
radial component

(H−,0,−2
p̃0 x)∂x = 2(ξsc,leC − 1)x∂x (403)

of the rescaled flow. For ξsc,leC = 0, 2, this is ±2x∂x, which (projecting down to X) is the ur-example
of a nondegenerate radial b-vector field on X. Moreover, R+ is a source in the radial direction
(as well as the other directions, as seen earlier), so R+ is a source for the Hamiltonian flow in all
directions. (Similarly, R0 is a sink in all directions.) It is therefore straightforward to prove a radial
point estimate at R+.

To begin:

Proposition 5.8. There exist β1, β2 ∈ S0,0,0,0,0
cl,leC (X) such that

H2,0,−2
p̃ x = β1x (404)

H2,0,−2
p̃ (σ2 + Zx)1/2 = β2(σ2 + Zx)1/2, (405)

with β1, β2 > 0 on R+. �

Proof. It suffices to work near ∂X. There, applying Proposition 5.4,
H−,0,−2
p̃0 x = 2(ξsc,leC − 1)x, (406)

H−,0,−2
p̃0 (σ2 + Zx)1/2 = (ξsc,leC − 1)Zx(σ2 + Zx)−1/2. (407)

So, defining β1, β2 by eq. (404) and eq. (405), β1, β2 ∈ S0,0,0,0,0
cl,leC (X) and are given at {x = 0} by

β1 = 2%df(ξsc,leC − 1) and β2 = %df(ξsc,leC − 1)Zx(σ2 + Zx)−1. Thus, β1, β2 > 0 on R+. �

Proposition 5.9. Suppose that G1, G2, G3 ∈ Ψ−∞,0,0,−∞,−∞leC (X) satisfy
(1) WF′leC(G1) ⊆ Ell0,0,0,0,0leC (G2),
(2) R+ ⊂ Ell0,0,0,0,0leC (G3),Ell0,0,0,0,0leC (G1),
(3) there exists some Θ ∈ (0, π) such that

WF′leC(G1) ∩ Char2,0,−2,−1,−3
leC (P̃ ) ⊆ R+ ∪

⋃
0<Θ′<Θ

P[Θ′,Θ] ⊆ Ell0,0,0,0,0leC (G2). (408)

Then, for every Σ > 0 and N ∈ N, m, s, ς, l, `, s0, ς0 ∈ R such that s > s0 > −1/2 and ς > ς0 > −3/2,
there exists some constant

C = C(P̃ , G1, G2,Σ,m, s, ς, l, `, s0, ς0, N) > 0 (409)
such that, for all u ∈ S ′(X),

‖G1u‖Hm,s,ς,l,`
leC

≤ C
[
‖G2P̃ u‖H−N,s+1,ς+3,−N,−N

leC
+‖G3u‖H−N,s0,ς0,−N,−NleC

+‖u‖
H−N,−N,−N,−N,−NleC

]
(410)
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holds (in the usual strong sense, i.e. the left-hand side is finite if the right-hand side is) for all
σ ∈ [0,Σ]. �

Proof. The symbolic constructions will only be specified for σ ∈ [0,Σ], which is evidently unproblem-
atic. Also, it suffices to take N to be sufficiently large such that any of the finitely many functions
of m, s, ς, l, ` that arise below can be bounded below −N .

We can assume without loss of generality that WF′leC(G3) ⊆ Ell0,0,0,0,0leC (G2) and

WF′leC(G3) ∩ Char2,0,−2,−1,−3
leC (P̃ ) ⊆ R+ ∪ ∪0<Θ′<ΘP[Θ′,Θ] ⊆ Ell0,0,0,0,0leC (G2). (411)

We read off Proposition 5.8 that supR+ β1, supR+ β2 > 0.
Now chose nonnegative ρ ∈ S0,0,0,0,0

cl,leC (X) equal to (ξsc,leC − 2)2 + η2
sc,leC in some neighborhood of

R+ = {ξsc = 2, ηsc = 0} ⊂ sf ∪ ff.
There exist some symbols, which we call β̃0, F̃2, F̃3, F̃4 ∈ S0,0,0,0,0

cl,leC (X) such that

H2,0,−2
p̃ ρ = β̃0ρ+ F̃2 + F̃3 + x(σ2 + Zx)−1/2F̃4

inf β̃0|R+ > 0,
(412)

β̃0, F̃2 ≥ 0 everywhere, and F3 vanishes cubically at R+ (uniformly in σ). This computation is
completely analogous to the one in the proof of Proposition 5.5. We now consider the weight (for
to-be-decided l′, `′ ∈ R)

a0 = x−l
′(σ2 + Zx)−`′/2+l′ ∈ S0,l′,`′,l′,`′

cl,leC (X). (413)

Then, the symbol β ∈ S0,0,0,0,0
cl,leC (X) defined by

β = −l′β1 + (2l′ − `′)β2 = a−1
0 H2,0,−2

p̃ a0 (414)

has a definite sign near R+ if l′,−l′ + `′/2 6= 0 and have the same sign. Using the explicit formula
for β1, β2 in the proof of Proposition 5.8,

β = −%df
(
2l′ + (`′ − 2l) Zx

σ2 + Zx
)
(ξsc,leC − 1) (415)

at {x = 0}. Negativity on R+ ∩ sf requires that l′ > 0. negativity on R+ ∩ ff requires that `′ > 0.
And this suffices; for l′, `′ > 0, β < 0 in some neighborhood of R+.

There exists χ ∈ C∞c (R) such that − sgn(t)χ′(t)χ(t) = χ2
0(t) for some χ0 ∈ C∞c (R) and such that

χ = 1 identically in some neighborhood of the origin. (The construction is standard and uses a
translate of exp(−1/t).) Replacing χ with χ ◦ dilλ = χ(λ•) for sufficiently large λ = λ(l′, `′, χ) if
necessary, choose χ such that

β|suppχ(ρ) < 0 (416)
and such that suppχ(p̃2,0,−2)χ(ρ) is disjoint from df ∪ bf ∪ tf, where p̃2,0,−2 = (σ2 + Zx)−1p̃.

Choose ψ ∈ S0,0,0,0,0
cl,leC (X) such that ψ is identically equal to one in some neighborhood of {x = 0}

and such that the formula (H2,0,−2
p̃ ρ)1/2ψχ0(ρ) defines a symbol:

χ0(ρ)ψ
√
H2,0,−2
p̃ ρ ∈ S0,0,0,0,0

cl,leC (X). (417)

(The existence of such a ψ follows from eq. (412).) Now set

a = a0ψ
2χ(p̃2,0,−2)2χ(ρ)2 ∈ S−∞,l

′,`′,−∞,−∞
cl,leC (X). (418)

We compute

H2,0,−2
p̃ a = χ(p̃2,0,−2)2χ(ρ)2H2,0,−2

p̃ a0 − 2a0χ0(ρ)2χ(p̃2,0,−2)2H2,0,−2
p̃ ρ

+ 2a0χ(p̃2,0,−2)χ′(p̃2,0,−2)χ(ρ̃)2p̃2,0,−2q̃ + 2a0χ(p̃2,0,−2)2χ(ρ)2ψH2,0,−2
p̃ ψ. (419)
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Here q̃ ∈ S0,0,0,0,0
cl,leC (X) is defined by q̃ = (σ2 + Zx)H2,0,−2

p̃ (σ2 + Zx)−1, so that

H2,0,−2
p̃ p̃2,0,−2 = q̃p̃2,0,−2. (420)

In terms of β, eq. (419) says

H2,0,−2
p̃ a = χ(p̃2,0,−2)2χ(ρ)2βa0 − 2a0χ0(ρ)2χ(p̃2,0,−2)2H2,0,−2

p̃ ρ

+ 2a0χ(p̃2,0,−2)χ′(p̃2,0,−2)χ(ρ)2p̃2,0,−2q̃ + 2a0χ(p̃2,0,−2)2χ(ρ)2ψH2,0,−2
p̃ ψ. (421)

The first two terms have definite sign (the same sign for l′, `′ > 0), while the third and fourth terms
are unproblematic (being controllable by elliptic or propagation estimates).

Set φε = (1 + εx−1)−K1(1 + ε(σ2 + Zx)−1/2)−K2 and a(ε) = φ2
εa ∈ L∞([0, 1]ε;S−∞,l

′,`′,−∞,−∞
cl,leC (X))

for to-be-decided K1,K2 ∈ R. The replacement for eq. (421) is

H2,0,−2
p̃ a(ε) = φ2

ε

[
−χ(p̃2,0,−2)2χ(ρ)2a0ψ

2
(
β1
(
l′− K1εx

−1

1 + εx−1

)
+β2

(
`′− 2l′− K2ε(σ2 + Zx)−1/2

1 + ε(σ2 + Zx)−1/2

))
− 2a0χ0(ρ)2χ(p̃2,0,−2)2ψ2H2,0,−2

p̃ ρ+ 2a0χ
′(p̃2,0,−2)χ(p̃2,0,−2)χ(ρ)2ψ2p̃2,0,−2q̃

+ 2a0χ(p̃2,0,−2)2χ(ρ)2ψH2,0,−2
p̃ ψ

]
. (422)

Rewriting the first parenthetical,

β1
(
l′ − K1εx

−1

1 + εx−1

)
+ β2

(
`′ − 2l′ − K2ε(σ2 + Zx)−1/2

1 + ε(σ2 + Zx)−1/2

)
= %df

(
2
(
l′ − K1εx

−1

1 + εx−1

)
+ Zx
σ2 + Zx

(
`′ − 2l′ − K2ε(σ2 + Zx)−1/2

1 + ε(σ2 + Zx)−1/2

))
(ξsc,leC − 1). (423)

So, we will require that
K1 < l′, K2 < `′, (424)

and then the quantity in eq. (423) is positive in some neighborhood of R+. Thus, only a limited
amount of “regularization” can be performed. This is a standard technicality, and we can deal with
it via citing the standard arguments used to handle it elsewhere — see [Vas18]. We do not even
need to worry about uniformity: we can justify the formal integrations-by-parts below σ-wise, by
citing essentially verbatim the arguments in [Vas18] for the σ > 0 and applying the argument with
X1/2 in place of X to handle the σ = 0 case. (In fact, since the σ = 0 case of the proposition follows
from the estimates in [Vas21a] applied on X1/2, to prove the proposition here it suffices to prove
estimates that are uniform as σ → 0+, and thus to restrict attention to the σ > 0 case, for which
we can take K2 = 0 and apply [Vas18] essentially verbatim.)

Given that the inequalities eq. (424) are satisfied, we can (perhaps dilating χ or shrinking the
support of ψ if necessary) find

δ = δ(K1,K2, l
′, `′, χ) > 0 (425)

sufficiently small such that there exist uniform families of leC-symbols

b• ∈ L∞([0, 1]ε;S−∞,(l
′−1)/2,(`′−3)/2,−∞,−∞

leC (X)),

e• ∈ L∞([0, 1]ε;S−∞,(l
′−1)/2,(`′−3)/2,−∞,−∞

cl,leC (X)),

f• ∈ L∞([0, 1]ε;S−∞,l
′−1,`′−1,−∞,−∞

cl,leC (X)),

r• ∈ L∞([0, 1]ε;S−∞,−∞,−∞,−∞,−∞cl,leC (X)).

(426)
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given by

bε = %
−1/2
df %

1/2
sf %

3/2
ff %

1/2
bf %

3/2
tf a

1/2
0 χ(p̃2,0,−2)χ(ρ)φεψ

[
− %df%

−1
sf %

−3
ff %−1

bf %
−3
tf p1 + β1

(
l′ − K1εx

−1

1 + εx−1

)
+ β2

(
`′ − 2l′ − K2ε(σ2 + Zx)−1/2

1 + ε(σ2 + Zx)−1/2

)
− 2δφ2

εχ(p̃2,0,−2)2χ(ρ)2
]1/2

eε = %
−1/2
df %

1/2
sf %

3/2
ff %

1/2
bf %

3/2
tf a

1/2
0 φεψχ0(ρ)χ(p̃2,0,−2)

√
2H2,0,−2

p̃ ρ

fε = 2%df%sf%ff%bf%tfφ
2
εa0χ(p̃2,0,−2)χ′(p̃2,0,−2)χ(ρ)2ψ2q̃

rε = 2%df%sf%
3
ff%bf%

3
tfφ

2
εa0χ(p̃2,0,−2)2χ(ρ)2ψH2,0,−2

p̃ ψ.

(427)

Here p1 ∈ S2,−1,−3,−1−δ,−3−2δ
leC (X) is as in the proof of the propagation estimate, and we are using

Proposition 3.9, which shows that %2
df%
−1
sf %

−3
ff %−1

bf %
−3
tf p1 vanishes to some fractional order at R+ and

therefore does not spoil the sign of the quantity under the first square root in eq. (427) for an
appropriate choice of χ, ψ.

In terms of these new symbols, we can write

Hp̃a
(ε) + p1a

(ε) = −2δ%−1
df %sf%

3
ff%bf%

3
tfa

(ε)φ2
εχ(p̃2,0,−2)2χ(ρ)2 − b2ε − e2

ε + fεp̃+ rε

= −2δ%−1
df %sf%

3
ff%bf%

3
tfa
−1
0 a(ε)2 − b2ε − e2

ε + fεp̃+ rε
(428)

We apply the quantization map Op. Setting Aε = (1/2)(Op(a(ε)) + Op(a(ε))∗), Bε = Op(bε),
Eε = Op(eε), Fε = Op(fε),

A• ∈ L∞([0, 1]ε; Ψ−∞,l
′,`′,−∞,−∞

leC (X)),

B•, E• ∈ L∞([0, 1]ε; Ψ−∞,(l
′−1)/2,(`′−3)/2,−∞,−∞

leC ),

F• ∈ L∞([0, 1]ε; Ψ−∞,l
′−1,`′−1,−∞,−∞

leC (X)),

(429)

and

− i[<P̃ , Aε]−{=P̃ , Aε} = −2δAεΛ2
1/2,−(l′+1)/2,−(`′+3)/2,−(l′+1)/2,−(`′+3)/2Aε−B

∗
εBε−E∗εEε+F ∗ε P̃

+Rε (430)

for some R• ∈ L∞([0, 1]ε; Ψ−∞,l
′−2,`′−4,−∞,−∞

leC (X)). We have

WF′L∞,leC(A•),WF′L∞,leC(B•),WF′L∞,leC(F•),WF′L∞(E•),WF′L∞,leC(R•) ⊂ suppχ(p̃2,0,−2)χ(ρ)ψ.
(431)

We now set the parameters l′, `′ in the definition eq. (413) of a0 to l′ = 2s+1 > 0 and `′ = 2ς+3 > 0.
Fix K1 ∈ (0, l′), K2 ∈ (0, `′) such that −1/2 < s−K1 < s0 and −3/2 < ς −K2 < ς0. Suppose now
that u ∈ S ′(X), σ ∈ [0,Σ] are such that

‖G3u‖H−N,s0,ς0,−N,−NleC
<∞. (432)

The argument in [Vas18, §4.7, above Proposition 5.27] justifies the computation

2=〈P̃ u, Aεu〉L2 = −〈{=P̃ , Aε}u, u〉L2 + i〈[<P̃ (σ), Aε]u, u〉L2 (433)
= −‖Bεu‖2L2 − ‖Eεu‖2L2 + 〈P̃ u, Fεu〉L2 + 〈Rεu, u〉L2

− 2δ‖Λ1/2,−s−1,−ς−3,−s−1,−ς−3Aεu‖2L2
(434)



66 ETHAN SUSSMAN

where the individual terms above are all well-defined distributional pairings (in the sense of
Hörmander) or (finite) norms. Thus,

‖Bεu‖2L2 + ‖Eεu‖2L2 + 2δ‖Λ1/2,−s−1,−ς−3,−s−1,−ς−3Aεu‖2L2 ≤ 2|〈P̃ u,Aεu〉L2 |+ |〈P̃ u, Fεu〉L2 |
+ |〈Rεu, u〉L2 |. (435)

We estimate each of the terms on the right-hand side as in the proof of the propagation estimate: for
self-adjoint G ∈ Ψ−∞,0,0,−∞,−∞leC (X) with 1−G essentially supported away from the L∞-essential
support of a, f, e, b and with WF′leC(G) ⊂ Ell0,0,0,0,0leC (G2),

‖B̂εu‖XN ≤ ‖B̂εu‖XN + ‖Êεu‖XN � ‖GP̃u‖YN + ‖Gu‖ZN + ‖u‖EN , (436)

where EN = H−N,−N,−N,−NleC (X), ZN = H
−N,(2s−1)/2,(2ς−1)/2,−N,−N
leC (X), XN = H−N,s,ς,−N,−NleC (X),

YN = H−N,s+1,ς+3,−N,−N
leC (X), and B̂ε and Êε are given by B̂ε = Λ0,−s,−ς,0,0Bε and

Êε = Λ0,−s,−ς,0,0Eε. (437)

Via elliptic regularity, we can estimate

‖GP̃u‖YN � ‖G2P̃ u‖YN + ‖u‖EN . (438)

By shrinking the support of χ, ψ if necessary, we can arrange that the L∞-esssupp of a, b, f, e is a
subset Ell0,0,0,0,0leC (G3), and then we can choose G such that WF′leC(G) ⊂ Ell0,0,0,0,0leC (G3), so that the
estimate eq. (436) implies

‖B̂εu‖XN � ‖G2P̃ u‖YN + ‖G3u‖ZN + ‖u‖EN . (439)

Using the Banach-Alaoglu theorem, applied as during the proof of the propagation estimate, we can
take ε→ 0+ to conclude

‖B̂0u‖XN � ‖G2P̃ u‖YN + ‖G3u‖ZN + ‖u‖EN . (440)

Let X = Hm,s,ς,l,`
leC (X). Since Ell0,0,0,0,0leC (B̂0) ⊃ R+, eq. (440) implies

‖G1u‖X � ‖B̂0u‖XN + ‖G2P̃ u‖YN + ‖u‖EN , (441)

where we used the propagation estimate to control G1u on Char2,0,−2,−1,−3
leC (P̃ ) away from R+. So,

‖G1u‖X � ‖B̂0u‖XN + ‖G2P̃ u‖YN + ‖u‖EN � ‖G2P̃ u‖YN + ‖G3u‖ZN + ‖u‖EN
� ‖G2P̃ u‖YN + ‖G3u‖H−N,s−1/2,ς−1/2,−N,−N

leC
+ ‖u‖EN .

(442)

An inductive argument (using eq. (411)) estimating ‖G3u‖H−N,s−1/2,ς−1/2,−N,−N
leC

finishes the proof. �

5.3. The Radial “Point” R. In order to analyze matters uniformly near the corners of leC-phase
space (in particular the highlighted edge bf ∪ ff in Figure 7), we work with the bdfs %sf , %bf , %ff , %tf
defined in eq. (82) rather than the leC-adapted momentum coordinates ξsc,leC, ηsc,leC used in the
previous section.

In terms of the bdfs,

p̃0 = %−2
df %

2
ff%

2
bf%

4
tf(1− %2

df%
2
sf%

2
ff)− 2

( ξb

(1 + ξ2
b + g−1

∂X(ηb, ηb))1/2

)
%−1

df %
2
ff%bf%

3
tf (443)

= %−2
df %

2
ff%

2
bf%

4
tf(1− %2

df%
2
sf%

2
ff)− 2i%−1

df %
2
ff%bf%

3
tf (444)
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near {x = 0} ⊂ leCT
∗
X, where i ∈ S0,0,0,0,0

cl,leC (X) is given by ξb(1 + ξ2
b + g−1

∂X(ηb, ηb))−1/2 near
{x = 0}. Factoring out common powers of bdfs from eq. (444), we are left with

p̃2,0,−2,−1,−3
0 = %bf%tf(1− %2

df%
2
sf%

2
ff)− 2i%df (445)

= %bf%tf − 2i%df mod S−1,−1,−1,−1,−1
leC (X). (446)

On sf ∪ ff, p̃2,0,−2,−1,−3
0 and thus p̃2,0,−2,−1,−3 vanishes if and only if 2i = %bf%tf/%df . Therefore

Char2,0,−2,−1,−3
leC (P̃ ) = {2i = %bf%tf/%df} ⊂ leCT ∗X. (447)

In particular, the portion of the characteristic set that is on the boundary of bf ∪ tf is precisely
{i = 0} ∩ (bf ∪ tf) ∩ (sf ∪ ff).

Proposition 5.10. We have H2,0,−2
p̃0 %df00 = F0,1%df00 for F0,1 ∈ S0,0,0,0,0

cl,leC (X) given by

F0,1 = 2%bf%tfi(1− %2
df%

2
sf%

2
ff)− 2%dfi2 − Z%df%sf%bfi2 (448)

near {x = 0} ⊂ leCT
∗
X. �

Proof. Applying eq. (333) to %df00 ,
Hp̃0%df00 = −(x∂xp̃0)∂ξb%df00 (449)

near {x = 0}. Writing p̃0 = x2%−2
df00

(1− %2
df00

)− 2xξb(σ2 + Zx)1/2,

∂xp̃0 = 2x%−2
df00

(1− %2
df00)− 2ξb(σ2 + Zx)1/2 − Zxξb(σ2 + Zx)−1/2

∂ξb%df00 = −ξb%
3
df00 .

(450)

Thus,

Hp̃0%df00 = 2x2ξb%df00(1− %2
df00)− 2xξ2

b%
3
df00(σ2 + Zx)1/2 − Zξ2

b%
3
df00x

2(σ2 + Zx)−1/2. (451)

In terms of bdfs leCT
∗
X, x2ξb%df00 = %2

sf%
4
ff%

2
bf%

4
tfi, and xξ2

b%
3
df00

(σ2 + Zx)1/2 = i2%df%
2
sf%

4
ff%bf%

3
tf ,

and ξ2
b%

3
df00

x2(σ2 + Zx)−1/2 = i2%df%
3
sf%

4
ff%

2
bf%

3
tf . Adding everything together, we find

Hp̃0%df00 = 2%2
sf%

4
ff%

2
bf%

4
tfi(1− %2

df%
2
sf%

2
ff)− 2%df%

2
sf%

4
ff%bf%

3
tfi2 − Z%df%

3
sf%

4
ff%

2
bf%

3
tfi2 (452)

Dividing by %−1
df x(σ2 + Zx)1/2 = %−1

df %sf%
3
ff%bf%

3
tf ,

H2,0,−2
p̃0 %df00 = (2%bf%tfi(1− %2

df%
2
sf%

2
ff)− 2%dfi2 − Z%df%sf%bfi2)%df00 , (453)

as claimed. �

Letting β1, β2 be as in Proposition 5.8, β1, β2 < 0 on R0 and thus on R. By Proposition 5.10,
there exists an F1 ∈ S0,0,0,0,0

cl,leC (X) such that

H2,0,−2
p̃ %df00 = F1%df00 , (454)

with F1 vanishing on R. By Proposition 5.5, it is the case that for any fixed ρ ∈ S0,0,0,0,0
cl,leC (X) equal

to ξ2
sc,leC + η2

sc,leC in some neighborhood of bf ∪ tf, there exist some symbols

β0, F2, F3, F4 ∈ S0,0,0,0,0
cl,leC (X) (455)

such that
H2,0,−2
p̃ ρ = β0ρ+ F2 + F3 + x(σ2 + Zx)−1/2F4 (456)
β0|R0 < 0, (457)

β0, F2 ≤ 0 everywhere, and F3 vanishes cubically at R uniformly in [0,Σ]. We may choose ρ such
that it is nonnegative everywhere.
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It is necessary to have another weight with semidefinite sign under the Hamiltonian flow. We
may use

%ff = %df00 + %tf00 ∈ S
0,0,0,0,0
cl,leC (X). (458)

We have H2,0,−2
p̃ %ff = β3%ff for β3 = (F1%df00 +β2%tf00)(%df00 + %tf00)−1 ∈ S0,0,0,0,0

cl,leC (X). We can write
this as β3 = F1%df%sf + β2%tf . Thus, β3|R ≤ 0. Note that β3 vanishes at R ∩ tf. Normally, this
would be problematic as far as the radial point estimate is concerned, but this fourth weight is used
only to give us an extra independent order and not to manufacture positivity, so a semidefinite sign
is actually acceptable.

We now have enough basic weights to construct our commutants: the basic weights are x =
%bf%sf%

2
tf%

2
ff , (σ2 + Zx)1/2 = %tf%ff , and %df00 = %df%sf%ff . For any s, ς, l, ` ∈ R,

xl(σ2 + Zx)`/2−l%s−ldf00
%ς−`−s+lff = %s−ldf %

s
sf%

ς
ff%

l
bf%

`
tf . (459)

We do not care about the order at df, so the weights of the form eq. (459) (which give four
independent orders) suffice. We now consider the weight (dependent on parameters s, ς, l, ` ∈ R)

a0 = x−l(σ2 + Zx)−`/2+l%−s+ldf00
%−ς+`+s−lff ∈ Ss−l,s,ς,l,`cl,leC (X). (460)

Per the above and eq. (423),

β = −((s− l)F1 + (ς − `− s+ l)β3 + lβ1 + (`− 2l)β2) = a−1
0 H2,0,−2

p̃ a0 ∈ S0,0,0,0,0
cl,leC (X) (461)

will have a definite sign near R if l, ` have the same definite sign and ς − `− s+ l has the same sign
semidefinitely.

Hence, multiplying a0 by an appropriate microlocal cutoff, we can arrange for a to be everywhere
monotonic under the Hamiltonian flow, strictly so near R. Specifically, fix χ ∈ C∞c (R; [0, 1]) as in
the proof of Proposition 5.9. Dilating χ if necessary, we can find ψ ∈ S0,0,0,0,0

cl,leC (X) that is identically
equal to one in some neighborhood of sf ∪ ff such that

β < 0 (462)

on suppχ(p̃2,0,−2,−1,−3)χ(ρ)ψ and such that

χ(p̃2,0,−2,−1,−3)χ0(ρ)ψ
√
−H2,0,−2

p̃ ρ ∈ S0,0,0,0,0
cl,leC (X) (463)

and suppχ(p̃2,0,−2,−1,−3)χ(ρ)ψ ∩ (R+ ∪ df) = ∅. Now set

a = a0χ(p̃2,0,−2,−1,−3)2χ(ρ)2ψ2 ∈ Ss−l,s,ς,l,`cl,leC (X). (464)

The three factors χ(p̃2,0,−2,−1,−3), χ(ρ), ψ ∈ S0,0,0,0,0
cl,leC (X) together microlocalize near R.

We can write H2,0,−2
p̃ p̃2,0,−2,−1,−3 = q̃p̃2,0,−2,−1,−3 for q̃ ∈ S0,0,0,0,0

cl,leC (X) defined by

q̃ = %−2
df %

2
ff%

1
bf%

3
tfH

2,0,−2
p̃ (%2

df%
−2
ff %−1

bf %
−3
tf ). (465)

Then,

H2,0,−2
p̃ a = ψ2χ(p̃2,0,−2,−1,−3)2χ(ρ)2H2,0,−2

p̃ a0 − 2a0χ0(ρ)2χ(p̃2,0,−2,−1,−3)2ψ2H2,0,−2
p̃ ρ

+ 2a0χ(p̃2,0,−2,−1,−3)χ′(p̃2,0,−2,−1,−3)χ(ρ)2ψ2p̃2,0,−2,−1,−3q̃

+ 2a0χ(p̃2,0,−2,−1,−3)2χ(ρ)2ψH2,0,−2
p̃ ψ. (466)

Observe:
(1) by eq. (462), the first term,

ψ2χ(p̃2,0,−2,−1,−3)2χ(ρ)2H2,0,−2
p̃ a0 = ψ2χ(p̃2,0,−2,−1,−3)2χ(ρ)2βa0 (467)

will have a definite sign (the same as β, negative if l, ` < 0) for appropriate χ, ψ,
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(2) the second term,

− a0χ0(ρ)2χ(p̃2,0,−2,−1,−3)2ψ2H2,0,−2
p̃ ρ

= −a0χ0(ρ)2χ(p̃2,0,−2,−1,−3)2ψ2(β0ρ+ F2 + F3 + x(σ2 + Zx)−1/2F4), (468)

also has a definite sign (positive, since β0, F2, F3|R ≤ 0) for appropriate χ, ψ and is supported
in an annulus around R+, which should intersect Char2,0,−2,−1,−3

leC (P̃ )\(R∪R+),
(3) the third sand fourth terms are supported away from Char2,0,−2,−1,−3(P̃ ) and are therefore

unproblematic (as that region of phase space is controlled via elliptic estimates or, in the
case of bf◦ ∪ tf◦ where the fourth term might have some support, cannot be controlled by
symbolic considerations anyways).

We will prove a low order radial point estimate. This means that

l < 0, ` < 0 ς ≤ `+ s− l, (469)

so that β > 0 near R. Thus, the first and second terms in eq. (466) have the opposite sign near
R. The second term thus contributes to the right-hand side of the radial point estimate, but this
term can itself be controlled using a radial point estimate at R+ in conjunction with a propagation
estimate and will therefore be unproblematic as well.

In order to “regularize,” set φε = (1 + εx−1)−K1(1 + ε%−1
df00

)−K3 ,

a(ε) = φ2
εa ∈ L∞([0, 1]ε;S−∞,s,ς,l,`cl,leC (X)), (470)

for to-be-decided K1,K3 ∈ R. We then compute that

H2,0,−2
p̃ a(ε) = φ2

ε

[
− χ(p̃2,0,−2,−1,−3)2χ(ρ)2ψ2a0

(
(ς − `− s+ l)β3

+ F1
(
m−

K3ε%
−1
df00

1 + ε%−1
df00

)
+ β1

(
l − K1εx

−1

1 + εx−1

)
+ β2(`− 2l)

)
− 2a0χ0(ρ)2χ(p̃2,0,−2,−1,−3)2ψ2H2,0,−2

p̃ ρ

+ 2a0χ(p̃2,0,−2,−1,−3)χ′(p̃2,0,−2,−1,−3)χ(ρ)2ψ2p̃2,0,−2,−1,−3q̃

+ 2a0χ(p̃2,0,−2,−1,−3)2χ(ρ)2ψH2,0,−2
p̃ ψ

]
. (471)

In contrast to the previous radial point estimate, we can make K1,K3 arbitrarily large without
affecting the sign of the parenthetical term, although we might need to choose ψ with smaller
support and replace χ with χ ◦ dilλ for

λ = λ(m, l, `,K1,K3) > 0 (472)

sufficiently large to ensure that the term proportional to F1 in eq. (471) does not spoil that sign. So,
for some choice of ψ, χ, we can choose δ = δ(K1,K3,m, l, `, χ, ψ) > 0 sufficiently small such that
there exist well-defined uniform families of leC-symbols

b• ∈ L∞([0, 1]ε;S−∞,(s−1)/2,(ς−3)/2,(l−1)/2,(`−3)/2
leC (X)),

e• ∈ L∞([0, 1]ε;S−∞,(s−1)/2,(ς−3)/2,−∞,−∞
cl,leC (X)),

f• ∈ L∞([0, 1]ε;S−∞,s−1,ς−1,l,`
cl,leC (X)),

r• ∈ L∞([0, 1]ε;S−∞,−∞,−∞,l−1,`−3
cl,leC (X)),

(473)
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such that, in some neighborhood of {x = 0} ⊂ leCT
∗
X,

bε = %
−1/2
df %

1/2
sf %

3/2
ff %

1/2
bf %

3/2
tf a

1/2
0 χ(p̃2,0,−2,−1,−3)χ(ρ)φεψ

[
F1
(
m−

K3ε%
−1
df00

1 + ε%df−1
00

)
+ β1

(
l − K1εx

−1

1 + εx−1

)
+ β2(`− 2l) + β3(ς − `− s+ l)− 2δφ2

εχ(p̃2,0,−2,−1,−3)2χ(ρ)2ψ2 − %df%
−1
sf %

−3
ff %−1

bf %
−3
tf p1

]1/2
eε = −%−1/2

df %
1/2
sf %

3/2
ff %

1/2
bf %

3/2
tf φεa

1/2
0 χ0(ρ)χ(p̃2,0,−2,−1,−3)ψ

√
−2H2,0,−2

p̃ ρ

fε = 2%df%sf%ffa0φ
2
εχ(p̃2,0,−2,−1,−3)χ′(p̃2,0,−2,−1,−3)χ(ρ)2ψ2q̃

rε = 2%−1
df %sf%

3
ff%bf%

3
tfa0χ(p̃2,0,−2,−1,−3)2χ(ρ)2ψH2,0,−2

p̃ ψ.

(474)

In terms of these new symbols, we can write

Hp̃a
(ε) + p1a

(ε) = −2δ%−1
df %sf%

3
ff%bf%

3
tfa
−1
0 a(ε)2 − b2ε + e2

ε + fεp̃+ rε. (475)

We now apply Op. Setting Aε = (1/2)(Op(a(ε)) + Op(a(ε))∗), Bε = Op(bε), Eε = Op(eε), Fε =
Op(fε), we have

A• ∈ L∞([0, 1]ε; Ψ−∞,s,ς,l,`leC (X)),

B• ∈ L∞([0, 1]ε; Ψ−∞,(s−1)/2,(ς−3)/2,(l−1)/2,(`−3)/2
leC (X)),

E• ∈ L∞([0, 1]ε; Ψ−∞,(s−1)/2,(ς−3)/2,−∞,−∞
leC (X)),

F• ∈ L∞([0, 1]ε; Ψ−∞,s−1,ς−1,l,`
leC (X)),

(476)

and

− i[<P̃ , Aε]− {=P̃ , Aε} = −2δAεΛ1/2,−(s+1)/2,−(ς+3)/2,−(l+1)/2,−(`+3)/2Aε −B∗εBε + E∗εEε

+ F ∗ε P̃ +Rε (477)

for some R• ∈ L∞([0, 1]ε; Ψ−∞,s−2,ς−4,l−1,`−3
leC (X)). Moreover, we necessarily have

WF′L∞,leC(A•),WF′L∞,leC(B•),WF′L∞,leC(F•),
WF′L∞,leC(E•),WF′L∞,leC(R•) ⊂ suppχ(p̃2,0,−2,−1,−3)χ(ρ)ψ, (478)

where the last of these inclusions (the one forR•) follows from the one forA• and WF′L∞,leC([P̃ , A•]) ⊂
WF′L∞,leC(A•).

For each m0, s0, ς0, l0, `0 ∈ R, there exist some K1,0,K3,0 > 0 (dependent on m0, s0, ς0, l0, `0
and m, s, ς, l, `) such that, given {u(−;σ)}σ>0 ⊂ S ′(X) with u(−; 0) ∈ Hm,ς,`

scb (X1/2) and u(−;σ) ∈
Hm,s,l

scb (X) for all σ > 0, if we take K1 > K1,0,K3 > K3,0 in the construction above then it is the
case that (for any ε > 0, and for each σ > 0, implicit in the notation),

2=〈P̃ u, Aεu〉L2 = −〈{=P̃ , Aε}u, u〉L2 + i〈[<P̃ (σ), Aε]u, u〉L2 , (479)

where the pairings above are well-defined distributional pairings (with the left argument of each inner
product in the dual Sobolev space to a Sobolev space in which the right argument lies). Applying
eq. (477) to {u(−;σ)}σ>0 as above and pairing against u (and taking K1,K3 large enough), we have

2=〈P̃ u, Aεu〉L2 = −‖Bεu‖2L2 + ‖Eεu‖2L2 + 〈P̃ u, Fεu〉L2 + 〈Rεu, u〉L2

− 2δ‖xΛ1/2,−(s+1)/2,−(ς+3)/2,−(l+1)/2,−(`+3)/2Aεu‖2L2 . (480)
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Equation (480) implies

‖Bεu‖2L2 + 2δ‖Λ1/2,−(s+1)/2,−(ς+3)/2,−(l+1)/2,−(`+3)/2Aεu‖2L2

≤ 2|〈P̃ u,Aεu〉L2 |+ |〈P̃ u, Fεu〉L2 |+ |〈Rεu, u〉L2 |+ ‖Eεu‖2L2 . (481)

Suppose G ∈ Ψ−∞,0,0,0,0leC (X) is self-adjoint and such that

WF′0,0leC (1−G) ∩ suppχ(p̃2,0,−2,−1,−3)χ(ρ)ψ = ∅. (482)
We now estimate the terms in eq. (481) as in the propagation estimate, except we now must keep
track of orders at bf, tf:

• Writing P̃ = (1−G)P̃ +GP̃ we have, for each N ∈ N (and K1,K3 large enough),
|〈P̃ u, Aεu〉L2 | ≤ |〈GP̃u,Aεu〉L2 |+ |〈P̃ u, (1−G)Aεu〉L2 |. (483)

By Lemma 2.15, for any δ > 0,

|〈GP̃u,Aεu〉L2 | � δ−1‖GP̃u‖2YN + δ‖Aεu‖2Y∗N + δ‖u‖2ĒN
� δ−1‖GP̃u‖2YN + δ‖Aεu‖2Y∗,N
� δ−1‖GP̃u‖2YN + δ‖Λ1/2,−(s+1)/2,−(ς+3)/2,−(l+1)/2,−(`+3)/2Aεu‖2L2 + δ‖u‖2ĒN

(484)

(where the constant does not depend on δ) for

YN = H
−N,(s+1)/2,(ς+3)/2,(l+1)/2,(`+3)/2
leC (X),

Y∗,N = H
−N,−(s+1)/2,−(ς+3)/2,−(l+1)/2,−(`+3)/2
leC (X),

ĒN = H−N,−N,−N,−N,−NleC (X).

(485)

On the other hand, noting that (1−G)A• ∈ L∞([0, 1]ε; Ψ−∞,−∞,−∞,l/2,`/2leC (X)),

|〈P̃ u, (1−G)Aεu〉L2 | � ‖P̃ u‖2
H
−N,−N,−N, l+1

2 , `+3
2

leC

+ ‖(1−G)Aεu‖2
H
N,N,N,− l+1

2 ,− `+3
2

leC

� ‖P̃ u‖2
H
−N,−N,−N, l+1

2 , `+3
2

leC

+ ‖(1−G)Aεu‖2
H
−N0,−N0,−N0,−

l+1
2 ,− `+3

2
leC

+ ‖u‖2ĒN0

� ‖u‖2
H
−N,−N,−N, l−1

2 , `−3
2

leC
(486)

for N0 sufficiently large (relative to N0). So, |〈P̃ u, (1 − G)Aεu〉L2 | � ‖u‖2EN for EN =

H
−N,−N,−N, l−1

2 , `−3
2

leC (X).
Thus, taking δ sufficiently small (relative to δ),

2|〈P̃ u, Aεu〉L2 | − 2δ‖Λ1/2,−(s+1)/2,−(ς+3)/2,−(l+1)/2,−(`+3)/2Aεu‖2L2 � ‖GP̃u‖2YN + ‖u‖2EN . (487)

• Similarly, |〈P̃ u, Fεu〉L2 | � ‖GP̃u‖2YN + ‖Fεu‖2Y∗,N0
+ ‖u‖2EN , for any N0 ∈ N.

We have WFL∞,leC(F•) ∩ Char2,0,−2,−1,−3
leC (P̃ ) = ∅, so we deduce from elliptic regularity

that
‖Fεu‖2Y∗,N0

� ‖GP̃u‖2YN + ‖u‖2EN (488)
for N0 sufficiently large (relative to N0). Thus,

|〈P̃ u, Fεu〉L2 | � ‖GP̃u‖2YN + ‖u‖2EN . (489)

• |〈Rεu, u〉L2 | � ‖Gu‖2ZN + ‖u‖2EN for

ZN = H
−N,(s−2)/2,(ς−4)/2,(l−1)/2,(`−3)/2
leC (X). (490)
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Thus,
‖Bεu‖2L2 � ‖GP̃u‖2YN + ‖Gu‖2ZN + ‖Eεu‖2L2 + ‖u‖2EN , (491)

I.e., letting XN = H
−N,(s−1)/2,(ς−3)/2,(l−1)/2,(`−3)/2
leC (X) and X̄N = H

−N,(s−1)/2,(ς−3)/2,−N,−N
leC (X),

‖B̂εu‖2XN � ‖GP̃u‖
2
YN + ‖Gu‖2ZN + ‖Êεu‖2X̄N + ‖u‖2EN , (492)

‖B̂εu‖XN � ‖GP̃u‖YN + ‖Gu‖ZN + ‖Êεu‖X̄N + ‖u‖EN , (493)
where

B̂ε = Λ0,−(s−1)/2,−(ς−3)/2,−(l−1)/2,−(`−3)/2Bε (494)

Êε = Λ0,−(s−1)/2,−(ς−3)/2,0,0Eε, (495)

so that B̂•, Ê• ∈ Ψ0,0,0,0,0
leC (X).

Proposition 5.11. Suppose that G0, G1 ∈ Ψ−∞,0,0,0,0leC (X), G2 ∈ Ψ−∞,0,0,−∞,−∞leC satisfy
(1) WF′leC(G2) ∩R+ = ∅ and

WF′0,0leC (G1) ∩R+ = ∅, (496)

(2) R,WF′leC(G1) ⊂ Ell0,0,0,0,0leC (G0),
(3) there exist Θ1,Θ2 ∈ (0, π) with Θ1 < Θ2 such that Ell0,0,0,0,0leC (G2) ⊇ P[Θ1,Θ2] and

Ell0,0,0,0,0leC (G0) ⊃ R ∪
⋃

Θ3∈(Θ2,π)
P[Θ1,Θ3] (497)

Then, for any Σ > 0, N ∈ N, and m, s, ς, l, ` ∈ R with l < −1/2, ` < −3/2, and ς ≤ `+ s− l, there
exists a constant

C = C(P̃ , G0, G1, G2, G3,Σ, N,m, s, ς, l, `) > 0 (498)
such that
‖G1u‖Hm,s,ς,l,`

leC
≤ C

[
‖G0P̃ u‖H−N,s+1,ς+3,l+1,`+3

leC
+ ‖G2u‖H−N,s,ς,−N,−NleC

+ ‖u‖
H−N,−N,−N,l,`leC

]
(499)

holds for all u ∈ S ′(X) and σ ∈ [0,Σ]. �

Proof. We can assume without loss of generality that
R ⊆ Ell0,0,0,0,0leC (G1) (500)

and
Ell0,0,0,0,0leC (G0) ⊇WF′leC(G2). (501)

Let s0 = 2s+1, l0 = 2l+1, and `0 = 2`+3, and ς0 = 2ς+3. The condition l < −1/2 is equivalent
to l0 < 0, ` < −3/2 is equivalent to `0 < 0, and ς ≤ `+ s− l is equivalent to ς0 ≤ `0 + s0 − l0. We
can therefore apply eq. (493) with s0, ς0, l0, `0 in place of what we called “s, ς, l, `” there. Thus, for
each ε > 0,

‖B̂εu‖XN � ‖GP̃u‖YN + ‖Gu‖ZN + ‖Êεu‖X̄N + ‖u‖EN , (502)
where G, B̂•, Ê• are as above and now

XN = H−N,s,ς,l,`leC (X), (503)

ZN = H
−N,s−1/2,ς−1/2,l,`
leC (X), X̄N = H−N,s,ς,−N,−NleC (X), ZN = H

−N,s−1/2,ς−1/2,l,`
leC (X),

YN = H−N,s+1,ς+3,l+1,`+3
leC (X), (504)

and EN = H−N,−N,−N,l,`leC (X). If necessary, we can retroactively replace χ, ψ such that

WF′L∞,leC(E•),WF′0,0L∞,leC(B•) ⊂ Ell0,0,0,0,0leC (G0). (505)
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We can apply the propagation estimate Proposition 5.7 to bound
‖Êεu‖X̄N � ‖G0P̃ u‖YN + ‖G2u‖X̄N + ‖u‖EN . (506)

By eq. (500), we can now retroactively choose G (for appropriate χ, ψ) such that WF′0,0leC (G) ⊂
Ell0,0,0,0,0leC (G0) ∩ Ell0,0,0,0,0leC (G1), so that

‖GP̃u‖YN � ‖G0P̃ u‖YN + ‖u‖EN (507)
and ‖Gu‖ZN � ‖G1u‖ZN + ‖u‖EN .

The estimate eq. (502) therefore implies ‖B̂εu‖XN � ‖G0P̃ u‖YN + ‖G1u‖ZN + ‖G2u‖X̄N + ‖u‖EN .
Via the compactness argument utilized in the proof of the propagation estimate and previous radial
point estimate, ‖B̂0u(−;σ)‖XN ≤ lim infε→0+‖B̂εu(−;σ)‖XN for each σ ≥ 0, so

‖B̂0u‖X � ‖G0P̃ u‖YN + ‖G1u‖ZN + ‖G2u‖X̄N + ‖u‖EN . (508)

Unlike B̂ε for ε > 0, Ell0,0,0,0,0leC (B̂0) ⊃ R. Thus, (for χ, ψ with sufficiently small support) ‖B̂0u‖XN �
‖G1u‖XN + ‖u‖EN . Substituting this into the estimate above, we get

‖G1u‖XN � ‖G0P̃ u‖YN + ‖G1u‖ZN + ‖G2u‖X̄N + ‖u‖EN . (509)
Since the leC- Sobolev spaces XN ,Y,ZN in eq. (509) get weaker as s, ς, l, ` decrease, we can
inductively use the family of estimates eq. (509) to bound the ‖G1u‖ZN term on the right-hand
side: for all N ∈ N,

‖G1u‖XN � ‖G0P̃ u‖YN + ‖G1u‖EN + ‖G2u‖X̄N + ‖u‖EN (510)
‖G1u‖XN � ‖G0P̃ u‖YN + ‖G2u‖X̄N + ‖u‖EN . (511)

This implies eq. (499). �

5.4. Upshot. Combining the estimates above (e.g. using Lemma 2.16), we get:

Theorem 5.12. Suppose that G1, G2, G3 ∈ Ψ0,0,0,0,0
leC (X) satisfy

• WF′0,0leC (G1),Char2,0,−2,−1,−3
leC (P̃ ) ⊆ Ell0,0,0,0,0leC (G2),

• R+ ⊆ Ell0,0,0,0,0leC (G3).
For every m, s, ς, l, `, s0, ς0 ∈ R satisfying

l < −1/2, ` < −3/2, −1/2 < s0 < s, −3/2 < ς0 < ς ≤ `+ s− l, (512)
there exists, for each Σ > 0 and N ∈ N, a constant C = C(P̃ , G1, G2, G3,Σ, N,m, s, ς, l, `, s0, ς0) > 0
such that

‖G1u‖Hm,s,ς,l,`
leC

≤ C
[
‖G2P̃ u‖Hm−2,s+1,ς+3,l+1,`+3

leC
+ ‖G3u‖H−N,s0,ς0,−N,−NleC

+ ‖u‖
H−N,l,`b,leC

]
(513)

for all u ∈ S ′(X) and σ ∈ [0,Σ] (in the usual strong sense that if the right-hand side is finite, then
the left-hand side as well, and the stated inequality holds). ��

It will also be useful to have the following refinement of Theorem 5.12:

Proposition 5.13. Given G1, G2,m, s, ς, l, `, s0, ς0 as in the setup of Theorem 5.12, if in addition
Ell0,0,0,0,0leC (G1) ⊇ R+, then there exists a constant

c = c(P̃ , G1, G2,Σ, N,m, s, ς, l, `, s0) > 0 (514)
such that, for any u ∈ S ′(X),

‖G1u‖Hm,s,ς,l,`
leC

≤ c
[
‖G2P̃ u‖Hm−2,s+1,ς+3,l+1,`+3

leC
+ ‖u‖

H−N,l,`b,leC

]
(515)

holds for all σ ∈ [0,Σ] such that ‖G1(σ)u‖
H
−N,s0,ς0,−N,−N
leC (X)(σ) <∞. �
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Proof. It suffices to consider the case −N < m, l, `.
Applying Theorem 5.12 with G3 = G1,

‖G1u‖Hm,s,ς,l,`
leC

≤ C ′(‖G2P̃ u‖Hm−2,s+1,ς+3,l+1,`+3
leC

+ ‖G1u‖Hm−2,s0,ς0,−N,−N
leC

+ ‖u‖
H−N,l,`b,leC

) (516)

for some constant C ′ > 0. We now use the interpolation inequality Lemma 2.17, which, for each
ε > 0, allows us to bound

‖G1u‖H−N,s0,ς0,−N,−NleC
≤ ε‖G1u‖Hm,s,ς,l,`

leC
+ C ′′(ε)‖u‖

H−N,l,`b,leC
(517)

for some C ′′(ε) = C(P̃ , G1, G2,Σ, N,m, s, ς, l, `, s0, ς0, ε) > 0. Taking ε < 1/2C ′, plugging eq. (517)
into eq. (516) yields

‖G1u‖Hm,s,ς,l,`
leC

≤ C ′(‖G2P̃ u‖Hm−2,s+1,ς+3,l+1,`+3
leC

+ (1 + C ′′)‖u‖
H−N,l,`b,leC

) + (1/2)‖G1u‖Hm,s,ς,l,`
leC

(518)

If σ ∈ [0,Σ] is such that
‖G1(σ)u(−;σ)‖

Hm,s,ς,l,`
leC (σ) <∞, (519)

then we can subtract the last term on the right-hand side from both sides, getting eq. (515),

‖G1u‖Hm,s,ς,l,`
leC

≤ 2C ′(1 + C ′′)(‖G2P̃ u‖Hm−2,s+1,ς+3,l+1,`+3
leC

+ ‖u‖
H−N,l,`b,leC

). (520)

If ‖G1(σ)u(−;σ)‖
H
−N,s0,ς0,−N,−N
leC (X)(σ) <∞, then we break into two cases:

• if one of ‖G2P̃ u‖Hm−2,s+1,ς+3,l+1,`+3
leC

, ‖u‖
H−N,l,`b,leC

is infinite, then eq. (515) holds trivially;
• if both are finite, then Theorem 5.12 implies that ‖G1u‖Hm,s,ς,l,`

leC
<∞, and therefore eq. (520)

holds.
We conclude that eq. (515) holds if we take C = 2C ′(1 + C ′′). �

Taking G1 = G2 = 1 in Proposition 5.13, we get the main claim eq. (305) at the beginning of this
section:

Proposition 5.14. For every Σ > 0, N ∈ N, and m, s, ς, l, `, s0, ς0 ∈ R satisfying l < −1/2 < s0 < s
and ` < −3/2 < ς0 < ς ≤ `+ s− l, there exists a constant C = C(P̃ ,Σ, N,m, s, ς, l, `) > 0 such that

‖u‖
Hm,s,ς,l,`

leC
≤ C

[
‖P̃ u‖

Hm−2,s+1,ς+3,l+1,`+3
leC

+ ‖u‖
H−N,l,`b,leC

]
(521)

holds for all u ∈ S ′(X) and σ ∈ [0,Σ] such that ‖u‖
H
−N,s0,ς0,−N,−N
leC (X)(σ) <∞. ��

6. Proof of main theorem

Most of the results in this section are split among three subsections:
(1) §6.1, where estimates regarding the “leC-normal operator” N(P̃ ) (see §3) are proven,
(2) §6.2, where – using the estimates from the previous subsection – the conormality of the

output of the conjugated resolvent family on Xsp
res is established, along with smoothness (in

terms of E = σ2) at zf◦ (with the terms in the Taylor series being conormal distributions on
zf) — see Proposition 6.15 — and

(3) §6.3, where the proposition needed to upgrade the conormality established in the previous
subsection to the existence of asymptotic expansions is proven.

Central to this section is the analysis of the model problem

2i
[
x̂∂x̂ + x̂

1 + x̂

(
k + 1

4
)

+ l + 1
2
]
u = f, (522)
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u, f ∈ D′(R+
x̂ ), where l, k ∈ R will be required to satisfy some threshold inequalities. We record the

exact solution to eq. (522): for any l, k ∈ R, if f ∈ C∞(R+), then u ∈ D′(R+) satisfies eq. (522) if
and only if

u(x̂) = x̂−l−1/2(1 + x̂)−k−1/4
[
c+ i

2

� 1

x̂
x̂
l−1/2
0 (1 + x̂0)k+1/4f(x̂0) dx̂0

]
(523)

for some c ∈ C. The model problem above arises rewriting

Ñ(P̃ ) = x−l−n/2(σ2 + Zx)−k N(P̃ )xl+n/2(σ2 + Zx)k (524)
in terms of x̂ = Zx/σ2. Indeed,

x−1(σ2 + Zx)−1/2Ñ(P̃ ) = 2i
(
x∂x + l + 1

2
)

+ 2iZx
σ2 + Zx

(
k + 1

4
)

= 2i
[
x̂∂x̂ + x̂

1 + x̂

(
k + 1

4
)

+ l + 1
2
]
.

(525)

If N(P̃ )u = f then Ñ(P̃ )u0 = f0 for u0 = x−l−n/2(σ2 + Zx)−ku and f0 = x−l−n/2(σ2 + Zx)−kf .
We now spell out the deduction of Theorem 1.1 (in the form of the more general Proposition 6.3)

from the results in §6.2, §6.3.

Proposition 6.1. Suppose that g = g0 + xg1 + xα1g2 for g1 ∈ C∞(X; scSym2T ∗X) and g2 ∈
S0(X; scSym2T ∗X) for α1 > 1. Then the Laplace-Beltrami operator 4g has the form

4g = 4g0 + xDiff2,0,−2
scb (X) + xα1SDiff2,0,−2

scb (X), (526)
where g0 is an exactly conic metric. �

Proof. Let h 7→ [h] denote the natural bundle monomorphism scSym2T ∗X ↪→ End(scTX, scT ∗X).
The matrix identity [g]−1 = [g0]−1 − [g]−1(x[g1] + xα1 [g2])[g0]−1, applied inductively, yields

[g]−1− [g0]−1 = [g0]−1
K∑
k=1

(−1)k((x[g1]+xα1 [g2])[g0]−1)k+(−1)K+1[g]−1((x[g1]+xα1 [g2])[g0]−1)K+1

(527)
for each K ∈ N. Noting that g−1 ∈ S0(X; scSym2 TX), taking K > α1 leads to g−1 − g−1

0 ∈
xC∞(X; scSym2 TX) + xα1S0(X; scSym2 TX). Also, from [g] = [g0](1 + x[g0]−1[g1] + xα1 [g0]−1[g2]),
det g ∈ S0(X; scΩX) satisfies

det g = (det g0)(1 + x tr([g0]−1[g1]) + x2C∞(X) + xα1S0(X)). (528)
Writing

4g = −
n∑

i,j=1
(gij∂i∂j + ∂ig

ij∂j + (1/2)(det g)−1(∂i det g)gij∂j) (529)

in local coordinates, we conclude that eq. (526) holds locally, which suffices to show that the
decomposition eq. (526) can be done globally. �

Thus:

Proposition 6.2. Suppose that g = g0 + xg1 + xα1g2 for g1 ∈ C∞(X; scSym2T ∗X) and g2 ∈
S0(X; scSym2T ∗X) for α1 > 1. If P (σ) = 4g − σ2 − Zx+ V is the spectral family of an attractive
Coulomb-like Schrödinger operator with V ∈ x2C∞(X) + xα2S0(X) for α2 > 3/2, then we can
decompose

P (σ) = P0(σ) + P1 + P2 (530)
for P0, P1, P2 having the form specified in the introduction (with a = 0), except that

a00 = −x4(g1)00|∂X = − lim
x→0+

x4g1(∂x, ∂x) (531)
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is not necessarily constant (and the attractivity condition eq. (45) might only be satisfied for small σ).
We can arrange that P1 is fully classical and that P2 is classical to order (β2, β3) with β2 = α1 − 1
and β3 = α2 − 3/2. ��

Proof. Let V0 ∈ C∞(X), V1 ∈ S0(X) satisfy V = x2V0 + xα1V1. It suffices to restrict attention to
the boundary-collar. There, we define P0 by

P0(σ) = 4g0 − xa00(x2∂x)2 − σ2 − Zx. (532)
This has the form specified in the introduction, in the sense that eq. (44) holds with a = 0.

By the proof of Proposition 6.1, there exists some P2,0 ∈ Diff2,−2,−3
scb (X) +xα1SDiff2,0,−2

scb (X) such
that, in any local coordinate patch,

4g = 4g0 +
∑
i,j,k

xgik0 (g1)k`g`j0 ∂i∂j + P2,0. (533)

Now set P1 =
∑
i,j,k xg

ik
0 (g1)k`g`j0 ∂i∂j − xg0k

0 (g1)k`g`00 ∂
2
x =

∑
i,j,k xg

ik
0 (g1)k`g`j0 ∂i∂j − x9(g1)00∂

2
x.

Then, P1 has the form specified in eq. (46) and is even fully classical.
Defining a00 by eq. (531), (g1)00 + x−4a00 ∈ x−3C∞(X), so the operator P2,1 = x9(g1)00∂

2
x +

xa00(x2∂x)2 is in Diff2,−2,−4
scb (X). We therefore set

P2 = P2,0 + P2,1 + x2V0 + xα2V1 ∈ Diff2,−2
sc (X) + SDiff2,−α1,−2−α1

scb (X) + xα2S0(X). (534)
Then eq. (51) applies, for β2 = α1 − 1 and β3 = α2 − 3/2. �

Proposition 6.3. Given an asymptotically conic manifold (X, ι, g) of dimension dimX = n ≥ 2
such that g satisfies eq. (41), with a00 ∈ R, and given Z > 0 and V ∈ x2C∞(X) + xα2S0(X) for
some α2 > 3/2, consider the Schrödinger operator

P = 4g − Zx+ V : S ′(X)→ S ′(X). (535)
Set

Φ(x;σ) = 1
x

√
σ2 + Zx− σ2a00x+ 1

σ
(Z− σ2a00) arcsinh

( σ

x1/2
1

(Z− σ2a00)1/2

)
(536)

for all σ > 0 such that Z > σ2a00. Suppose that g is classical to α1th order, α1 > 1. Set
δ1 = min{α1 − 1, α2 − 1} and δ0 = min{α1 − 1, α2 − 3/2}.

Then, for any f ∈ S(X):
(I) there exists some

u0,± ∈ A(0,0),E,(0,0)
loc (Xsp

res ∩ {Z > Ea00}) +A((0,0),δ1),2δ0−,(0,0)
loc (Xsp

res ∩ {Z > Ea00}) (537)

such that, for E > 0 satisfying Z > Ea00, u±(−;E1/2) = R(E± i0)f ∈ S ′(X) can be written
as

u± = e±iΦ(x;E1/2)x(n−1)/2(E + Zx)−1/4u0,±, (538)
(II) u±(−; 0) = R(E = 0; Z ± i0)f as u±(−; 0) = e±iΦ(x;0)x(n−1)/2(Zx)−1/4u0,±(−; 0), where

u0,±(−; 0) ∈ C∞(X1/2)+A2δ0−
loc (X) is the restriction of u0,± to zf = cl{σ = 0, x > 0} ⊂ Xsp

res.
Moreover, the map

S(X) 3 f 7→ u0,± ∈ A(0,0),E,(0,0)
loc (Xsp

res∩{Z > Ea00})+A((0,0),δ1),2δ0−,(0,0)
loc (Xsp

res∩{Z > Ea00}) (539)
is continuous. �

Proof. It suffices to prove only the ‘+’ case of the proposition, since the ‘−’ case is similar (and
follows via complex conjugation). Moreover, it suffices to construct u0,± = u0,±,E0 over every
interval of the form [0, E0] for E0 > 0 satisfying Z > E0a00, since then for E ≤ E0 the function
u0,±,E0(−;E1/2) does not depend on E0 in the sense that for any E0, E

′
0 satisfying Z > E0a00, E

′
0a00

it is the case that u0,±,E0 and u0,±,E′0 agree on [0,min{E0, E
′
0}]E .
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Given the setup of the proposition, Proposition 6.2 applies, so we can define a family P =
{P (σ)}σ≥0 satisfying the assumptions listed in §1 such that P (σ) = P (0)− σ2 for σ2 ≤ E0, with P1
fully classical and P2 classical to order (β2, β3) for β2 = α1 − 1 and β2 = α2 − 3/2.

Defining P̃ = exp(−iΦ)P exp(+iΦ), since Pu+ = f , P̃ u00,+ = f̃ for u00,+ = exp(−iΦ)u+ ∈ S ′(X)
and f̃ = exp(−iΦ)f ∈ A∞,∞,(0,0)(Xsp

res). Referring §6.2 for the definition of R̃+(σ), by [Vas21a,
Theorem 1.1] it is the case that

u00,+(−;σ) = R̃+(σ)f̃(−;σ) (540)
for each σ > 0 (since, for each σ > 0, Φ differs from Vasy’s phase by a remainder the exponential of
which acts as a bounded multiplication operator on b-Sobolev spaces — cf. eq. (58), with a = 0).

By Proposition 6.15, u00,+ = x(n−1)/2(σ2 + Zx)−1/4u0,+ for some u0,+ ∈ A0−,0−,(0,0)
loc (Xsp

res),
depending continuously on f . Then, by Proposition 6.16, we conclude that

u0,+ ∈ A(0,0),E,(0,0)
loc (Xsp

res ∩ {Z > Ea00}) +A((0,0),δ1),2δ0−,(0,0)
loc (Xsp

res ∩ {Z > Ea00}), (541)
depending continuously on f ∈ S(X), with δ1 = min{β2, 1/2 + β3} = {α1 − 1, α2 − 1} and
δ0 = min{β2, β3} = min{α1 − 1, α2 − 3/2}. This yields the first half of the proposition (as well as
the continuity clause).

The second clause of this proposition then follows from the second clause of Proposition 6.15 and
Proposition 4.2. Indeed, by the latter,

e−iΦ(−;0)u+ = e−iΦ(−;0)R(0; Z + i0)f = R̃+(0)f̃(−; 0). (542)
By the second half of Proposition 6.15, the right-hand side is the restriction to zf of u+,00. �

6.1. Estimates.
Lemma 6.4. For any l, k ∈ R satisfying l < −1/2 and k + l ≤ −3/4, and for any N ∈ N, there
exists a C = C(x̄, l, k,N,Z) > 0 such that the linear map

Nl,N = Nl,N (k, σ) : H−N,lb [0, x̄)→ H−N−1,l
b [0, x̄) (543)

given by
Nl,N = 2i

[
x∂x + 1

2
]

+ 2iZx
σ2 + Zx

(
k + 1

4
)

(544)

satisfies ‖u‖
H−N,lb [0,x̄) ≤ C‖Nl,N (k, σ)u‖

H−N−1,l
b [0,x̄) for all σ ∈ [0,∞) and u ∈ H−N,lb [0, x̄).

The same estimate (possibly with a different constant) holds with X̂ = [0, x̄)x × ∂X in place of
[0, x̄) if we replace H−N,lb [0, x̄) with H̃−N,lb (X̂), where the latter is the usual b-Sobolev space (such
that H̃0,0

b (X̂) = L2
b(X̂)). �

Proof. We write the proof for [0, x̄), and the proof for X̂ is similar (since angular derivatives commute
with Nl,N ) once we interpret u as a Hm(∂X)-valued element of a b-Sobolev space on [0, x̄).

Via the Mellin transform, Nl,N (k, 0) = 2i(x∂x+k+3/4) : H−N,lb [0, x̄)→ H−N−1,l
b [0, x̄) is invertible

for l, k as in the lemma statement, so it suffices to restrict attention to the case σ > 0, i.e. to prove
that

‖u‖
H−N,0b [0,x̄) � ‖x

−lNl,N (k, σ)xlu‖
H−N−1,0

b [0,x̄) (545)

for all u ∈ H−N,0b [0, x̄) and σ > 0 (the estimate required to be uniform in σ). Let x̂ = Zx/σ2x̄.
Via the dilation invariance of the b-Sobolev spaces, the estimate eq. (545) is equivalent to the

following:
‖u‖

H−N,0b [0,Z/σ2) � ‖N̂l,ku‖H−N−1,0
b [0,Z/σ2) (546)

for all u ∈ H−N,0b [0,Z/σ2) and σ > 0, where

N̂l,k = 2i
[
x̂∂x̂ + l + 1

2
]

+ 2ix̂
1 + x̂

(
k + 1

4
)
. (547)
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We now “radially” compactify the nonnegative real axis [0,∞)x̂ (so that 1/(1 + x̂) becomes a bdf for
the new boundary face), and we call the result [0,∞]. Observe that N̂l,k is a b-differential operator
on [0,∞], with b-decay rate zero at both ends. In order to prove the estimate eq. (546), it suffices
to prove that

‖u‖
H−N,0,0b [0,∞] � ‖N̂l,ku‖H−N−1,0,0

b [0,∞] (548)

for all u ∈ H−N,0,0b [0,∞], where the third index is the b-decay order at x̂ =∞.
For l 6= −1/2 and l + k 6= −3/4, N̂l,k is (via b-ellipticity and the Taylor series expansion of

x̂/(1 + x̂) around x̂ = [0,∞)) Fredholm as an operator H−N,0,0b [0,∞]→ H−N−1,0,0
b [0,∞], and for

any N0 ∈ N we have the estimate
‖u‖

H−N,0,0b [0,∞] � ‖N̂l,ku‖H−N−1,0,0
b [0,∞] + ‖u‖

H
−N0,−1,−1
b [0,∞] (549)

for u ∈ H−N,0,0b [0,∞]. Once N̂ l,k is known to be injective, a standard argument allows us to remove
the last term of eq. (549), yielding the desired estimate eq. (548). It suffices to consider the case
N0 > N . The standard argument is as follows:

• If we could not remove the last term of eq. (549), then we would be able to find a sequence
{uj}j∈N ⊂ H−N,0,0b [0,∞] with ‖uj‖H−N,0,0b [0,∞] = 1 for all j and

‖N̂l,kuj‖H−N−1,0,0
b [0,∞] → 0 (550)

as j → ∞. By the Banach-Alaoglu theorem, we may assume without loss of generality
(by passing from {uj}j∈N to a subsequence if necessary) that there exists some u∞ ∈
H−N−1,0,0

b [0,∞] such that uj → u∞ weakly as j →∞.
Via the compactness of the inclusion H−N,0,0b [0,∞] ↪→ H−N0,−1,−1

b [0,∞] for N0 > N ,
uj → u∞ strongly in the latter space. From eq. (549), we deduce that

‖u∞‖H−N0,−1,−1
b [0,∞] = lim

j→∞
‖uj‖H−N0,−1,−1

b [0,∞] � 1. (551)

In particular, (I) u∞ is nonzero.
Also, from the strong convergence of uj → u∞ in H−N0,−1,−1

b [0,∞],

N̂l,kuj → N̂l,ku∞ (552)

distributionally. But N̂l,kuj → 0 strongly in H−N−1,0,0
b [0,∞], by eq. (550). Thus, (II)

N̂l,ku∞ = 0.
From (I) and (II), we conclude that N̂l,k is not injective.

In order to show that
ker

H−N,0,0b [0,∞] N̂l,k = {u ∈ H−N,0,0b [0,∞] : N̂l,ku = 0} (553)

is trivial, we simply appeal to the solution eq. (523) of the ODE (although it is slightly simpler
to integrate in the other direction). Indeed, any element u of the kernel eq. (553) must be given
by u(x̂) = cx̂−(l+1/2)(1 + x̂)−k−1/4 for some c ∈ C. If this is nonzero, then it is Ω(x̂−(l+k+3/4)) as
x̂→∞. If l + k + 3/4 ≤ 0, then u fails to lie in L2

b[0,∞]. By eq. (549) (applied with 0 in place of
N and N in place of N0),

‖u‖L2
b[0,∞] � ‖N̂l,ku‖H−1,0,0

b [0,∞] + ‖u‖
H−N,−1,−1

b [0,∞] � ‖N̂l,ku‖H−1,0,0
b [0,∞] + ‖u‖

H−N,0,0b [0,∞]. (554)

Since ‖u‖L2
b[0,∞] =∞ and u ∈ ker

H−N,0,0b [0,∞] N̂l,k ⇒ ‖N̂l,ku‖H−1,0,0
b [0,∞] = 0, eq. (554) implies

u /∈ H−N,0,0b [0,∞], (555)

which contradicts u ∈ ker
H−N,0,0b [0,∞] N̂l,k. Thus, u ∈ ker

H−N,0,0b [0,∞] N̂l,k ⇒ u = 0.
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This completes the proof of the lemma.
�

Proposition 6.5. For any l < −1/2, k + l ≤ −3/4, and N ∈ N, there exists a constant C =
C(P̃ , N, l, `, k) > 0 such that, for all σ ≥ 0,

‖v‖
H−N,lb (X) ≤ C · (‖(σ

2 + Zx)−k N(P̃ (σ))((σ2 + Zx)kv)‖
H−N,l+1,2l+3

b,leC (X)) (556)

‖v‖
H−N,l,2l+2k

b,leC (X) ≤ C · (‖N(P̃ (σ))v‖
H−N,l+1,2l+2k+3

b,leC (X)) (557)

for all v ∈ S ′(X) supported in {x < x̄} ⊂ X. �

Proof. Letting Ñ(P̃ (σ)) = (σ2 + Zx)−k N(P̃ )(σ2 + Zx)k, Ñ(P̃ (σ)) = N(P̃ (σ)) + 2Zkix2/(σ2 + Zx)1/2.
Consequently, we can choose the b,leC-Sobolev and b-Sobolev norms such that

‖Ñ(P̃ (σ))v‖
H−N,l+1,2l+3

b,leC
= ‖(2ix(x∂x − (n− 1)/2) + 2Zkix2/(σ2 + Zx))v‖

H−N,l+1
b (X). (558)

We can work on X̂ = [0, 1)x × ∂X, as

‖x−n/2w‖
H̃−N,lb (X̂) � ‖w‖H−N,lb (X) � ‖x

−n/2w‖
H̃−N,lb (X̂) (559)

for all N, l ∈ R and w ∈ S ′(X) supported in {x < x̄}. Equation (556) is therefore equivalent to

‖x−n/2v‖
H̃−N,lb (X̂) � ‖x

−n/2(2ix(x∂x − (n− 1)/2) + 2Zkix2/(σ2 + Zx))v‖
H̃−N,l+1

b (X) (560)

for v ∈ H−N,lb (X) supported in {x < x̄}, which follows if

‖w‖
H̃−N,lb (X̂) � ‖(2i(x∂x + 1/2) + 2Zkix/(σ2 + Zx))w‖

H̃−N,lb (X) (561)

holds for w ∈ H̃−N,lb (X̂), which was the conclusion of Lemma 6.4. �

Proposition 6.6. For each Σ > 0, N ∈ N, m, s, ς, l, ` ∈ R satisfying l < −1/2, ` < −3/2,
s > s0 > −1/2, −3/2 < ς0 < ς ≤ `+ s− l, there exists a constant C = C(P̃ ,Σ, N,m, s, ς, l, `) > 0
such that, for any u ∈ S ′(X)

‖u‖
Hm,s,ς,l,`

leC
≤ C · (‖P̃ u‖

Hm−2,s+1,ς+3,l+1,`+3
leC

+ ‖u‖
H−N,l−δ,`−2δ

b,leC
) (562)

holds for any σ ∈ [0,Σ] such that u(−;σ) ∈ H−N,s0,ς0scb (X). �

Proof. Consider u ∈ S ′(X) and σ ∈ [0,Σ] as in the proposition statement. By Proposition 5.13, we
have

‖u‖
Hm,s,ς,l,`

leC
� ‖P̃ u‖

Hm−2,s+1,ς+3,l+1,`+3
leC

+ ‖u‖
H
−N0−2,l,`
b,leC

, (563)

where N0 ∈ N is arbitrary. We now apply Proposition 6.5 to estimate the remainder term. Let
χ ∈ C∞c (X) be supported in x ≤ x̄ and identically equal to one in some neighborhood of x = 0.
First of all,

‖u‖
H
−N0−2,l,`
b,leC

� ‖χu‖
H
−N0−2,l,`
b,leC

+ ‖u‖
H
−N0,−N0,−N0
b,leC

. (564)

Set k = (`− 2l)/2. Then, k + l ≤ −3/4. We now apply the previous proposition with v = χu, the
result being

‖χu‖
H
−N0−2,l,`
b,leC

� ‖N(P̃ )χu‖
H
−N0−2,l+1,`+3
b,leC

≤ ‖P̃χu‖
H
−N0−2,l+1,`+3
b,leC

+ ‖Eχu‖
H
−N0−2,l+1,`+3
b,leC

(565)

for E = N(P̃ )− P̃ . By Proposition 3.8, E ∈ Ψ2,−1−δ,−3−2δ
b,leC (X) for some δ ∈ (0, 1/2), so

‖Eχu‖
H
−N0−2,l+1,`+3
b,leC

� ‖u‖
H
−N0,l−δ,`−2δ
b,leC

. (566)
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On the other hand, since χ is identically one in some neighborhood of ∂X,
‖P̃χu‖

H
−N0−2,l+1,`+3
b,leC

� ‖P̃ u‖
H
−N0−2,l+1,`+3
b,leC

+ ‖u‖
H
−N0,−N0,−N0
b,leC

� ‖P̃ u‖
Hm−2,s+1,ς+3,l+1,`+3

b,leC
+ ‖u‖

H
−N0,−N0,−N0
b,leC

(567)

for sufficiently large N0. Combining the estimates above (for sufficiently large N0), we get Equa-
tion (563).

�

For each m, s, ς, l, ` ∈ R, we consider the families X = Xm,s,ς,l,` = {Xm,s,ς,l,`(σ)}σ≥0 and Y =
Ym,s,ς,l,` = {Ym,s,ς,l,`(σ)}σ≥0 given by

Xm,s,ς,l,`(σ) = {u ∈ Hm,s,ς,l,`
leC (X) : P̃ u ∈ Hm−2,s+1,ς+3,l+1,`+3

leC (X)} (568)

Ym,s,ς,l,`(σ) = Hm−2,s+1,ς+3,l+1,`+3
leC (X), (569)

considered as families of Banach spaces in the usual way,
‖u‖X = ‖u‖

Hm,s,ς,l,`
leC

+ ‖P̃ u‖
Hm−2,s+1,ς+3,l+1,`+3

leC
. (570)

Note that Xm,s,ς,l,`(0) = Xm,ς,` and Ym,s,ς,l,`(0) = Ym,ς,`, where the right-hand sides are defined
eq. (298) and eq. (299). Tautologically, P̃ : X → Y is bounded, uniformly in σ ≥ 0, as ‖P̃ u‖Y ≤
‖u‖X .
Proposition 6.7. Given m, s, ς, l, ` satisfying the inequalities l < −1/2, ` < −3/2, −1/2 < s,
−3/2 < ς ≤ `+ s− l, one of the following two alternatives holds:

• there exists some σ ≥ 0 and nonzero u ∈ Xm,s,ς,l,`(σ) such that P̃ (σ)u = 0,
• there exists, for each Σ > 0, a constant C0 = C0(P̃ ,m, s, ς, l, `,Σ) > 0 such that the estimate

‖u‖
Hm,s,ς,l,`

leC
≤ C0‖P̃ u‖Hm−2,s+1,ς+3,l+1,`+3

leC
(571)

holds for all σ ∈ [0,Σ] and all u ∈ Xm,s,ς,l,`(σ).
�

Proof. The following is a variant of the proof of [Hör07, Theorem 26.1.7], also used in the proof of
the main theorem in [Vas21a].

Suppose that the second of the two alternatives does not hold, so that there exist Σ > 0 and
sequences {σk}∞k=0 ⊂ [0,Σ] and {uk}∞k=0 ⊂ S ′(X) with ‖uk‖Hm,s,ς,l,`

leC (X)(σk) = 1 and

‖P̃ (σk)u‖Hm−2,s+1,ς+3,l+1,`+3
leC (X)(σk) < 1/k (572)

for all k ∈ N. By passing to a subsequence if necessary (and noting that eq. (572) continues to hold
upon doing so), we can arrange that σk → σ∞ for some σ∞ ∈ [0,Σ].

Even though eq. (571) might not hold, by Proposition 6.6 we at least have the bound
1 = ‖uk‖Hm,s,ς,l,`

leC (X)(σk) ≤ C · (‖P̃ uk‖Hm−2,s+1,ς+3,l+1,`+3
leC (X)(σk) + ‖uk‖H−N,l−δ,`−2δ

b,leC
), (573)

for any N ∈ N, where C = C(P̃ ,Σ, N,m, s, ς, l, `) is some constant. On the other hand, for
sufficiently large N0 > N , we can bound

‖u‖
Hm,s,ς,l,`

leC (X)(σk) � ‖Λm,s,ς,l,`(σk)u‖L2(X) + ‖x−l(σ2 + Zx)l−`/2u‖
H
−N0,0
b (X), (574)

this holding for all u ∈ S ′(X) and σ ∈ [0,Σ]. Consequently, {Λm,s,ς,l,`(σk)uk}k∈N is bounded in
L2(X) and {x−l(σ2

k + Zx)l−`/2uk}k∈N is bounded in H−N0,0
b (X). By Banach-Alaoglu – passing to a

subsequence if necessary (and once again noting that eq. (572) continues to hold upon doing so) –
we can assume that there exist some v ∈ L2(X) and w ∈ H−N0,0

b (X) such that
Λm,s,ς,l,`(σk)uk → v (575)
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as k →∞ weakly in L2(X) and x−l(σ2
k + Zx)l−`/2uk → w as k →∞ weakly in H−N0,0

b (X).
It follows from the latter that uk → xl(σ2

∞ + Zx)`/2−lw strongly in some b-Sobolev space. This
has two consequences:

• First,
P̃ (σk)uk → P̃ (σ∞)(xl(σ2

∞ + Zx)`/2−lw) (576)
in S ′(X) as k →∞ (e.g. using Proposition 2.4 and Proposition 3.6). But, the assumption
‖P̃ (σk)u‖Hm−2,s+1,ς+3,l+1,`+3

leC (X)(σk) < 1/k implies that P̃ (σk)uk → 0 in S ′(X). Therefore
P̃ (σ∞)(xl(σ2

∞ + Zx)`/2−lw) = 0.
• Second (using Proposition 2.4), Λm,s,ς,l,`(σk)uk → Λm,s,ς,l,`(σ∞)(xl(σ2

∞ + Zx)`/2−lw) in
S ′(X). Since S ′(X) is Hausdorff, this implies that

Λm,s,ς,l,`(σ∞)(xl(σ2
∞ + Zx)`/2−lw) = v ∈ L2(X), (577)

which in turn implies that xl(σ2
∞+ Zx)`/2−lw ∈ Hm,s,ς,l,`

leC (X)(σ∞) by elliptic regularity (and
the fact that w ∈ H−N0,0

b ).
Let u = xl(σ2

∞ + Zx)`/2−lw. What we proved above is P̃ (σ∞)u = 0 and u ∈ Hm,s,ς,l,`
leC (X)(σ∞).

Thus,
u ∈ Xm,s,ς,l,`(σ∞). (578)

Since N > N0, via the compactness of the inclusion H−N0,0
b (X) ↪→ H−N,−δb (X) it is the case that

x−l(σ2
k + Zx)l−`/2uk → w strongly in H−N,−δb (X), so

‖w‖
H−N,−δb (X) = lim

k→∞
‖x−l(σ2

k + Zx)l−`/2uk‖H−N,−δb (X). (579)

On the other hand, we can bound ‖uk‖H−N,l−δ,`−2δ
b,leC (X)(σk) � ‖x

−l(σ2
k + Zx)l−`/2uk‖H−N,−δb (X). So,

eq. (573) yields

1 � ‖w‖
H−N,−δb (X) + lim sup

k→∞
‖P̃ uk‖Hm−2,s+1,ς+3,l+1,`+3

leC (X)(σk)

= ‖w‖
H−N,−δb (X).

(580)

Therefore w 6= 0. It follows that u 6= 0. We have therefore succeeded in showing that the second of
the two alternatives listed in the proposition holds. �

Proposition 6.8. Suppose that P is the spectral family of an attractive Coulomb-like Schrödinger
operator for σ ≤ Σ. Then, given m, s, ς, l, ` ∈ R satisfying l < −1/2, ` < −3/2, −1/2 < s, −3/2 < ς,
it is the case that, for each σ ≥ Σ,

P̃ (σ) : Xm,s,ς,l,`(σ)→ Ym,s,ς,l,`(σ) (581)

is invertible. �

Proof. We already observed the σ = 0 case in §3. The σ > 0 case is essentially proven in [Vas21a,
§4]. In order to see this, note that, for each σ > 0,

Xm,s,ς,l,`(σ) = {u ∈ Hm,s,l
scb (X) : ˜̃P (σ)u ∈ Hm−2,s+1,l+1

scb (X)} (582)

Ym,s,ς,l,`(σ) = Hm−2,s+1,l+1
scb (X) (583)

at the level of sets, where
˜̃P (σ) = e−iΦ0+iΦP̃ e+iΦ0−iΦ (584)

is Vasy’s conjugated operator, Φ0 simply being defined by Φ0 = σx−1. Since the leC-Sobolev
spaces are just scb-Sobolev spaces for σ > 0, the crux of the previous claim is that the P̃ on the
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right-hand side of eq. (568) can be replaced by Vasy’s eq. (584). Indeed, Φ0(x;σ) − Φ(x;σ) ∈
log xC∞([0, x̄)x) + C∞([0, x̄)x) for each σ > 0, so

˜̃P (σ) = P̃ (σ) + T (σ) (585)

for T (σ) = e−iΦ0(−;σ)+iΦ(−;σ)[P̃ (σ), e+iΦ0(−;σ)−iΦ(−;σ)] ∈ Diff1,−1,−1
sc (X). Thus,

T (σ) : Hm,s,l
scb (X)→ Hm−2,s+1,l+1

scb (X). (586)

So, for u ∈ Hm,s,l
scb (X), ˜̃P (σ)u ∈ Hm−2,s+1,l+1

scb (X) if and only if P̃ (σ)u ∈ Hm−2,s+1,l+1
scb (X). The

operators we consider have slightly more general σ-dependence than the ones in Vasy (as some
additional assumptions are needed for the σ /∈ R case of [Vas21a, Theorem 1.1]), but since we are
only considering real σ his proof of the real case of [Vas21a, Theorem 1.1] goes through in this
slightly greater generality mutatis mutandis.

Alternatively, the σ > 0 case of Proposition 6.6 suffices as a replacement for [Vas21a, Prop. 4.16]
in his proof of [Vas21a, Theorem 1.1], the rest of which is identical. (For the purpose of the proof
above, we do not need to know that the estimate in Proposition 6.6 is uniform down to σ = 0, so
the ς ≤ `+ s− l hypothesis there is not relevant here.) �

6.2. Smoothness at zf, Conormality elsewhere. For this subsection, we suppose that P (σ) is
the spectral family of an attractive Coulomb-like Schrödinger operator for σ in some neighborhood
of [0,Σ], Σ > 0. By analogy with the terminology in [Mel94], we might say that u ∈ S ′(X) “satisfies
the conjugated Sommerfeld radiation condition” for some given σ ≥ 0 if u ∈ Xm,s,ς,l,`(X)(σ) for
some m, s, ς, l, ` ∈ R satisfying l < −1/2, ` < −3/2, s > −1/2, ` + s − l ≥ ς > −3/2. One of the
main tasks of this subsection is to show that the limiting resolvent output converges as σ → 0+ to
something satisfying the zero energy version of the Sommerfeld radiation condition.

For each σ ∈ [0,Σ], let R̃+(σ) : Ym,s,ς,l,`(σ) → Xm,s,ς,l,`(σ) denote the set-theoretic inverse to
eq. (581) (which, of course, must actually be an isomorphism of Banach spaces e.g. by the closed
graph theorem). (The ‘+’ subscript of R̃+ = {R̃+(σ)}σ≥0 refers to the choice of sign in defining the
conjugation.) This extends the definition of the operator R̃+(0) introduced at the end of §3 to the
σ > 0 case. For each σ ∈ (0,Σ],

R̃+(σ) : Hm−2,s+1,l+1
scb (X)→ Hm,s,l

scb (X) (587)

is bounded (but not uniformly in σ). Considering the case s = m+ l, R̃+(σ) : Hm,l+1
b (X)→ Hm,l

b (X)
if l < −1/2 < m+ l. Note that the mapping properties of the resolvent with respect to the b-Sobolev
spaces are slightly lossy, in the sense that we can no longer keep track of the fact that the map
eq. (587) smooths by two orders. As the notation in eq. (587) indicates, the operator R̃+(σ) makes
sense as a map ⋃

m,s,l∈R
s>−1/2>l

Hm−2,s+1,l+1
scb (X)→

⋃
m,s,l∈R
s>−1/2>l

Hm,s,l
scb (X), (588)

hence we can just write “R̃+(σ)” without specifying m, s, l. A similar statement holds for σ = 0.

Proposition 6.9. Given m, s, ς, l, ` ∈ R satisfying l < −1/2, ` < −3/2, s > −1/2, `+ s− l ≥ ς >
−3/2, there exists some constant C = C(m, s, ς, l, `,Σ) > 0 such that

‖R̃+(σ)f̃‖
Hm,s,ς,l,`

leC (X)(σ) ≤ C‖f̃‖Hm−2,s+1,ς+3,l+1,`+3
leC (X)(σ) (589)

for all σ ∈ [0,Σ] and f̃ ∈ Hm−2,s+1,ς+3,l+1,`+3
leC (X)(σ). Moreover, for m, l ∈ R with l < −1/2 and

−1 < m+ 2l:
(I) for any f̃ ∈ Hm,l+5/4

b (X), we have ‖(σ2 + Zx)1/4R̃+(σ)f̃‖
Hm,l

b
≤ C0‖f̃‖Hm,l+5/4

b
for some

constant C0 = C0(P̃ ,m, l,Σ) > 0
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(II) for any f̃ ∈ Hm,l+1
b (X) we have ‖(σ2 + Zx)1/4R̃+(σ)(σ2 + Zx)1/4f̃‖

Hm,l
b
≤ C1‖f̃‖Hm,l+1

b
for

some constant C1 = C1(P̃ ,m, l,Σ) > 0
for all σ ∈ [0,Σ]. �

Proof. As a corollary of Proposition 6.7 and Proposition 6.8, we get that for m, s, ς, l, ` as above
and P the spectral family of an attractive Coulomb-like Schrödinger operator,

‖u‖
Hm,s,ς,l,`

leC (X)(σ) ≤ C(m, s, ς, l, `,Σ)‖P̃ u‖
Hm−2,s+1,ς+3,l+1,`+3

leC
(590)

holds for all σ ∈ [0,Σ] and all u ∈ Xm,s,ς,l,`(σ). We also have

R̃+(σ) : Hm−2,s+1,ς+3,l+1,`+3
leC (X)(σ)→ Xm,s,ς,l,`(σ) ⊆ Hm,s,ς,l,`

leC (X)(σ). (591)

Taking u = R̃+(σ)f̃ in eq. (590) yields Equation (589).
Suppose now that m, l ∈ R satisfy l < −1/2 and −1 < m+ 2l (in which case −1/2 < m+ l holds

as well). First suppose that f̃ ∈ Hm,l+5/4
b (X). Applying eq. (589) (observing that the required

inequalities l < −1/2 < m+ l and −3/2 < m+ 2l − 1/2 hold),

‖(σ2 + Zx)1/4R̃+(σ)f̃‖
Hm,l

b
� ‖(σ2 + Zx)1/4R̃+(σ)f̃‖

Hm,m+l,m+2l,l,2l
leC (σ)

� ‖R̃+(σ)f̃‖
H
m,m+l,m+2l−1/2,l,2l−1/2
leC (σ)

� ‖f̃‖
H
m−2,m+l+1,m+2l+5/2,l+1,2l+5/2
leC (σ)

� ‖f̃‖
H
m,l+5/4
b

.

(592)

Now supposing that f̃ ∈ Hm,l+1
b (X),

‖(σ2 + Zx)1/4R̃+(σ)(σ2 + Zx)1/4f̃‖
Hm,l

b
� ‖(σ2 + Zx)1/4R̃+(σ)(σ2 + Zx)1/4f̃‖

Hm,m+l,m+2l,l,2l
leC (σ)

� ‖R̃+(σ)(σ2 + Zx)1/4f̃‖
H
m,m+l,m+2l−1/2,l,2l−1/2
leC (σ)

� ‖(σ2 + Zx)1/4f̃‖
H
m−2,m+l+1,m+2l+5/2,l+1,2l+5/2
leC (σ)

� ‖f̃‖
Hm−2,m+l+1,m+2l+2,l+1,2l+2

leC (σ)

� ‖f̃‖
Hm,l+1

b
.

(593)
�

Proposition 6.10. For any m, l ∈ R with l < −1/2 and −1 < m+ 2l, for any f ∈ Hm,l+5/4
b (X),

(σ2 + Zx)1/4R̃+(σ)f → Z1/4x1/4R̃+(0)f (594)

weakly in Hm,l
b (X) as σ → 0+. In fact, the map (σ, f) 7→ (σ2 + Zx)1/4R̃+(σ)f defines a jointly

continuous map
[0,Σ)×Hm,l+5/4

b (X)→ Hm−ε,l−ε
b (X), (595)

for any ε > 0, where we are using the strong topologies on Hm,l+5/4
b (X) and Hm−ε,l−ε

b (X).
This (applied for slightly smaller m, l) implies that

{(σ2 + Zx)1/4R̃+(σ)}σ≥0 ⊂ L(Hm,l+5/4
b (X), Hm−ε,l−ε

b (X)) (596)
is continuous with respect to the uniform operator topology. �

Proof. First consider the claim of joint continuity. By the metrizability of [0,Σ)×Hm,l+5/4
b (X) and

Hm−ε,l−ε
b (X), joint continuity follows from the claim that
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• given f ∈ H
m,l+5/4
b (X) and σ∞ ∈ [0,Σ), for any and sequences {σk}k∈N ⊂ [0,Σ) and

{fk}k∈N ⊂ H
m,l+5/4
b (X) with σk → σ∞ and fk → f as k →∞,

(σ2
k + Zx)1/4R̃+(σk)fk → (σ2

∞ + Zx)1/4R̃+(σ∞)f (597)

strongly in Hm−ε,l−ε
b (X).

Since a sequence of elements of a metric space converges to some element if and only if every
subsequence thereof contains a further subsequence converging to that same element, it suffices to
show that

• given any {σk}k∈N ⊂ [0,Σ), {fk}k∈N ⊂ H
m,l+5/4
b (X) with σk → σ∞ and fk → f as k →∞,

there exists a subsequence {kκ}κ∈N ⊂ {k}k∈N such that

(σ2
kκ + Zx)1/4R̃+(σkκ)fkκ → (σ2

∞ + Zx)1/4R̃+(σ∞)f (598)

strongly in Hm−ε,l−ε
b (X).

We now handle the case of σ∞ = 0. The case σ∞ > 0 follows by a similar but even easier argument.
By Proposition 6.9 and Banach-Alaoglu, we can find a subsequence {kκ}κ∈N ⊂ {k}k∈N such that

(σ2
kκ

+ Zx)1/4R̃+(σkκ)fkκ converges weakly in Hm,l
b (X). Let w ∈ Hm,l

b (X) denote the weak limit.
We first want to show that w = Z1/4x1/4R̃+(0)f .

• We first check that w solves the PDE P̃ (0)(Z−1/4x−1/4w) = f . Indeed, for any m0, l0,

[0,∞)σ ×Hm0,l0
b (X) 3 (σ, u) 7→ P̃ (σ)u ∈ S ′(X) (599)

is jointly continuous with respect to the strong topology on Hm0,l0
b (X). (Besides being clear

from the explicit formulas for P̃ in §3, this follows from Proposition 2.4 and Proposition 3.6.)
Since

Z−1/4x−1/4(σ2
kκ + Zx)1/4R̃+(σkκ)fkκ → Z−1/4x−1/4w (600)

weakly in Hm,l−1/4
b (X), this convergence occurs strongly in Hm−ε,l−1/4−ε

b (X) for any ε > 0,
so (by the aforementioned joint continuity)

P̃ (σkκ)(Z−1/4x−1/4(σ2
kκ + Zx)1/4R̃+(σkκ)fkκ)→ P̃ (0)(Z−1/4x−1/4w) (601)

S ′(X).
Moreover, it is not difficult to see that P̃ (σkκ)(Z−1/4x−1/4(σ2

kκ
+ Zx)1/4R̃+(σkκ)fkκ)→ f

in S ′(X): indeed

P̃ (σkκ)(Z−1/4x−1/4(σ2
kκ + Zx)1/4R̃+(σkκ)fkκ)

= [P̃ (σkκ),Z−1/4x−1/4(σ2
kκ + Zx)1/4]R̃+(σkκ)fkκ + fkκ , (602)

and [P̃ (σ),Z−1/4x−1/4(σ2 + Zx)1/4] ∈ SDiff1,−5/4,−3,−5/4,−3
leC (X) satisfies

[P̃ (σ),Z−1/4x−1/4(σ2 + Zx)1/4]|σ=0 = [P̃ (0), 1] = 0, (603)

so the boundedness of R̃+(σkκ)fkκ in Hm,l
b (X) in some b-Sobolev space (as given by Propo-

sition 6.9) and Proposition 2.4 show that [P̃ (σkκ),Z−1/4x−1/4(σ2
kκ

+ Zx)1/4]R̃+(σkκ)fkκ → 0
in S ′(X).

Since S ′(X) is Hausdorff, it follows that P̃ (0)(Z−1/4x−1/4w) = f .
• Thus, we have

P̃ (0)(Z−1/4x−1/4w) = f. (604)

But, also,

P̃ (0)(R̃+(0)f) = f. (605)
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Set l0 = l−1/4, so that f ∈ Hm,l+5/4
b (X) = H

l0+3/2
b (X). In terms of `0 = 2l0, the inequalities

l < −1/2 and −1 < m+ 2l become `0 < −3/2 and −3/2 < m+ `, so Proposition 4.3 applies:

P̃ (0) : {u ∈ Hm,l−1/4
b (X) : P̃ (0)u ∈ Hm,l+5/4

b (X)} → H
m,l+5/4
b (X) (606)

is invertible, and the inverse is R̃+(0). Thus, u = R̃+(0)f is the unique solution to P̃ (0)u = f

in the domain of eq. (606). But Z−1/4x−1/4w is in the codomain, and as we saw in eq. (605)
solves this PDE. We conclude that

Z−1/4x−1/4w = R̃+(0)f. (607)

Via the compactness of the inclusion Hm,l
b ↪→ Hm−ε,l−ε

b , we conclude that

(σ2
kκ + Zx)1/4R̃+(σkκ)fkκ → Z1/4x1/4R̃+(0)f (608)

strongly in Hm−ε,l−ε
b . This completes the proof of joint continuity.

By Proposition 6.9, for each Σ > 0 the set {(σ2 + Zx)1/4R̃+(σ)f}σ∈[0,Σ] is bounded in Hm,l
b (X),

and the result above shows that eq. (594) holds in the topology generated by Schwartz test functions
(and, in fact, even the strong topologies Hm−ε,l−ε

b ). It follows from the conjunction of these
observations that eq. (594) holds with respect to the weak topology of Hm,l

b (X) (since S(X) is dense
in Hm,l

b (X)).
We now deduce the uniform continuity statement from the joint continuity statement. Suppose,

to the contrary, that we have some m, l ∈ R with l < −1/2 and −1 < m + 2l and some ε > 0
such that {(σ2 + Zx)1/4R̃+(σ)}σ≥0 is not continuous with respect to the uniform operator topology,
generated by the norm

‖−‖L(Hm,l+5/4
b (X),Hm−ε,l−ε

b (X)). (609)

We handle the case of a discontinuity at σ = 0, and the case of σ > 0 follows via a similar, easier
argument. The discontinuity statement means that there exists some ε > 0 such that there exist
sequences {σk}k∈N with σk → 0+ and {fk}k∈N ⊂ H

m,l+5/4
b with ‖fk‖Hm,l+5/4

b
≤ 1 such that

‖(σ2
k + Zx)1/4R̃+(σk)fk − (Zx)1/4R̃+(0)fk‖Hm−ε,l−ε

b
≥ ε (610)

for all k. By Banach-Alaoglu, we can choose these sequences such that there exists some

f∞ ∈ Hm,l+5/4
b (611)

such that fk → f∞ weakly, which implies strong convergence in Hm−ε′,l+5/4−ε′
b for any ε′ > 0. But

then, by the joint continuity statement already proven, as long as ε′ is sufficiently small such that
−1 < m+ 2l − 3ε′, we have

‖(σ2
k + Zx)1/4R̃+(σk)fk − (Zx)1/4R̃+(0)fk‖Hm−ε′−ε′′,l−ε′−ε′′

b
→ 0 (612)

as k →∞, for any ε′′ > 0. But we can take ε′, ε′′ sufficiently small such that ε′ + ε′′ < ε, in which
case eq. (612) contradicts eq. (610). �

Via Sobolev embedding, the previous proposition already yields the following corollary on the
continuity of the resolvent output at zero energy:

• for any f ∈ H∞,l+5/4
b (X), l < −1/2, and for any χ ∈ C∞c (X◦), χR̃+(σ)f → χR̃+(0)f in

C∞c (X◦) as σ → 0+.
We will need to strengthen this result to apply to ∂σ derivatives of the resolvent output. In order to
handle the compositions that arise, we will use the following variant of the preceding proposition.
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Proposition 6.11. For any m, l ∈ R with l < −1/2 and −1 < m + 2l, the map (σ, f) 7→
(σ2 + Zx)1/4R̃+(σ)f(σ2 + Zx)1/4 defines a jointly continuous map

[0,Σ)×Hm,l+1
b (X)→ Hm−ε,l−ε

b (X), (613)

for any ε > 0 (with respect to the strong topologies on Hm,l+1
b (X) and Hm−ε,l−ε

b (X)). Consequently,
{(σ2 + Zx)1/4R̃+(σ)(σ2 + Zx)1/4}σ≥0 ⊂ L(Hm,l+1

b (X), Hm−ε,l−ε
b (X)) is continuous with respect to

the uniform operator topology. �

Proof. We mimic the proof of Proposition 6.10. By the metrizability of [0,Σ) ×Hm,l+1
b (X) and

Hm−ε,l−ε
b (X), joint continuity follows from the claim that
• given f ∈ Hm,l+1

b (X) and σ∞ ∈ [0,Σ), for any and sequences {σk}k∈N, {fk}k∈N ⊂ Hm,l+1
b (X)

with σk → σ∞ and fk → f as k →∞,

(σ2
k + Zx)1/4R̃+(σk)(σ2

k + Zx)1/4fk → (σ2
∞ + Zx)1/4R̃+(σ∞)(σ2

∞ + Zx)1/4f (614)

strongly in Hm−ε,l−ε
b (X).

It suffices to show that
• given any {σk}k∈N ⊂ [0,Σ), {fk}k∈N ⊂ Hm,l+1

b (X) with σk → σ∞ and fk → f as k → ∞,
there exists a subsequence {kκ}κ∈N ⊂ {k}k∈N such that

(σ2
kκ + Zx)1/4R̃+(σkκ)(σ2

kκ + Zx)1/4fkκ → (σ2
∞ + Zx)1/4R̃+(σ∞)(σ2

∞ + Zx)1/4f (615)

strongly in Hm−ε,l−ε
b (X).

As before, we only consider the case of σ∞ = 0, since the case σ∞ > 0 follows by a similar but even
easier argument.

By Proposition 6.9 and Banach-Alaoglu, we can find a subsequence {kκ}κ∈N ⊂ {k}k∈N such that
(σ2
kκ

+ Zx)1/4R̃+(σkκ)(σ2
kκ

+ Zx)1/4fkκ converges weakly in Hm,l
b (X). Let w ∈ Hm,l

b (X) denote the
weak limit. We now show that w = Z1/2x1/4R̃+(0)x1/4f .

• We first check that w solves the PDE P̃ (0)(Z−1/4x−1/4w) = Z1/4x1/4f . As above, we use
that, for any m0, l0,

[0,∞)σ ×Hm0,l0
b (X) 3 (σ, u) 7→ P̃ (σ)u ∈ S ′(X) (616)

is jointly continuous with respect to the strong topology on Hm0,l0
b (X). Since

Z−1/4x−1/4(σ2
kκ + Zx)1/4R̃+(σkκ)(σ2

kκ + Zx)1/4fkκ → Z−1/4x−1/4w (617)

weakly in Hm,l−1/2
b (X),

P̃ (σkκ)(Z−1/4x−1/4(σ2
kκ + Zx)1/4R̃+(σkκ)(σ2

kκ + Zx)1/4fkκ)→ P̃ (0)(Z−1/4x−1/4w) (618)

S ′(X). Moreover, it is not difficult to see that, as before, P̃ (σkκ)(Z−1/4x−1/4(σ2
kκ

+
Zx)1/4R̃+(σkκ)(σ2

kκ
+ Zx)1/4fkκ)→ Z1/4x1/4f in S ′(X).

Since S ′(X) is Hausdorff, it follows that P̃ (0)(Z−1/4x−1/4w) = f .
• Thus, we have

P̃ (0)(Z−1/4x−1/4w) = Z1/4x1/4f

P̃ (0)(R̃+(0)(Z1/4x1/4f)) = Z1/4x1/4f.
(619)

Set l0 = l − 1/4, so that x1/4f ∈ Hm,l+5/4
b (X) = H

l0+3/2
b (X). By Proposition 4.3,

P̃ (0) : {u ∈ Hm,l0
b (X) : P̃ (0)u ∈ Hm,l0+3/2

b (X)} → H
m,l0+3/2
b (X)

: {u ∈ Hm,l−1/4
b (X) : P̃ (0)u ∈ Hm,l+5/4

b (X)} → H
m,l+5/4
b (X)

(620)
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is invertible, and the inverse is R̃+(0). Thus, u = R̃+(0)Z1/4x1/4f is the unique solution to
P̃ (0)u = Z1/4x1/4f in the domain of eq. (620). But Z−1/4x−1/4w is in the codomain, and as
we saw in eq. (619) solves this PDE. We conclude that

Z−1/4x−1/4w = R̃+(0)Z1/4x1/4f. (621)

Via the compactness of the inclusion Hm,l
b ↪→ Hm−ε,l−ε

b , we conclude that

(σ2
kκ + Zx)1/4R̃+(σkκ)(σ2

kκ + Zx)1/4fkκ → Z1/4x1/4R̃+(0)Z1/4x1/4f (622)

strongly in Hm−ε,l−ε
b .

Uniform continuity follows as in the proof of Proposition 6.10. �

Proposition 6.12. Fix ψ ∈ C∞c (R) supported sufficiently close to (−∞,Σ2] and χ ∈ C∞c (Xsp
res)

supported away from bf. Then, for each k,K ∈ N with k +K > 0,

{ψ(E)(E∂E)k(χx∂E)K P̃ (E1/2)}E≥0 ∈ SDiff1,0,−2,−1,−3
leC (X) ⊆ SDiff1,−1,−3

b,leC (X). (623)

�

Proof. For σ ∈ [0,Σ), P̃ (σ) = K(σ)+C for K(σ) ∈ SDiff1,0,−2,−1,−3
leC (X) containing the σ-dependent

part of P̃ (σ) and C ∈ SDiff2,0,−2
scb (X) constant in σ. Thus, for k,K ∈ N which are not both zero,

{ψ(E)(E∂E)k(χx∂E)K P̃ (σ)}σ≥0 ∈ (E∂E)k(χx∂E)KSDiff1,0,−2,−1,−3
leC (X). (624)

Since E∂E lifts to a conormal vector field on Xsp
res and χx∂E lifts to a smooth vector field which is

conormal at tf (and identically zero near bf),

(σ∂σ)k(χx∂E)KSDiff1,0,−2,−1,−3
leC (X) ⊆ SDiff1,0,−2,−1,−3

leC (X), (625)

so eq. (623) follows. �

Proposition 6.13. For each m, l ∈ R with m+ l > −1/2 > l and for each f ∈ Hm,l+1
b (X), the map

R̃+(•)f : (0,Σ) 3 σ 7→ R̃+(σ)f ∈ S ′(X) (626)

is smooth as a map (0,Σ) → S ′(X). Thus, ∂kσ(R̃+(σ)f̃(−;σ)) : R+
σ → S ′(X) is well-defined for

k ∈ N and f̃ ∈ C∞((0,Σ);Hm,l+1
b (X)) and is given by

[ k∑
κ=0

(
k

κ

)
∂κσ

(
R̃+(σ)(∂k−κσ0 f̃(−;σ0))

)]∣∣∣
σ=σ0

. (627)

Moreover, for k ∈ N, it is the case that, for each σ > 0, the map

∂kσR̃+(σ) = ∂kσ0R̃+(σ0)|σ0=σ :
⋃

m,l∈R
k−m−1/2<l<−1/2

Hm,l+1
b (X)→ S ′(X) (628)

: f 7→ ∂kσ(R̃+(σ)f) (629)

satisfies ∂kσR̃+(σ) ∈ L(Hm,l+1
b (X), Hm−k,l

b (X)). For each k ∈ N+, the identity

∂kσR̃+(σ) =
[ ∑
{ki}Ii=1∈Ik

c{ki}Ii=1

I∏
i=1

(R̃+(σ)∂kiσ P̃ (σ))
]
R̃+(σ) (630)

holds for some c{ki}Ii=1
∈ Z, where Ik is the set of finite sequences of positive integers summing to

k. �
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Proof. The proposition holds for the usual conjugated resolvent family
˜̃R+ = e−iσ/x+iΦR̃+e

+iσ/x−iΦ (631)

in place of R̃+ and ˜̃P = e−iσ/xPe+iσ/x in place of P̃ — see [Hin21, Lemma 2.10], [HHV21, Proposition
2.10]. Since multiplication by ∂κσ exp(±i(Φ0 −Φ)) acts boundedly (but not uniformly so as σ → 0+)
on the b-Sobolev spaces for each κ ∈ N — see eq. (58) — the mapping properties asserted in
the proposition follow from those for the usual conjugated resolvent family. The specific formula
eq. (630) follows via inductively applying ∂σR̃+(σ)f = −R̃+(σ)(∂σP̃ (σ))R̃+(σ)f . �

Remark 9. By the conjunction of
(1) R̃+(σ) : Hm,l+1

b (X)→ Hm,l
b (X) holding for all m, l ∈ R with l < −1/2 < m+ l and σ > 0,

and
(2) ∂kσP̃ (σ) : Hm,l

b (X)→ Hm−1,l+1
b (X) holding for all m, l ∈ R and σ > 0,

it is the case that
R̃+(σ)∂kσP̃ (σ) : Hm,l

b (X)→ Hm−1,l
b (X) (632)

for each σ > 0, k ∈ N, and m, l ∈ R satisfying l < −1/2 < m− 1 + l.
Consequently, for {ii}Ii=1 ∈ Ik,

I∏
i=1

[
R̃+(σ)∂kiσ P̃ (σ)

]
: Hm,l

b (X)→ Hm−I,l
b (X) (633)

is a well-defined composition whenever l < −1/2 < m+ l − I. The right-hand side of eq. (630) is
therefore a well-defined map Hm,l+1

b (X)→ Hm−k,l
b (X) whenever l < −1/2 < m+ l − k.

The identity eq. (630) should therefore be read as stating that both sides agree as maps
Hm,l+1

b (X)→ Hm−k,l
b (X). �

Proposition 6.14. For each k,K ∈ N and l < −1/2, there exists an m0(l, k +K) ∈ R such that
for all m > m0 and χ ∈ C∞c (Xsp

res) supported away from bf,

{(E∂E)k(χx∂E)K((E + Zx)1/4R̃+(E1/2))}E∈(0,Σ2)

∈ L∞ ∩ C0((0,Σ);L(Hm,l+5/4
b (X), Hm−k−K−ε,l−ε

b (X))) (634)
for all ε > 0. �

Proof. We explicitly consider the K = 0 case, and the K ∈ N+ case is similar (if a bit messier).
So, we want to prove that

{(σ∂σ)k((σ2 + Zx)1/4R̃+(σ))}σ∈(0,Σ) ∈ L∞ ∩ C0((0,Σ);L(Hm,l+5/4
b (X), Hm−k−ε,l−ε

b (X))). (635)
By eq. (630),

(σ∂σ)k((σ2 + Zx)1/4R̃+(σ)) =
k∑
j=0

(
k

j

)
(σ2 + Zx)−1/4((σ∂σ)j(σ2 + Zx)1/4)

[ ∑
{ki}Ii=1∈Ik−j

c{ki}Ii=1

I∏
i=1

(σ2 + Zx)1/4R̃+(σ)(σ∂σ)kiP̃ (σ)(σ2 + Zx)−1/4
][

(σ2 + Zx)1/4R̃+(σ)
]

(636)

for all σ > 0. By Proposition 6.12, for any k ∈ N+ we can write

(σ2 + Zx)−1/4((σ∂σ)kP̃ (σ))(σ2 + Zx)−1/4 ∈ L∞ ∩ C0([0,Σ);SDiff1,−1+ε
b (X)) (637)

for any ε > 0. On the other hand, by Proposition 6.11, for all ε > 0,

(σ2 + Zx)1/4R̃+(σ)(σ2 + Zx)1/4 ∈ C0([0,Σ);L(Hm−1,l+1−ε/2
b (X), Hm−1−ε,l−ε

b (X))) (638)
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for any m, l ∈ R satisfying l < −1/2 and m > −2l.
Combining these two observations, for any k ∈ N+ and ε > 0 we have that

(σ2 + Zx)
1
4 R̃+(σ)((σ∂σ)kP̃ (σ))(σ2 + Zx)−

1
4

= (σ2 + Zx)
1
4 R̃+(σ)(σ2 + Zx)

1
4 (σ2 + Zx)−

1
4 ((σ∂σ)kP̃ (σ))(σ2 + Zx)−

1
4 (639)

lies in
C0([0,Σ);L(Hm−1,l+1− ε2

b , Hm−1−ε,l−ε
b )SDiff1,−1+ ε

2
b (X)) ⊆ C0([0,Σ);L(Hm,l

b , Hm−1−ε,l−ε
b )) (640)

for any m, l ∈ R satisfying l < −1/2 and m > −2l. Therefore, by Proposition 6.10,

[ ∑
{ki}Ii=1∈Ik−j

c{ki}Ii=1

I∏
i=1

(σ2 + Zx)1/4R̃+(σ)(σ∂σ)kiP̃ (σ)(σ2 + Zx)−1/4
][

(σ2 + Zx)1/4R̃+(σ)
]

∈ C0([0,Σ)σ;L(Hm,l+5/4
b , Hm−k−ε,l−ε

b )) (641)
for any ε > 0 and for any m, l ∈ R satisfying l < −1/2 and −2l + k − 1 < m.

Since (σ2 + Zx)−1/4(σ∂σ)j(σ2 + Zx)1/4 ∈ C0([0,∞)σ;Sεb(X)) (as checked in Lemma 2.1), we
conclude eq. (635), eq. (634). �

The preceding results amount to:

Proposition 6.15. Given f̃ ∈ C∞(Xsp
res) vanishing rapidly at tf, bf (i.e. f̃ ∈ A∞,∞,(0,0)(Xsp

res)),
set u00,+(σ) = R̃+(σ)f̃(−;σ) for all σ ∈ [0,Σ). Defining u0,+(σ) = x−(n−1)/2(σ2 + Zx)1/4u00,+(σ),
u0,+ = {u0,+(−;σ)}σ∈[0,Σ) ∈ A

0−,0−,(0,0)
loc (Xsp

res ∩ {σ < Σ}).
Moreover, the mapping A∞,∞,(0,0)(Xsp

res) 3 f̃ 7→ u0,+ ∈ A0−,0−,(0,0)
loc (Xsp

res ∩{σ < Σ}) is continuous.
�

Proof. Fix χ ∈ C∞c (Xsp
res) supported away from bf and nonvanishing near zf.

• We first show that u0,+ = {u0,+(−;σ)}σ∈(0,Σ) ∈ A
0−,0−,0
loc (Xsp

res ∩ {σ < Σ}).
For any k,K ∈ N, (E∂E)k(χx∂E)K f̃ ∈ A∞,∞,(0,0)(Xsp

res). Thus, Proposition 6.13 and
Proposition 6.14 imply that, for all m ∈ R, l < −1/2, K ∈ N,

{(χx∂E)Ku0,+(−;E1/2)}E∈(0,Σ2)

=
{(
χx

∂

∂E

)K[
x−(n−1)/2(E + Zx)1/4R̃+(E1/2)f̃(−;E1/2)

]}
E∈(0,Σ2)

(642)

is in A0
loc([0,Σ2)E ;Hm,l−(n−1)/2

b (X)).
By Proposition 2.19, we deduce that (χx∂E)Ku0,+ ∈ A0−,0−,0

loc (Xsp
res ∩{σ < Σ}). Moreover,

Proposition 6.14 shows that the map

A∞,∞,(0,0)(X) 3 f̃ 7→ (χx∂E)Ku0,+(−;E1/2) ∈ A0
loc([0,Σ2)E ;Hm,l−(n−1)/2

b (X)) (643)
is continuous, for each K ∈ N, and the inclusion in Proposition 2.19 is continuous, so the
map A∞,∞,(0,0)(X) 3 f̃ 7→ (χx∂E)Ku0,+(−;E1/2) ∈ A0−,0−,0

loc (Xsp
res) is continuous as well.

• It now follows from Proposition 2.20 that {u0,+(−;σ)}σ>0 defines an element of the space
A0−,0−,(0,0)

loc (Xsp
res ∩ {σ < Σ}). By the remark following Proposition 2.20,

A∞,∞,(0,0)(Xsp
res) 3 f̃ 7→ u0,+ ∈ A0−,0−,(0,0)

loc (Xsp
res ∩ {σ < Σ}) (644)

is continuous.
• Finally, we observe from Proposition 6.12 that {u0,+(−;σ)}σ>0, considered as an element of
A0−,0−,(0,0)

loc (Xsp
res), restricts to x−(n−1)/2(Zx)1/4R̃+(0)f̃(−; 0) at zf.

�
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6.3. Asymptotics at bf, tf. For this subsection, we do not assume that P is the spectral family
of an attractive Coulomb-like Schrödinger operator, only that P satisfies the hypotheses in §1. Let
E denote the index set

E = {(k, κ) ∈ N× N : κ ≤ bk/2c}. (645)
Suppose that P1 is classical to order β1 > 0 and P2 is classical to order (β2, β3). Then, by

Proposition 3.8,
N(P̃ )− P̃ ∈ Diff2,−2,−4

b,leC (X) + SDiff2,−1−δ1,−3−2δ0
b,leC (X) (646)

holds for δ1 = min{1 + β1, β2, 1/2 + β3} and δ0 = min{1 + β1, β2, β3}.

Proposition 6.16. Suppose that P1 is classical to β1th order and P2 is classical to order (β2, β3),
and suppose that δ0 /∈ N. If u0 ∈ A0−,0−,(0,0)

loc (Xsp
loc) and f̃ ∈ A∞,∞,(0,0)

loc (Xsp
res), then, setting

u00(−;σ) = x(n−1)/2(σ2 + Zx)−1/4u0(−;σ), (647)
if P̃ u00 = f̃ , then

u0 ∈ A(0,0),E,(0,0)
loc (Xsp

res) +A((0,0),δ1),2δ0−,(0,0)
loc (Xsp

res), (648)
and (A0−,0−,(0,0)

loc ×A∞,∞,(0,0)
loc )|P̃ u00=f̃ 3 (u0, f̃) 7→ u0 ∈ A(0,0),E,(0,0)

loc +A((0,0),δ1),2δ0−,(0,0)
loc is continuous.

In particular, if P is fully classical, then

u0 ∈ A(0,0),E,(0,0)
loc (Xsp

res). (649)
�

Proof. We will prove via induction on α, β that, for all α ∈ (−∞, δ1] and β ∈ (−∞, δ0),

u0 ∈ A(0,0),E,(0,0)
loc (Xsp

res) +A((0,0),α),2β,(0,0)
loc (Xsp

loc). (650)
The α, β < 0 case of eq. (650) is the hypothesis of the proposition.

Consider α, β such that eq. (650) holds. From P̃ u00 = f̃ , writing P̃ = N(P̃ ) + (P̃ −N(P̃ )), we get

N(P̃ )u00 = f̃ − (P̃ −N(P̃ ))u00 ∈ A∞,∞,(0,0)
loc (Xsp

res)

+ (Diff2,−2,−4
b,leC (X) + SDiff2,−1−δ1,−3−2δ0

b,leC (X))x(n−1)/2A((0,0),α),2β−1/2,(0,0)
loc (Xsp

res)

+ (Diff2,−2,−4
b,leC (X) + SDiff2,−1−δ1,−3−2δ0

b,leC (X))x(n−1)/2A(0,0),E−1/2,(0,0)
loc (Xsp

res). (651)

The set on the right-hand side is x(n−1)/2 times

A(2,0),E+7/2,(0,0)
loc (Xsp

res) +A((2,0),2+α),2β+7/2,(0,0)
loc (Xsp

res)

+Amin{1+δ1,1+α+δ1},min{5/2+2δ0,5/2+2δ0+2α},(0,0)
loc (Xsp

res). (652)
For α sufficiently close to zero or positive, we can apply Proposition 6.17 below to conclude that

u0 ∈ A(0,0),E,(0,0)
loc +A((0,0),1+α),1+2β−,(0,0)

loc +A((0,0),min{δ1,α+δ1}),min{2δ0,2δ0+2β}−,(0,0)
loc

⊆ A(0,0),E,(0,0)
loc (Xsp

res) +A((0,0),min{1+α,δ1,α+δ1}),min{1+2β,2δ0,2δ0+2β}−,(0,0)
loc (Xsp

res). (653)
If δ1 ≤ α+ 1, α+ δ1 and δ0 ≤ 2β + 1, 2β + 2δ0, then

A((0,0),min{α+1,δ1,α+δ1}),min{1+2β,2δ0,2δ0+2β}−,(0,0)
loc (Xsp

res) = A((0,0),δ1),2δ0−,(0,0)
loc (Xsp

res), (654)
so we have concluded that eq. (648) holds. Otherwise,

u0 ∈ A(0,0),E,(0,0)
loc (Xsp

res) +A((0,0),α+ε1),2β+2ε0−
loc (Xsp

res) (655)
for ε1 = min{1, δ1} and ε0 = min{1/2, δ0}. The claim therefore follows by induction.

The continuity clause of the proposition can be proven using the same argument, keeping track
of topologies. �
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Proposition 6.17. Suppose that P satisfies the minimal hypotheses of §1.
Suppose further that u ∈ A−∞,−∞,(0,0)

loc (Xsp
res) = A−∞,(0,0)

loc ([0,∞)E ×X) satisfies N(P̃ )u = f for
some

f ∈ x(n−1)/2A(2,0),E+7/2,(0,0)
loc (Xsp

res) + x(n−1)/2A((2,0),α+1),β+5/2,(0,0)
loc (Xsp

res) (656)
for α, β ∈ R+, β /∈ 2N. Then, setting u0 = x−(n−1)/2(σ2 + Zx)1/4u,

u0 ∈ A(0,0),E,(0,0)
loc (Xsp

res) +A((0,0),α),β,(0,0)
loc (Xsp

res) (657)
holds. �

Proof. Now letting Ñ(P̃ ) = x−(n−1)/2(σ2 + Zx)1/4 N(P̃ )x(n−1)/2(σ2 + Zx)−1/4, Ñ(P̃ )u0 = f0 for
u0 = x−(n−1)/2(σ2 + Zx)1/4u and f0 = x−(n−1)/2(σ2 + Zx)1/4f . Below, it will be slightly more
convenient to work with f1 = x−1(σ2 + Zx)−1/2f0. Equation (656) yields

f1 ∈ x(σ2 + Zx)−1/2A(0,0),E,(0,0)
loc (Xsp

res) +A((1,0),α),β,(0,0)
loc (Xsp

res). (658)

In order to prove the proposition, it suffices to restrict attention to X̂ = [0, x̄)x × ∂Xy. By
eq. (525) (with k = −1/4 and l = −1/2), we have

Ñ(P̃ ) = 2ix2(σ2 + Zx)1/2∂x. (659)
Thus, integrating Ñ(P̃ )u0 = f0, we get

u0(x, y;σ) = c(y;σ) + i

2

� x̄

x
x−1

0 f1(x0, y;σ) dx0 (660)

for some c(y;σ) ∈ C, for each σ ≥ 0. Since u0 ∈ A−∞,(0,0)
loc ([0,∞)E × X̂), and since the same applies

to the integral in eq. (660) (cut-off near ∂X), we deduce that c ∈ A−∞,(0,0)
loc ([0,∞)E × X̂). Since

c(y, σ) does not depend on x, this implies that c ∈ C∞([0,∞)E × ∂X).
Equation (657) then follows from the mapping properties of the integral in eq. (660), which we

record in Corollary 6.19 and Proposition 6.20 below. �

For the following proposition, we use X̂sp
res, defined as Xsp

res with X̂ = [0, x̄)× ∂X in place of X.

Proposition 6.18. Let F ⊂ N× N be some index set containing (0, 0).
If g ∈ x(σ2 + Zx)−1/2A(0,0),F ,(0,0)

loc (X̂sp
res) = A(1,0),F+1,(0,0)

loc (X̂sp
res), then

I =
� x̄

x
x−1

0 g(x0, y;σ) dx0 ∈ A(0,0),F+,(0,0)
loc (X̂sp

res), (661)

where F+ = F ∪ {(k + 1, κ+ 1), (k + 2, κ+ 1) : (k, κ) ∈ F , k ≡ 1 mod 2}. �

Proof. It suffices to consider the case when g is supported in [0, x̄/2)x. Let us write G(x, y;E) =
x−1(σ2 + Zx)1/2g, so

I =
� x̄

x
(E + Zx0)−1/2G(x0, y;E) dx0 = 2

� x̄1/2

x1/2

( ρ2
0

E + Zρ2
0

)1/2
G(ρ2

0, y;E) dρ0. (662)

This is evidently smooth away from tf.
By the polyhomogeneity of G at zf ∩ tf, there exists a G0 ∈ A(0,0),F

loc ([0,∞)Ê × [0,∞)ρ×∂X) such
that G0(ρ, y; Ê) = G(x, y;E) when x = ρ2 and E = Êx. That is, G(x, y;E) = G0(x1/2, y;Ex−1).

Then, as a function of ρ, ρ0, y, and Ê = E/x, G(ρ2
0, y;E) = G0(ρ0, y;Eρ−2

0 ) = G0(ρ0, y; Êρ2ρ−2
0 ).

We can therefore write

I = I(ρ, y; Ê) = 2
� x̄1/2

ρ

1
(Ê + Z)1/2

G0
(
ρ0, y; Ê

( ρ
ρ0

)2)
dρ0 =

� x̄1/2

ρ
G1
(
ρ0, y; Ê

( ρ
ρ0

)2)
dρ0 (663)

for G1 ∈ A(0,0),F
loc ([0,∞)Ê × [0,∞)ρ × ∂X) defined by G1(ρ, y; Ê) = 2(Ê + Z)−1/2G0(ρ, y; Ê).
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We now expand G1(ρ, y, ; Ê) polyhomogeneously around ρ = 0: there exist G(k,κ)
1 ∈ C∞([0,∞)Ê×

∂X) and F (k)
1 ∈ A(0,0),F|≥k−k

loc ([0,∞)Ê × [0,∞)ρ × ∂X) for k ∈ N such that

G1
(
ρ0, y; Ê

( ρ
ρ0

)2)
=

K∑
k=0

κk∑
κ=0

ρk0 logκ(ρ0)G(k,κ)
1

(
y; Ê

( ρ
ρ0

)2)
+ ρK+1

0 F
(K+1)
1

(
ρ0, y; Ê

( ρ
ρ0

)2)
, (664)

where F|≥k−k = {(k′−k, κ) ∈ E : <k′ ≥ k}, κk = max{κ : (k,κ) ∈ F}, and G(k,κ)
1 can be nonzero

only if (k,κ) ∈ F .
Expand G(k,κ)

1 in the second slot: there exist G(j,k,κ)
1 ∈ C∞(∂X) and F (j,k,κ)

2 ∈ C∞([0,∞)Ê×∂X)
such that

G
(k,κ)
1

(
y; Ê

( ρ
ρ0

)2)
=

J∑
j=0

ρ2jρ−2j
0 ÊjG

(j,k,κ)
1 (y) + ρ2J+2ρ−2J−2

0 ÊJ+1F
(J+1,k,κ)
2

(
y; Ê

( ρ
ρ0

)2)
. (665)

Let zk,κ =
�
ρk logκ(ρ) dρ for k ∈ Z and κ ∈ N, with the additive constant chosen for convenience.

Then, if k 6= −1, we can take

zk,κ(ρ) = ρk+1
κ∑
κ=0

ck,κ,κ logκ(ρ) (666)

for some ck,κ,κ ∈ R. If instead k = −1, we have z−1,κ(ρ) = (κ + 1)−1 logκ+1(ρ). Integrating G1, we
write

I(ρ, y; Ê) =
K∑
k=0

κk∑
κ=0

J∑
j=0

ρ2jÊjG
(j,k,κ)
1 (y)

� x̄1/2

ρ
ρk−2j

0 logκ(ρ0) dρ0

+
K∑
k=0

κk∑
κ=0

ρ2J+2ÊJ+1
� x̄1/2

ρ
ρk−2J−2

0 logκ(ρ0)F (J+1,k,κ)
2

(
y; Ê

( ρ
ρ0

)2)
dρ0

+
� x̄1/2

ρ
ρK+1

0 F
(K+1)
1

(
ρ0, y; Ê

( ρ
ρ0

)2)
dρ0. (667)

We decompose this as I = I1 + I2 + I3 for

I1 =
K∑
k=0

κk∑
κ=0

J∑
j=0

ρ2jÊjG
(j,k,κ)
1 (y)

� x̄1/2

ρ
ρk−2j

0 logκ(ρ0) dρ0

= Ĩ1 +
K∑
k=0

κk∑
κ=0

J∑
j=0

k−2j 6=−1

ρ2jÊjG
(j,k,κ)
1 (y)[zk−2j,κ(x̄1/2)−zk−2j,κ(ρ)]

= Ĩ1 +
K∑
k=0

κk∑
κ=0

J∑
j=0

k−2j 6=−1

ÊjG
(j,k,κ)
1 (y)

κ∑
κ=0

ck−2j,κ,κ[ρ2j x̄k−2j+1 logκ(x̄)− ρk+1 logκ(ρ)],

(668)

where

Ĩ1 =
K∑
k=0

κk∑
κ=0

J∑
j=0

2j=k+1

ρ2jÊjG
(j,k,κ)
1 (y)

[
z−1,κ(x̄1/2)−z−1,κ(ρ)

]

=
K∑
k=0

κk∑
κ=0

J∑
j=0

2j=k+1

ρk+1ÊjG
(j,k,κ)
1 (y) 1

κ + 1
[

logκ+1(x̄1/2)− logκ+1(ρ)
]
,

(669)
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and

I2 =
K∑
k=0

κk∑
κ=0

ρ2J+2ÊJ+1
� x̄1/2

ρ
ρk−2J−2

0 logκ(ρ0)F (J+1,k,κ)
2

(
y; Ê

( ρ
ρ0

)2)
dρ0 (670)

I3 =
� x̄1/2

ρ
ρK+1

0 F
(K+1)
1

(
ρ0, y; Ê

( ρ
ρ0

)2)
dρ0. (671)

Since (0, 0) ∈ F ,
K∑
k=0

J∑
j=0

k−2j 6=−1

ÊjG
(j,k,κ)
1 (y)

κ∑
κ=0

ck−2j,κ,κρ
2j x̄k−2j+1 logκ(x̄) ∈ A(0,0),F

loc ([0,∞)Ê× [0,∞)ρ×∂X). (672)

Also,
K∑
k=0

J∑
j=0

k−2j 6=−1

ÊjG
(j,k,κ)
1 (y)

κ∑
κ=0

ck−2j,κ,κρ
k+1 logκ(ρ) ∈ A(0,0),F+1

loc ([0,∞)Ê × [0,∞)ρ × ∂X). (673)

Thus, I1 − Ĩ1 ∈ A(0,0),F ,(0,0)
loc ([0,∞)Ê × [0,∞)ρ × ∂X). Moreover, Ĩ1 ∈ ÊA(0,0),F+,(0,0)

loc ([0,∞)Ê ×
[0,∞)ρ × ∂X).

On the other hand,

I3 ∈ A(0,0),((0,0),K+1)
loc ([0,∞)Ê × [0,∞)ρ × ∂X), (674)

and we can write

I2 =
K∑
k=0

κk∑
κ=0

ρkÊJ+1
[

logκ(ρ)
� 1

ρ/x̄1/2
t2J−kF

(k,κ)
2 (y; Êt2) dt

−
� 1

ρ/x̄1/2
t2J−k logκ(t)F (J+1,k,κ)

2 (y; Êt2) dt
]
. (675)

Choosing J such that 2J ≥ K, we have
� 1
ρ/x̄1/2 t2J−kF

(J+1,k,κ)
2 (y; Êt2) dt ∈ C∞([0,∞)Ê × [0,∞)ρ ×

∂X), so
K∑
k=0

κk∑
κ=0

ρkÊJ+1 logκ(ρ)
� 1

ρ/x̄1/2
t2J−kF

(k,κ)
2 (y; Êt2) dt ∈ A(0,0),F

loc ([0,∞)Ê × [0,∞)ρ × ∂X). (676)

On the other hand,
� 1
ρ/x̄1/2 t2J−k logκ(t)F (J+1,k,κ)

2 (y; Êt2) ∈ A(0,0),((0,0),2J−K+1)
loc ([0,∞)Ê × [0,∞)ρ ×

∂X). All in all,
I2 ∈ A(0,0),(F ,2J−K+1)

loc ([0,∞)Ê × [0,∞)ρ × ∂X). (677)
Combining all of the parts above, we have

I ∈ A(0,0),(F+,min{K+1,2J−K+1})
loc ([0,∞)Ê × [0,∞)ρ × ∂X) (678)

By taking J to be very large, K + 1 and 2J −K + 1 can be made arbitrarily large simultaneously,
so we conclude that I defines an element of

∞⋂
L=1
A(0,0),(F+,L)

loc ([0,∞)Ê × [0,∞)ρ × ∂X) = A(0,0),F+

loc ([0,∞)Ê × [0,∞)ρ × ∂X). (679)

This shows – in conjunction with the smoothness of I away from tf – that I is locally in
A(0,0),F+,(0,0)(X̂sp

res) everywhere except possibly the corner bf ∩ tf, to which we now turn.
We consider the following two cases:
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• Suppose that G is supported in some set of the form {x/E > C}. Let % = x/E. Near bf ∩ tf,
I(x, y, E) = I(%E, y, E) = I(CE, y,E). (680)

Defining ρ = C1/2σ and Ê = C−1/2, I(CE, y,E) = I(ρ2, y, Êρ2). Since we already know
that I(ρ2, y, Êρ2) depends polyhomogeneously on ρ, Ê, y, with the desired index set F+, we
conclude that I depends polyhomogeneously on σ, y alone near bf ∩ tf.
• On the other extreme, suppose that G is supported in some set of the form {x/E < c},
for c > 0. In order to study I near bf ∩ tf, we work with the coordinate % = x/E. By
the polyhomogeneity of G, there exists a G2 ∈ AF ,(0,0)

loc ([0,∞)σ × [0,∞)% × ∂X) such that
G2(%, y;σ) = G(x, y;E) whenever % = x/E and σ2 = E. We can then write

I = σ

� min{x̄/σ2,c}

%
(1 + Z%0)−1/2G2(%0, y;σ) d%0 = σ

� min{x̄/σ2,c}

%
G3(%0, y;σ) d%0 (681)

for G3 ∈ AF ,(0,0)
loc ([0,∞)σ × [0,∞)% × ∂X) defined by G3(%, y;σ) = (1 + Z%)−1/2G2(%, y;σ).

The right-hand side of eq. (681) is in σAF ,(0,0)([0,∞)σ × [0,∞)% × ∂X) for σ < x̄1/2/c1/2.
Since any G ∈ A(0,0),F ,(0,0)

loc (X̂sp
res) can be decomposed G = G1 +G2 into G1, G2 ∈ A(0,0),F ,(0,0)

loc (X̂sp
res)

with G1 supported on {x/E > C} and G2 supported on {x/E < c} for some c, C > 0, and since
I = I[G] depends linearly on G, we can conclude that

I ∈ A(0,0),F+,(0,0)
loc (X̂sp

res). (682)
�

A simple example worth keeping mind is g = xσ2(σ2 + Zx)−1, for which� x̄

x
x−1

0 g(x0;σ) dx0 = −σ
2

Z log
(σ2 + Zx
σ2 + Zx̄

)
. (683)

This shows that, even when g ∈ xC∞(X̂sp
res), solving x∂xu = g for u may produce logarithms at tf.

To compare with Proposition 6.18,

(σ2 + Zx)1/2x−1g ∈ A(0,0),(1,0),(1,0)
loc (X̂sp

res) ⊂ A
(0,0),(0,0),(0,0)
loc (X̂sp

res), (684)
while

− σ2

Z log
(σ2 + Zx
σ2 + Zx̄

)
∈ A(0,0),(2,1),(1,0)

loc (X̂sp
res) ⊂ A

(0,0),(2,1),(0,0)
loc (X̂sp

res). (685)

Setting F to be the index set generated by (0, 0), F+ is generated by (0, 0) and (2, 1), so this is in
accordance with Proposition 6.18.

Since the index set E ⊂ N× N contains (0, 0) and satisfies E = E+:

Corollary 6.19. If g ∈ x(σ2 + Zx)−1/2A(0,0),E,(0,0)
loc (X̂sp

res), then

I =
� x̄

x
x−1

0 g(x0, y;σ) dx0 ∈ A(0,0),E,(0,0)
loc (X̂sp

res). (686)

��

Proposition 6.20. If g ∈ A((α0,0),α),β,(0,0)
loc (X̂sp

res) for α0 ∈ N+, α, β > 0, β /∈ 2N, then� x̄

x
x−1

0 g(x0, y;σ) dx0 ∈ C∞(X̂sp
res) +A((0,0),α),β,(0,0)

loc (X̂sp
res) (687)

holds. �

Proof. Let I =
� x̄
x x
−1
0 g(x0, y;σ) dx0. It suffices to prove the following two claims:

(I) if g is supported in {x/E > C}, then I ∈ C∞(X̂sp
res) +A(0,0),β,(0,0)

loc (X̂sp
res),
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(II) if g is supported in {x/E < c}, then I ∈ A((0,0),α),β,(0,0)
loc (X̂sp

res).
In order to prove (II), we write I in terms of % = x/E:

I =
� min{x̄/σ2,c}

%
%−1

0 G(%0, y;σ) d%0, (688)

where G ∈ Aβ,((α0,0),α)
loc ([0,∞)σ × [0,∞)% × ∂X). Since α0, α > 0, we can write

I = +
� c

0
%−1

0 G(%0, y;σ) d%0 −
� %

0
%−1

0 G(%0, y;σ) d%0 (689)

for σ sufficiently small. The first term is in Aβloc([0,∞)σ × ∂X) ⊂ Aβ,(0,0)
loc ([0,∞)σ × [0,∞)% × ∂X),

while the second is in Aβ,((α0,0),α)
loc ([0,∞)σ × [0,∞)% × ∂X). Thus, it is also the case that

I ∈ A((0,0),α),β,(0,0)
loc (X̂sp

res) (690)

away from zf. Since I is identically zero in the set {Ec < x} and therefore smooth in some
neighborhood of zf, this suffices to show that, globally, I ∈ A((0,0),α),β,(0,0)

loc (X̂sp
res).

To prove (I), we write I in terms of ρ = x1/2 and Ê = E/x:

I =
� x̄1/2

ρ
ρ−1

0 G
(
ρ0, y; Ê

( ρ
ρ0

)2)
dρ0, (691)

where G(ρ, y; Ê) ∈ C∞([0,∞)Ê ;Aβloc([0,∞)ρ × ∂X)) is supported in Ê < C−1.
We expand G(ρ, y; Ê) in Taylor series around Ê = 0: there exist G(k) ∈ Aβloc([0,∞)ρ × ∂X) and

F (k) ∈ C∞([0,∞)Ê ;Aβloc([0,∞)ρ × ∂X)) such that

G(ρ, y; Ê) =
K∑
k=0

ÊkG(k)(ρ, y) + ÊK+1F (K+1)(ρ, y; Ê). (692)

Substituting this into eq. (691),

I =
K∑
k=0

Êkρ2k
� x̄1/2

ρ
ρ−1−2k

0 G(k)(ρ0, y) dρ0 + ÊK+1ρ2K+2
� x̄1/2

ρ
ρ−3−2K

0 F (K+1)
(
ρ0, y; Ê

( ρ
ρ0

)2)
dρ0

(693)
for each K ∈ N. We take K = bβ/2c, in which case we can write

� x̄1/2

ρ
ρ−1−2k

0 G(k)(ρ0, y) dρ0 =
� x̄1/2

0
ρ−1−2k

0 G(k)(ρ0, y) dρ0 −
� ρ

0
ρ−1−2k

0 G(k)(ρ0, y) dρ0, (694)

where the integrals on the right-hand side are well-defined because ρ−1−2kG(k) ∈ A0+
loc for k = 0, . . . ,K

(owing to β /∈ 2N). We split I = I0 + I1 + I2, where

I0 =
K∑
k=0

Êkρ2k
� x̄1/2

0
ρ−1−2k

0 G(k)(ρ0, y) dρ0 ∈ C∞([0,∞)Ê × [0,∞)ρ × ∂X)

I1 = −
K∑
k=0

Êkρ2k
� ρ

0
ρ−1−2k

0 G(k)(ρ0, y) dρ0

I2 = ÊK+1ρ2K+2
� x̄1/2

ρ
ρ−3−2K

0 F (K+1)
(
ρ0, y; Ê

( ρ
ρ0

)2)
dρ0.

(695)
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Since ρ2k � ρ
0 ρ
−1−2k
0 G(k)(ρ0, y) dρ0 ∈ Aβloc([0,∞)ρ×∂X), I1 ∈ C∞([0,∞)Ê ;Aβloc([0,∞)ρ×∂X)). The

same holds for I2. The L∞ case of this estimate is∣∣∣ρ2K+2
� x̄1/2

ρ
ρ−3−2K

0 F (K+1)
(
ρ0, y; Ê

( ρ
ρ0

)2)
dρ0

∣∣∣ � ρ2K+2
� x̄1/2

ρ
ρ−3−2K+β

0 dρ0

� ρ2K+2
[
(x̄1/2)−2−2K+β + ρ−2−2K+β

]
� ρ2bβ/2c+2 + ρβ = O(ρβ),

(696)

and ∂κ
Ê

(ρ∂ρ)κI2 is estimated similarly.
Thus, I ∈ C∞([0,∞)Ê × [0,∞)ρ× ∂X) +C∞([0,∞)Ê ;Aβloc([0,∞)ρ× ∂X)). Using eq. (680) as in

the proof of the previous proposition, this suffices to show that I ∈ C∞(X̂sp
res)+A(0,0),β,(0,0)

loc (X̂sp
res). �

Appendix A. The model ODE

We record in this appendix some computations regarding the model ODE, eq. (53), now allowing
a Schwarzschild-like subleading term and nonzero forcing:

(1 + xa)
(
x2 ∂

∂x

)2
u+ σ2u+ Zxu = −f, (697)

where a 6= 0, f ∈ C∞c (R+
x ), and u ∈ C∞(R+). The case a < 0 is computationally similar to the case

a ≥ 0, but in the former it is necessary to restrict x to (0, 1/|a|) to avoid the second order term
in eq. (697) vanishing at x = 1/|a|. We will therefore only consider the case a ≥ 0. If we allow Z
to depend on σ, the a > 0 case can be reduced to the a = 0 case via a simple change of variables:
let x0 = (a + x−1)−1 = x/(1 + ax), so that r0 = 1/x0 is given by r0 = a + r, where r = 1/x. Then
∂r = ∂r0 , and the ODE eq. (697) is equivalent to(

x2
0
∂

∂x0

)2
u+ σ2u+ (Z− σ2a)x0u = −f0(x0) (698)

for f0(x0) = (1− ax0)f(x). The interval [0,∞)x becomes [0, 1/a)x0 , but we can analyze eq. (698)
on the larger region [0,∞)x0 , so that the analysis of eq. (697) is reduced to the a = 0 case,
with Z(σ) = Z − σ2a. Since the results in this section mainly serve to illustrate the general
features of the problem observed in the body of the paper, proofs are either sketched or omitted
entirely when elementary. References for many of the elementary statements can be found in
[Bat53][Sla60][AS64][Olv97]. We will mostly cite [AS64] when an explicit reference is desired.

The (nonzero) solutions to the homogeneous ODE cannot be written in terms of elementary
functions for any value of σ ≥ 0. In fact, for σ 6= 0, the homogeneous ODE is essentially a special
case of Whittaker’s ODE

d2W

dz2 +
(
− 1

4 + κ

z
+ 1/4− µ2

z2

)
W = 0, (699)

where κ ∈ C, µ ∈ C are parameters and W ∈ D′(R+
z ). When µ /∈ −2−1N+, there exist two named

solutions to eq. (699), and these extend from the nonnegative real axis to analytic functions
WhittMκ,µ,WhittWκ,µ : Cz\(−∞, 0]→ C (700)

which solve Whittaker’s ODE in the complex analytic sense. These functions are Whittaker’s M- and
W- functions. They can be written in terms of Kummer’s and Tricomi’s confluent hypergeometric
functions [AS64, §13.1.32, §13.1.33]. For certain values of µ, the branch cuts in eq. (700) can be
removed.

Proposition A.1. For σ > 0, the set of u ∈ D′(R+
r ) solving the original homogeneous ODE

∂2
ru+ σ2u+ Zr−1u = 0 is given by

Wσ = {c1 WhittMκ,1/2(2iσr) + c2 WhittWκ,1/2(2iσr) : c1, c2 ∈ C} (701)
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for κ = −iZ/2σ. ��

The asymptotic expansions of the Whittaker M- and W-functions at large imaginary argument
are due originally to Whittaker. For fixed σ > 0, we have

WhittMκ,1/2(2iσr) =
[
− (−2iσ)−iZ/2σ

Γ(1 + κ) e−iσr−(iZ/2σ) log r

+ (+2iσ)iZ/2σ

Γ(1− κ) e+iσr+(iZ/2σ) log r
](

1 +Oκ,σ
(1
r

)) (702)

WhittWκ,1/2(2iσr) = (2iσ)−iZ/2σe−iσr−(iZ/2σ) log r
(
1 +Oκ,σ

(1
r

))
(703)

as r → ∞. Here, and below, we leave the Z dependence of the estimates implicit. We are using
the principal branch of the logarithm in making sense of (2iσ)−iZ/2σ. As we are concerned with
r →∞ behavior, the Whittaker M- function (which is singled out of the space of all solutions to
Whittaker’s ODE by its behavior at small argument) is not one of the solutions of direct interest.
For σ > 0,

Wσ,− = spanC{WhittWκ,1/2(2iσr)} (704)

Wσ,+ = spanC

{[
(2iσ)−iZ/2σ WhittMκ,1/2(2iσr)

+ (−2iσ)−(iZ/2σ)Γ(1 + κ)−1 WhittWκ,1/2(2iσr)
]} (705)

are the spaces of “incoming” or “outgoing” solutions to the ODE, and Wσ =Wσ,− ⊕Wσ,+. It is the
spaces Wσ,−,Wσ,+ that concern us.

Set w−(r;σ) = (2iσ)iZ/2σ WhittWκ,1/2(2iσr) and

w+(r;σ) =
[
(2iσ)−iZ/2σΓ(1− κ) WhittMκ,1/2(2iσr) + (−2iσ)−iZ/2σΓ(1− κ)

Γ(1 + κ) WhittWκ,1/2(2iσr)
]
.

(706)
Thus, w−(−;σ) ∈ Wσ,− and w+(−;σ) ∈ Wσ,+, and w±(r;σ) ∈ C∞(R+

σ × R+
r ). These have

normalized oscillatory behavior exp(±iσr) as r →∞,

w±(r;σ) = e±iσr±(iZ/2σ) log r
(
1 +Oσ

(1
r

))
. (707)

For each σ > 0, w± are the unique solutions to the ODE satisfying eq. (707). It follows from this
and the fact that the ODE has real coefficients that w−(r;σ) = w+(r;σ)∗. Expanding to higher
order [AS64, §13.5]: for each σ > 0 and K ∈ N+,

w±(r;σ) = e±iσrr±iZ/2σ
[
1 + Z

K−1∑
k=1

(±i)k

8kk!σ3krk
(Z± 2kiσ)

k−1∏
j=1

(Z± 2jiσ)2 +Oσ
( 1
rK

)]
(708)

as r →∞.
For σ = 0, the set of u ∈ D′(R+

x ) solving the ODE (x2∂x)2u+ Zxu = 0 is

{c1r
1/2J1(2Z1/2r1/2) + c2r

1/2Y1(2Z1/2r1/2) : c1, c2 ∈ C}, (709)

where J1, Y1 denote the Bessel J- and Y- functions of order one. As r →∞,

r1/2J1(2Z1/2r1/2) = r1/4

π
1
2 Z 1

4

[
− cos

(
2
√

Zr + π

4
)

+ 3
16

1√
Zr

sin
(
2
√

Zr + π

4
)](

1 +O
(1
r

))
(710)

r1/2Y1(2Z1/2r1/2) = r1/4

π
1
2 Z 1

4

[
− sin

(
2
√

Zr + π

4
)
− 3

16
1√
Zr

cos
(
2
√

Zr + π

4
)](

1 +O
(1
r

))
, (711)
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and we have a full expansion in powers of r−1/2. For σ = 0, set

v−(r; 0) = r1/2J1(2Z1/2r1/2)− ir1/2Y1(2Z1/2r1/2) = r1/2H
(2)
1 (2Z1/2r1/2) (712)

v+(r; 0) = r1/2J1(2Z1/2r1/2) + ir1/2Y1(2Z1/2r1/2) = r1/2H
(1)
1 (2Z1/2r1/2), (713)

where H(1)
1 , H

(2)
1 denote the Hankel functions of order one. These have the asymptotics

v±(r;σ) = e±2iZ1/2r1/2∓3πi/4 r1/4

π1/2Z1/4

(
1 +O

( 1
r1/2

))
(714)

in the r →∞ limit. Expanding eq. (714) to higher order [AS64, §9.2]: for each K ∈ N+,

v±(r; 0) = e±2iZ1/2r1/2∓3πi/4 r1/4

π1/2Z1/4

K−1∑
k=0

(±i)kZ−k/2 (2k + 1)!(2k)!
64k(k!)3

1
rk/2

+O
( 1
rK/2−1/4

)
(715)

as r →∞.
Proposition A.2. v± are the unique solutions to the σ = 0 ODE satisfying the asymptotic
eq. (714). ��

Proposition A.3. Setting

C±(σ) = −Z1/2

2πσ (∓2iσ)±iZ/(2σ)Γ
(
∓ iZ

2σ
)

(716)

and v±(r;σ) = C±(σ)w±(r;σ), the functions v±(r;E1/2) : [0,∞)E × (0,∞)r → C are both smooth
all the way down to E = 0. Consequently, if

C±,0(σ) = e±πi/4π−1/2σ−1/2 exp
[
± Zi
σ

(
log

( 2σ
Z1/2

)
+ 1

2
)]
, (717)

then C±,0(σ)w±(r;σ) : [0,∞)σ× (0,∞)r → C are smooth all the way down to σ = 0, with restriction
v±(−; 0) to σ = 0. ��

Remark. The C0 case of this proposition is similar to [AS64, §13.3.4, §13.3.5], except that our κ
is purely imaginary rather than purely real. See also [Tay39][Bat53, §6.13.3, Eq. (21) - (24)]. Of
course, if we were to multiply C±(σ) by any element of C∞[0,∞)E , the resultant functions would
also satisfy the proposition above, and likewise with C±,0(σ) in place of C±(σ) and C∞[0,∞)σ in
place of C∞[0,∞)E .
Remark. Once we know that C± satisfies the first clause of the conclusion of Proposition A.3, the
second clause of the proposition follows from the large argument asymptotics of log Γ, which can be
found in [AS64, §6.1.40]. Observe, using [AS64, §6.1.40], that the ratio C±/C±,0 : [0,∞)σ → C is a
smooth function of σ, not E = σ2. This is related to the fact that, for u0,± as in Theorem 1.1, u0,±|bf :
[0,∞)σ × ∂X → C is only smooth with respect to σ, in contrast to u0,±|{x=ε} : [0,∞)σ × ∂X → C
for ε ∈ (0, x̄), which is smooth with respect to E.

Up to the exp(±πi/4)π−1/2 in eq. (717), eq. (717) is suggested by Theorem 1.1, as, for each
σ > 0,

Φ(x;σ) = σ

x
− Z

2σ log x+ Z
2σ + Z

σ
log

( 2σ
Z1/2

)
+Oσ(x) (718)

as x→ 0+, while the phase of the bracketed term in eq. (706) consists only of the first two terms of
eq. (718). The σ−1/2 term in eq. (717) is needed to match the r1/2 in eq. (712), eq. (713). This
heuristic should be taken with a grain of salt, as the Oσ(x) term blows up as σ → 0+. Assuming
that there exist some C± satisfying the conclusion of Proposition A.3, the sufficiency of the formula
above can be seen from the r → 0+ asymptotics of the Whittaker functions. Indeed, the ODE can
be written in the form (

r
∂

∂r

)2
u−

(
r
∂

∂r

)
u+ (σ2r2 + Zr)u = 0, (719)
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Figure 8. The real and imaginary parts of the function C−(σ) defined by eq. (716),
rescaled so that the oscillations have constant amplitude.

which has a regular singular point at r = 0. The “normal operator” of (r∂r)2 − (r∂r) + σ2r2 + Zr
at r = 0 is (r∂r)2 − r∂r, the indicial roots of which are 0 and 1. We can deduce that a family
{u(−;σ)}σ≥0 ⊂ D′(R+) of solutions to eq. (719) can be smooth at {r > 0, σ = 0} only if it extends
continuously to [0, 1)σ × [0, 1)r (we will not have smoothness at r = 0 because of the presence of a
r log r term), in which case limσ→0+ limr→0+ u = limr→0+ limσ→0+ u exists. Now observe that, as
r → 0+,

w±(r;σ) = ±2i
Z (∓2iσ)∓iZ/2σ σ

Γ(∓iZ/2σ) +Oσ(r log r), (720)

lim
r→0+

w±(r;σ) = ±2i
Z (∓2iσ)∓iZ/2σ σ

Γ(∓iZ/2σ) (721)

for each σ > 0. We now compare eq. (721) with

lim
r→0+

v±(r; 0) = ∓ i

πZ1/2 +O(r log r) (722)

[AS64, §9.1.9, §9.1.11]. This yields C±(σ) = −(2πσ)−1Z1/2(∓2iσ)±iZ/2σΓ(∓iZ/2σ), which is
eq. (716). A more thorough analysis of the ODE near r = 0 suffices to prove Proposition A.3
properly.

Letting χ ∈ C∞c [0,∞) be identically one in some neighborhood of the origin, v◦± = χ(1/r)v±(r;σ)
satisfies

∂2v◦±
∂r2 +

(
σ2 + Z

r

)
v◦± = f± (723)

for some f± ∈ ∩E0>0C
∞
c ([0, E0]E × R+). We can deduce (e.g. by appealing to Theorem 1.1 plus

Remark 1 in the case of spherical symmetry) that v◦± has the form

v◦± = exp(±iΦ(r−1;E1/2))(E + Zr−1)−1/4v◦0,± (724)

for some v0,± ∈ A(0,0),E,(0,0)
loc (Xsp

res), where X = [0,∞)x and Xsp
res = [[0,∞)E × X; {0} × {0}; 1/2].

Thus, w±(r, σ) satisfy

w±(r;σ) ∈ C−1
± (σ)e±iΦ(r−1;E1/2)(E + Zx)−1/4A(0,0),E,(0,0)

loc (Xsp
res). (725)

That is, in the ‘−’ case:
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Figure 9. The function U(r;E) = v−(r;E1/2)/v−(r; 0) (left) and its first derivative
∂EU(r;E) (right) evaluated at r = 5, plotted against E ∈ [0, 2]. The real parts are
plotted in orange and the imaginary parts are in blue. From the figures it appears
that U ∈ C2[0, 2)E and U(0) = 1, in accord with Proposition A.3 (and with
Corollary 1.3).

Proposition A.4. The Whittaker W-function WhittWκ,1/2 satisfies

WhittW−iZ/2σ,1/2(2iσr) ∈ σΓ
( iZ

2σ
)−1(

σ2 + Z
r

)−1/4

exp
(
− ir

√
σ2 + Z

r
− iZ
σ

log
(σr1/2

Z1/2 +
(
1 + σ2r

Z
)1/2))

A(0,0),E,(0,0)
loc (Xsp

res). (726)

��

Remark. It seems that there are no logarithmic terms in the expansion of the polyhomogeneous
function in eq. (726). In order to prove this, it should be possible to combine the previous proposition
with a WKB type expansion at tf, with σ being the semiclassical parameter. The point here is
that the Whittaker W-function has simple asymptotics at bf, and the asymptotic expansion at tf
without log terms can be concluded from this. The alternative argument above is indirect, utilizing
the asymptotics at tf, and from this perspective it is somewhat miraculous that the asymptotic
expansion at tf is one-step polyhomogeneous. For general forcing f ∈ C∞c (R+), we should not
expect the outgoing solution to the forced ODE to have a one-step polyhomogeneous expansion at
tf.

Proposition A.4 can be strengthened by specifying the behavior of WhittW−iZ/2σ,1/2(2iσr) at
small r. Namely, if we replace X by X̄ = [0,∞]x, then, replacing r by 〈r〉 in eq. (726), the same
statement holds, with A(0,0),E,(0,0)(Xsp

res) replaced by the set of polyhomogeneous functions on X̄sp
res

with index set N at zf, tf,bf and with some other index set (which can be specified) at the new face
formed by the lift of [0,∞)E × {∞}x to X̄sp

res.
The most interesting regime is tf, which we can probe using the coordinates ς = σr1/2 and r−1/2.

As a corollary of Proposition A.4, analogous to Corollary 1.5, we deduce that

WhittW−iZr1/2/2ς,1/2(2iςr1/2) ∈ ς1/2e
πZ
4ς r

1/2
exp

(
− ir1/2

√
ς2 + Z + iZ

2ς r
1/2
)

exp
[
− iZ

ς
r1/2

[1
2 log

(Zr1/2

2ς
)

+ log
( ς

Z1/2 +
(
1 + ς2

Z
)1/2)]]

A(0,0),F ([0,∞)ς × [0,∞)r−1/2) (727)



HYDROGEN-LIKE SCHRÖDINGER OPERATORS AT LOW ENERGIES 101

Figure 10. The real (in red, orange, and green) and imaginary (in blue, purple,
and brown) parts of the function exp(−πZr1/2/4ς) Whittκ,1/2(2iςr1/2) as a function
of r1/2, for ς ∈ {.05, .25, .5} and Z = 3 fixed, where κ = −iZr1/2/2ς.

Figure 11. The real and imaginary parts of the function
ς−1/2 exp(−πZr1/2/4ς) exp(−ir1/2ϕ) Whittκ,1/2(2iςr1/2) (with the same color
scheme as in Figure 10), now plotted as a function of ρ = 1/r1/2, for ς ∈ {.05, .25, .5}
and Z = 3.

for some index set F ⊂ N× N. Here we used the large argument expansion of the Γ-function, i.e.
Stirling’s formula [AS64, §6.1.37], which implies

Γ(iZr1/2/2ς) ∈ r−1/4ς1/2e−πZr1/2/4ςe−iZr
1/2/2ς(Zr1/2/2ς)iZr1/2/2ςC∞([0,∞)ς × [0,∞)r−1/2). (728)

Thus, if we let

ϕ = −(ς2 + Z)1/2 + Z
2ς −

Z
ς

[1
2 log

(Zr1/2

2ς
)

+ log
( ς

Z1/2 +
(
1 + ς2

Z
)1/2)]

, (729)
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then, for each ς > 0, e−πZr1/2/4ςe−ir
1/2ϕWhittκ,1/2(2iςr1/2) is a polyhomogeneous function of r−1/2,

all the way down to r−1/2 = 0. The convergence aspect of this result, in particular the fact that the
multiplication by exp(−ir1/2ϕ) kills off the oscillations of exp(−πZr1/2/4ς)Whittκ,1/2(2iςr1/2), is
depicted in Figure 11 (and the contrast with Figure 10, where the exp(−ir1/2ϕ) factor is missing).
The C0 case of this is similar to [Bat53, §6.13.3, Eq. (21) - (24)] (though we did not compute out
the leading order term in the asymptotic expansion).
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